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A B S T R A C T

In the rank-polymorphic programming model, all functions operate on
aggregate data of arbitrarily high rank, or number of dimensions. During
function application, an argument array is split into cells, the individual
components the function expects to consume. For example, an RGB-to-
greyscale pixel transform operates on each vector in an arbitrarily large
array. The aggregate structure surrounding the cells, called the frame,
serves as the iteration space for cell-wise function application. The
programming model was first developed by Iverson with the language
APL [43], but it struggled with a barrier to efficient compilation: Loop
nesting structure is derived from data computed at run time.

This dissertation presents the design and formal semantics of Remora,
a higher-order, rank-polymorphic programming language with a static
type system which identifies the shape of run-time data. This overview
is followed by formal semantics for a core language. Remora’s static
semantics ascribes to each expression a type which describes the shape
of the resulting array. Quantification over the shape of cells and the type
of atoms within an array is explicit, but the polymorphism over frames is
entirely implicit. That is, a function’s type only describes its cell-level
behavior, while implicit iteration—which is common to all functions—is
identified by typing rules. A type-driven dynamic semantics determines
the iteration space for functions applied to computed array data, and a
type soundness theorem ensures that the types—and shapes—ascribed
to expressions match those of their eventual results.

While frame polymorphism is instantiated implicitly in Remora’s
formal semantics, explicitly instantiating cell polymorphism is a severe
annotation burden. For example, a vector-mean function can be used on
a 3ˆ 5ˆ 4 array with no explanation that the array is a 3ˆ 5 frame,
but the function must be explicitly instantiated to operate on vectors of
length 4. That burden is alleviated by a bidirectional typing system which
uses a novel constraint solver for the theory of array shapes to identify
implicit dimension and shape arguments. The vector-mean function can
then be applied directly to the 3ˆ 5ˆ 4 array, with bidirectional rules
elaborating to code which explicitly instantiates it for 4-vector cells.

Two translation steps link Remora’s formal semantics to conventional
rank-monomorphic languages with explicit iteration. While Remora’s dy-
namic semantics relies heavily on run-time type information, a type era-
sure pass can change from carrying full type information in dynamically
created closures and arrays to describing argument and iteration-space
shapes statically at sites. With that shape information at each call site,
the program can be translated from using rank-polymorphic function
calls to rank-monomorphic explicit iteration.
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1I N T R O D U C T I O N

The essence of the rank-polymorphic programming model is implicitly
treating all operations as aggregate operations, usable on arrays with
arbitrarily many dimensions. The model was first introduced by Iverson
with the language APL [43] (short for “A Programming Language”).
Over time, Iverson continued to develop this programming model, mak-
ing it gradually more flexible, eventually leading to the creation of J
[50] as a successor to APL. The boon APL offered programmers was
a notation without loops or recursion: Programs would automatically
follow a control-flow structure appropriate for the data being consumed.
The nature of the implicit iteration structure could be modified using
second-order operators, such as folding, scanning, or operating over a
moving window. These second-order operators would directly reveal all
loop-carried data dependences.

In this sense, other languages demanded that unnecessary work be
put into both compilers and user programs. The programmer would be
expected to write the program’s iteration structure explicitly; in many
languages this entails describing a particular serial encoding of what is
fundamentally parallelizable computation. The compiler must then per-
form intricate static analysis to see past the programmer’s overspecified
iteration schedule.

The design of APL earned a Turing award for Iverson [44] as well
as a mention in an earlier Turing lecture [4], praising it for showing the
basis of a solution to the “von Neumann bottleneck.” However APL’s
subsequent development proceded largely in isolation from mainstream
programming-language research. The APL family of languages painted
itself into a corner with design decisions such as requiring functions
to take only one or two arguments and making parsing dependent on
values assigned at run time. As a result, APL compilers were forced to
support only a subset of the language (such as Budd’s compiler [10])
or to operate on small sections of code, alternating between executing
each line of the program and compiling the next one [49]. What we gain
from the rank-polymorphic programming model’s natural friendliness to
parallelism, we can easily lose by continually interrupting the program
to return control to a line-at-a-time compiler. Limiting the compiler to
operating over a narrow window of code can also eliminate opportunities
for code transformations like fusion, forcing unnecessary materialization
of large arrays.

The tragedy of rank-polymorphic programming does not end at for-
gone opportunities for performance. Despite the convenience of rank
polymorphism for writing array-processing code—a common task in

1



2 I N T RO D U C T I O N

4 For example, operations which already
expect aggregate data—perhaps the

programmer writes a function to
compute the norm of a vector or the

determinant of a matrix—do not always
lift easily to consume even

higher-dimensional arguments

many application domains—APL and its close descendants do not see
widespread use. There is enough desire for implicitly aggregate com-
putation to support user communities for systems such as NumPy [73]
and MATLAB [63], which do not follow as principled or as flexible a
rule for matching functions with aggregate arguments4. However, pro-
grammers are driven away from APL itself by features such as obtuse
syntax, restrictions on function arity, poor support for naming things, and
a limited universe of atomic data to populate the arrays [2]. Investigating
rank polymorphism itself, separated from the idiosyncrasies of APL and
J themselves, calls for developing a new language. A new language can
serve as a base from which to launch new design experiments not directly
compatible with past languages.

1.1 M Y T H E S I S

The implicit, data-driven control structure of higher-order
rank-polymorphic programs can be identified statically by a
type system suitable for the programming style common in
rank-polymorphic code.

Rank polymorphism is not a new programming model, but since it
evolved mostly in isolation from the programming-languages research
community, formal semantics has not kept up with the development of
the programming model. In promising a static, type-based analysis, this
thesis implicitly incurs the obligation to formalize the dynamic behavior
of rank polymorphism. This type system is not only for safety: it also
describes the program’s implicit control structure, whose discovery used
to have to be deferred until run time. We need to know that the type
system’s description of the program’s control structure is accurate, and
static semantics can only be proven sound with respect to some dynamic
semantics. On the other hand, any type system which rules out programs
which “go wrong” can be expected to also rule out some programs
which do not. So just having a sound type system for a programming
model is not enough. We need a type system which is not so restrictive
as to prohibit the code programmers typically write when using that
programming model. Some prior work has imposed too much restriction,
making many common array-programming primitive operations not just
unwieldy but impossible to use. This thesis promises to avoid that dead
end.

What follows to support my thesis is a design document for Remora,
a rank-polymorphic programming language. While APL has seemed
“too dynamic” for good static compilation, due to deriving its control
structure from computed data, Remora uses a type system which tracks
array shapes in order to identify the implicit iteration space of each
function call. In order for types to provide enough detail about array
shapes, Remora uses a restricted form of dependent typing, in the style
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of Dependent ML [102]. In Dependent ML, types are not parameterized
over arbitrary program terms but over a much more restricted language.
For Remora, our language of type indices consists of natural numbers,
describing individual dimensions, and sequences of natural numbers,
describing array shapes.

Past work on applying dependent types to computing with arrays has
focused on ensuring the safety of accessing individual array elements
[93, 103]. Bounds checking array indices is essential in a programming
model where extracting a single element is the only elimination form
for arrays, but the rank-polymorphic programming model generally
eschews this operation. Instead, arrays are consumed whole, and function
application itself serves as the elimination form for arrays. Remora’s use
of dependent types instead aims to check that arrays have compatible
shapes without having to consider whether a particular element index
falls within legal bounds. Remora’s type system is flexible enough to
express polymorphism over the cell shape, such as a determinant function
that can operate on square matrix cells of any size. It can also handle
functions whose output shape is not determined by input shape alone,
such as reading a vector of unknown size from user input or generating
an array of caller-specified shape.

Part I gives a more extended overview of the rank-polymorphic pro-
gramming model, including a demonstration using an untyped variant of
Remora in Chapter 3. Remora’s operational semantics and the type sys-
tem which describes program control structure are presented in Chapter
4, including a proof of type soundness (i.e., the control structure implied
by the type system is the actual program behavior).

Remora’s types themselves are very detailed and therefore verbose.
A function’s type includes descriptions of its input and output—both
the elements those arrays contain and their shapes—as well as explicit
quantification over those element types and portions of the associated
shapes. For example, the type of the filter function, which takes a
bitmask specifying which parts of an array to keep or drop, has the type

(Arr (� ((t Atom))

(A (� ((d Dim) (s Shape))

(A (-> ((Arr Bool (Shp d))

(Arr t (++ (Shp d) s)))

(A (� ((k Dim))

(A t (++ (Shp k) s)))

(Shp)))

(Shp)))

(Shp)))

(Shp))

This type quantifies over t, the type of data appearing inside the array; d,
the length of the array’s leading axis; and s, the sequence of remaining
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axes. The first argument is the bitmask, a boolean vector with length d.
The second argument is the dˆs array of t. The result, described with
the � type, is a kˆs array, where k is the number of items the bitmask
says to retain. Since the actual value of k is dependent on run-time data,
it is existentially quantified—the result array’s leading axis has unknown
length.

Explicit type annotations in Remora code can easily make up more
of the program text than term-level code. Making the language usable
for human programmers calls for type inference, to help identify restric-
tions on the shape of a function’s arguments and fill in the details of
how argument arrays fit that shape. The algebra of array shapes makes
Remora’s type system incompatible with global type inference strate-
gies that rely on automatic generalization and principal typing. Instead,
Remora uses bidirectional typing, as described in Chapter 6. The task
of inferring shapes requires a new constraint solver for string equations
modulo theories. The theory of array shapes and the structure of the cor-
responding solver are laid out in Chapter 7. The efficacy of the combined
system is shown in Chapter 8, by proving that the elaborated code has
the appropriate type—and so, the appropriate control structure—as well
as by demonstrating type synthesis on a collection of sample code.

Part III considers issues in translating Remora code to a lower-level
target. While the formal semantics makes heavy use of run-time type
information, this is more of a convenience for the formalism. Chapter 10
shows how the run-time type information can be pared down to only the
portion directly relevant to program control flow, moving the description
of the expected input shape from a closure, a dynamically created object,
to its call site, a static part of the program. The complementary portion of
translation, replacing the implicit iteration structure with explicit looping,
is described in Chapter 11.
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5 These examples are written as an
imaginary session in a read-eval-print
loop. For now, all examples will be in a
dynamically typed variant of Remora.
Static typing will be introduced later.

B A C K G R O U N D

2.1 R A N K P O LY M O R P H I S M

In rank-polymorphic array programming languages, such as APL [43],
J [50], and FISh [46], all functions automatically lift over large array
arguments. The universe of data in these languages consists of regular
(i.e., hyper-rectangular) arrays. Such an array is fully described by its
sequence of “atoms,” which are the base values contained in the array,
and its “shape,” a sequence of natural numbers describing how the atoms

are arranged. For example, the matrix

«

1 2 3

4 5 6

ff

has shape r2,3s and

atoms r1,2,3,4,5,6s. The “rank” of an array is the number of dimen-
sions it has, or the length of its shape, such as 2 for matrices. “Rank
polymorphism” is the property of accepting arguments of arbitrarily high
rank. As a brief demonstration5 of rank polymorphism, in a dynamically
typed, Lisp-like dialect, we can add a vector and a matrix using the same
operation as we use to add two scalars.

> (+ 1 2)

3

> (+ [10 20]

[[1 2 3]

[4 5 6]])

[[11 12 13]

[24 25 26]]

Making a function compatible with high-rank arguments does not
require special handling by that function. In rank-polymorphic languages,
it is instead a part of the semantics of function application itself. User-
defined functions are treated no differently than functions built into the
language. This places APL and its descendants in constrast with systems
such as MATLAB [63], which includes iteration in the definitions of
most built-in functions, or NumPy [73], where an ad hoc mechanism like
operator overloading for an array data structure is used to make certain
primitive operators lift while user code is denied such privileges.

Early design work on APL only permitted lifting operations to either
two arrays of identical shape or an array of any shape and a scalar. In
the case of two array arguments, the operation maps over corresponding
pairs of array elements, producing a result whose shape matches that of
the arguments. The semantics for the mixed scalar/aggregate case can

7



8 B AC K G RO U N D

be seen as replicating the scalar argument before mapping the operation
over corresponding pairs of array elements. Functional programmers
might prefer to think of it as partially applying the function to the scalar
argument, producing a liftable unary function to map over the aggregate
argument.

> (+ [[90 80 70]

[60 50 40]]

[[1 2 3]

[4 5 6]])

[[91 82 73]

[64 55 46]]

> (+ 1 [[1 2 3]

[4 5 6]])

[[2 3 4]

[5 6 7]]

> (add1 [[1 2 3]

[4 5 6]])

[[2 3 4]

[5 6 7]]

In order to generalize the implicit lifting beyond functions on scalars,
it was necessary to associate with each function the ranks it expects
for its arguments. This allows, for example, a vector-norm function
to lift over rank-n data by viewing it as a rank-pn´ 1q collection of
vectors. Each of these vectors within the larger array is called a “cell,”
and the vector-norm function will compute an independent result for
each cell in its argument. More generally, when a function expects a
rank-r argument, the actual argument’s cells are its rank-r sub-arrays.
The cell shape consists of the r rightmost entries in the array’s shape. The
aggregate structure around the cells is called the “frame.” When rank-n
data is passed to a function which expects rank-r input (with r ď n), the
rank-pn´ rq frame serves as the iteration space for lifting the function
over that data. The final result is the individual cells’ results assembled
in that rank-pn´ rq frame.

This way, the lifting mechanism generalizes from requiring matching
shapes to requiring matching frames. For example, if a polynomial-
evaluation function expects a vector of coefficients and a scalar at which
to evaluate the polynomial, it is also applicable to a matrix and a vector,
provided their respective leading axes have the same length (i.e., there
are as many coefficient vectors as there are values).

> (poly-eval [-10 5 1] 3) ; -10 + 5x + x^2, at x=3

14
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> (poly-eval [[-10 5 1] ; this polynomial at x=3

[ 5 3 4]] ; this one at x=2

[3 2])

[14 27]

Iverson generalized the frame-compatibility rules one step further by
considering two frames compatible as long as one is a prefix of the other.
Imagining the lifted function application as an implicit nest of for loops,
the prefix-agreement rule says that both arguments must agree on the
outermost loops, but one argument may demand additional inner loop
layers. For example, adding a matrix and a vector corresponds to two
nested loops: the outer loop traverses the matrix’s major axis and the
vector, and the inner loop traverses only the matrix’s minor axis, keeping
a constant position within the vector. Generalizing to prefix agreement
enables the vector-matrix addition example we began with.

> (+ [10 20]

[[1 2 3]

[4 5 6]])

[[11 12 13]

[24 25 26]]

Remora makes two additions to Iverson’s prefix-agreement implicit
lifting. First, functions of any arity are permitted, whereas APL and J
only allow lifting for functions of one or two arguments. The rule that
one argument frame must prefix the other is generalized to requiring that
all frames be prefix-orderable. Then the frame which has all others as
prefixes is the principal frame which determines the iteration space for
that function application. We can write a ternary function (in this case,
with 0 indicating 0-dimensional expected inputs) as follows:

> (define (lerp (lo 0) (hi 0) (alpha 0))

(+ (* lo (- 1 alpha))

(* hi alpha)))

> (lerp [1 1] [0 3] 0.75)

[0.25 2.5]

Second, Remora supports first-class functions. This means a function
may produce a function as a result, and lifting the function-producing
function will build an array whose atoms are functions. The function po-
sition in an application form can therefore contain an array of functions,
which is considered to have scalar cells—its frame is its entire shape.
The functions in the array must agree as to the cell rank of each argument
so that a single frame-of-cells decomposition can apply to each one.
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> ([+ -] 10 3)

[13 7]

> (((curry +) [3 4]) [[10 20 30]

[40 50 60]])

[[13 23 33]

[44 54 64]]

Allowing arrays in function position—applying the old functional
programming idea that behavior is itself data—means the fundamentally
SIMD programming model is also able to express MIMD computation.
However, the indirect jumping and diverging control paths which tend to
arise from the use of closures (or virtual function calls) are often poorly
supported on commodity parallel hardware. This “higher-order SIMD”
case is likely to fit better with coarser-grained task parallelism than actual
SIMD hardware.

Some applications demand data which is not strictly regular. The
programmer might want to operate on a list of strings, where each string
is represented as a vector of characters. Then a list of strings is a matrix
of characters, with one row for each string. Requiring regularity would
mean that all strings in the same list must have the same length. One
solution used in prior languages is to designate a padding character—
such as a null byte or a space—and extend every string to match the
length of the longest. This character is known in Iverson’s terminology
as the “fill” element, and APL and J have a designated fill for each type
of atom. Since the fill element is still an ordinary character (or integer,
float, etc.), the particular use case must not treat fill elements at the
end as semantically significant (e.g., a convention of ignoring trailing
whitespace). Filling can also cause a quadratic blowup in storage costs if
there is one extremely long string in the list.

Non-regular data can even arise from processing regular data, by
lifting a function whose result shape depends on the particular atoms
in its input array, not just the input shape. For example, iota takes as
input a vector and produces an array whose shape is that argument vector,
containing natural numbers counting up from 0 as its atoms.

> (iota [6])

[0 1 2 3 4 5]

> (iota [2 4 3])

[[[0 1 2]

[3 4 5]

[6 7 8]

[9 10 11]]

[[12 13 14]

[15 16 17]

[18 19 20]

[21 22 23]]]
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6 From the viewpoint of type-based
analysis, this way of consuming boxed
data corresponds to strong dependent
sums, whereas Remora—like Dependent
ML—uses weak sums.

7 This does not handle functions with
non-scalar cells or the prefix agreement
rule—Gerhart handled APL as it existed
at the time.

If iota is applied to a matrix, there will be several result cells with
possibly different shapes. A regular array cannot have sibling subarrays
of different shape. In certain cases, APL and J will insert fill elements,
but a more general method of handling non-regular data is available.

A “box” is an atom containing a single array of any shape. Several
boxes can be collected together in an array, although their contents may
differ in shape or even rank. While APL and J each offer a function
for extracting the data from a box, they recreate the danger of having a
function which is unsafe to use in lifted application.6 Instead, Remora
uses a let-like form for temporarily binding the box’s contents to a
variable, giving an opportunity to clean up any raggedness.

> (define b (box [4 5 6]))

> (unbox contents b

(sum contents))

15

General tree data falls at the extreme end of irregularity. Encoding
and manipulating such data is beyond the scope of this dissertation, but
Hsu’s description of a compiler implemented in APL [42] includes a
discussion of several ways to do so.

2.2 F O R M A L I S M F O R A P L

APL has received less attention in the way of formal semantics than
�-calculus, and much of the prior work has focused on the behavior
of the primitive (first- and second-order) functions rather than on rank-
polymorphic function application itself.

Two complementary lines of work cover a large portion of the prob-
lem. First, Gerhart set out to formally verify APL programs, which of
course requires a formal specification of their behavior [32]. The proofs
themselves deal with assertions about program state at particular points
during execution, much like Hoare logic [40]. Gerhart’s inference method
accounts for the constraints which functions place on their operands’
shapes: either one must be scalar, or the two must be equal.7 Mullin com-
plements Gerhart’s work by laying out the semantics of APL’s toolbox
of array operations [85]. Rather than focusing on APL’s unique func-
tion application mechanics, Mullin’s formalism is designed to develop
an algebra of array computation such as might be desired by an APL
implementor seeking to optimize user programs.

The prospect of separating out a core language to isolate the essence
of APL from surrounding incidental complexity was explored by Tu’s
Functional Array Calculator (FAC) [94]. FAC explicitly defines high-
dimensional arrays as deeply nested one-dimensional arrays, with a
“partition” construct allowing an array to be broken up into pieces which
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8 This is referred to using metafunctions
named MonadicMap and DyadicMap,

suggesting that map-like behavior is
intended, but their definitions do not

include it.

can be operated on in parallel. A variety of APL primitives are defined
in terms of FAC constructs. FAC comes with a sketch of the mathemati-
cal structures needed for a denotational semantics of an array language.
However, it does not fully define the mapping from syntax to domain
elements. Most critically, it lacks a definition of rank-polymorphic func-
tion application. Instead, the semantics for FAC’s application is written
as simply invoking meta-level function application.8

Orgass constructs a denotational semantics using only natural numbers
as the domain of values [75]. Using a conventional encoding of tuples,
an array is represented as a 5-tuple whose elements are rank, shape
(itself a tuple of dimensions), number of atoms, type tag, and a tuple
containing the atoms themselves. Several common array combinators
are defined as primitive recursive functions on N. Lifting over large
aggregate input is included in the definitions of individual functions. An
example defines how this lifting is performed for a function on scalars,
but some machinery needed for modern-day rank polymorphism—such
as higher-rank cells and prefix agreement—is missing, as this work
predates those developments.

2.3 R E L AT E D A R R AY- O R I E N T E D L A N G UAG E S

The rank-polymorphic programming model arose from Iverson’s work
on APL [43] over the course of several decades. He eventually designed
J [50] to be a successor to APL, fixing what he considered design mis-
takes. Iverson worked in isolation from mainstream programming lan-
guage research, so language-design developments often now taken for
granted, such as lexical scope and higher-arity functions, are not used in
APL and J. Iverson also used his own vocabulary derived from linguis-
tics. In J, arrays, first-order functions, and variables are referred to as
“nouns,” “verbs,” and “pronouns” respectively. Second-order functions
are “adverbs” if unary and “conjunctions” if binary. Thus, like in natural
languages, an adverb modifies a verb, changing what it does when ap-
plied to one or two nouns. Adopting this terminology constrains how the
user thinks about programming and even restrains further development
of the design of the language. Second-order functions cannot be com-
posed because composition itself is second-order (i.e., it is only usable
on first-order functions). These languages have developed a reputation
as “write-only” languages due to Iverson’s unconventional selection of
symbols for primitive operators and a popular attitude among the user
community which disdains naming intermediate results of computation.

Several aspects of APL’s design—echoed as well in J—interfere with
efforts to produce an effective compiler. Juxtaposition is overloaded to
mean several things: array construction; two kinds of function compo-
sition; and function application, which may itself be prefix, infix, or
postfix. Which of the above syntactic forms juxtaposition means depends
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9 Since a function’s expected argument
rank is an important part of its behavior,
that information is generally included in
its run-time representation.

on the run-time values associated with juxtaposed symbols. The goal
of statically parsing APL led in one case to the use of interprocedural
data-flow analysis [101].

Although APL was initially intended as a mathematical notation,
suitable for both algebraic manipulation and mechanized evaluation,
many primitive functions include special-case behavior which makes it
difficult to come up with robust rewrite rules. Operations which might
appear amenable to reordering or fusion turn out not to be if one of them
invokes the cell-padding mechanism.

There is also a sort of pole in the semantics around the results of
many computations involving empty arrays. The result shape of a lifted
operation consists of the principal frame shape followed by the shape
of the result cells. If we lift an operation over a frame containing a 0-
length dimension, there are no result cells. So what shape does the result
array have? Resolving this in a way that reliably preserves straightfor-
ward algebraic reasoning requires knowing the full range of behavior of
the function being lifted; APL and J instead estimate by observing the
function’s behavior on one example.

A more fundamental problem, which motivates this work, is heavy use
of implicit control. When a hypothetical compiler encounters a function
application, the iteration space is derived from the shapes of the argument
arrays and the argument ranks the function expects. The conventional
solution is to defer decisions about control flow until run time. An APL
interpreter can simply inspect the actual functions9 and arrays in order
to recover the necessary information.

However, doing so at every function call can incur a high cost. Several
second-order primitives are iteration-pattern manipulators, like reduc-
tion or stencil computation, and such functions repeatedly apply the
first-order function they modify. While an ordinary first-order function
application can amortize the rank-dispatch cost over a large argument
array, invoking that function many times on smaller pieces of the array
cannot. It is common for interpreters to identify some common appli-
cations of second-order functions as “special code” which is handled
by an alternative implementation. Thus +/ (folding with addition) can
be implemented by a simple accumulating loop instead of going back
and forth between the interpreter and the implementation of + itself.
Unfortunately, recognition of special code is brittle and limited to built-
in functions. Iteration involving user-defined functions cannot have a
special subroutine in the interpreter.

Later work inspired by APL avoided some of the design decisions
that interfere with compilation. Static typing provides some information
about the arrays’ shapes. Repa [52] is a Haskell library providing a
regular array datatype with parallel aggregate operations. An array’s
type includes its shape, expressed as a type-level list of natural numbers.
The inhabitants of a type implementing the Shape type class are indices
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10 If we imagine an array as a function
from positions to elements (i.e., the
exponential type EltPosn) then the

logarithm of an array type is its index
space. A functor with a logarithm is
called “Naperian” in honor of John

Napier, discoverer of logarithms.

into an array of that shape, such as integer sequences of the appropriate
length. Whole-array operations such as foldl and backpermute have
types which describe how their results’ shapes are determined from their
arguments’ shapes. An extra Slice type class is needed to describe both
extracting a sub-array and adding new axes via replication. Implementing
a Slice instance describes how to convert between indexing into the
entire array and indexing into a sub-array. A slice specifier thus identifies
its target sub-array by describing the index transformation. In order to
support a form of loop fusion within library code, Repa makes heavy
use of laziness, representing a delayed array as a function from index
to element. Later work exposed Repa’s data representation decisions so
that the programmer could choose more easily when to force or delay
aggregate operations [66].

There is no implicit lifting over an argument frame (only a map func-
tion for applying a Haskell function to every atom) and no notion of
expected rank. Choosing the axis to use for an aggregate operation like
reduction is accomplished by permuting the axes beforehand. The focus
on lifting scalar operations also limits filter, which uses a predicate
on array elements, to consuming vectors because having additional axes
would mean leaving irregularly-placed holes in the resulting array, with
no dimension sequence able to describe the output. By contrast, the
analogous function in APL selects rank-pr ´ 1q subarrays from a rank r
array.

A more APL-faithful semantics is offered by Gibbons’ work with
Naperian functors [33]. This builds on applicative functors [65], which
can be thought of as structures which carry along some extra information
about how function application ought to work. One common example is
using the List type to encode nondeterminism—the potential for each
computation step to lead to several different possible results. Using an
operator called <*>, the Applicative type class’s extended version of
function application, accumulates a growing collection of intermediate
results (which may themselves be functions to apply with <*> later).

A similar Applicative instance can be built for rank-polymorphic
application of arrays of functions, but Gibbons points out that the pattern
can be generalized beyond any specific regular-array datatype. A Naper-
ian functor is a structure in which element positions can be identified
with inhabitants of some particular type. In other words, a functor is
Naperian if there is a type which can be used to index into it.10 Using
some Haskell language extensions, it is possible to define a type-level
function which produces a type corresponding to natural numbers up to
a chosen bound n (itself given as a type-level natural number). This is
the appropriate index type for an n-vector type, and the type of r-tuples
containing bounded naturals indexes into rank-r arrays.

Generalizing from nesting of vectors or lists to nesting of Naperian
functors allows rank-polymorphic programming over data structures
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with the same essence as arrays but substantially different run-time
representation, such as homogeneous pairs (indexed by booleans) or
even full binary trees (indexed by bit-vectors).

Imposing a sequential order on the index space, corresponding to the
Traversable type class, enables whole-array operations such as reducing,
scanning, and permuting along the dimension it represents.

FISh [46] ascribes a static shape to each array, also consisting of a se-
quence of natural numbers. It is checked by a shape-analysis pass, which
is effectively a separate judgment from the type judgment. In FISh’s
shape judgment, the shape of a function is a function on shapes. This
shape language includes nontrivial computation capability, so functions
are not required to give specific argument shapes. Allowing shape-level
computation means that a function’s type does not universally quantify
over pieces of its arguments’ shapes (as in Repa) with instantiation to
be worked out by unification or some other form of constraint solving.
Instead, the result shape for a function application is discovered by run-
ning the corresponding shape function on the shapes already discovered
for its arguments. Rank-polymorphic functions are thus shapeable, using
shape functions which only manipulate the rightmost elements of their
arguments. However, function application itself is not rank-polymorphic
in FISh—instead, an explicit map with a scalar function is required.

The separation of shape into a separate computation language hit a
dead end when dealing with functions like filter and iota because the
result shape is not a well-defined function of the argument shape. Where
code in a sufficiently extended Haskell might use universal quantification
over a dimension or index type, FISh had no clear path forward. Requir-
ing complete, static shape predictability proved to be too restrictive for
practical use.

Another common array-programming model is centered on ragged
nested vectors, giving up rank-polymorphic lifting in exchange for a
more permissive data model. In NESL [7], a vector’s type does not
specify its length, but it does specify nesting depth. For example, [int]
represents vectors of integers, while [[int]] represents vectors of vectors
of integers. Vectors are typically consumed and produced by parallel
comprehension, but a comprehension only iterates along the outermost
nesting level. When consuming a nested vector, it is expected that the
operation performed on each element—a vector with one less nesting
level—may itself be a parallel computation. Since NESL is meant for
working with ragged data, the inner sequences are expected to have
differing lengths. Simply forking off a parallel sub-task for each one and
collecting their results at the end would mean a lot of idle time for short
sub-tasks while waiting for the longest to finish.

In order to simplify the cost model presented to the programmer,
NESL’s key contribution is a flattening technique which transforms
a nested parallel computation on a nested vector into a flat parallel
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11 Outside of APL tradition, this is
known as “boxed” data.

computation on the flattened version of the vector [8]. Once a vector is in
flattened form, it can be freely broken into equal-sized pieces to distribute
across the available hardware resources. The flattened representation of a
vector of vectors includes a “segment descriptor,” a list of the sub-vectors’
lengths. When inner pieces of a nested parallel computation have some
nontrivial dependence structure, like in a scan or reduce, the segment
descriptor identifies the boundaries where data dependence should not
be carried forward.

Data Parallel Haskell imports the nested-parallelism programming
model into Haskell. This required substantial work to integrate with the
native Haskell data model, and using an efficient memory representa-
tion required a new type-system extension. For most datatypes, GHC,
the predominant Haskell compiler, represents a value as a pointer to
dynamically allocated memory11 containing a thunk which will pro-
duce the actual value when executed. Traversing an array to operate on
each element requires dereferencing many pointers and possibly forc-
ing many thunks, losing the cache-friendliness of a contiguous array
representation. For performance reasons, GHC therefore offers arrays
containing the elements’ actual data rather than pointers to that data,
but this is only available for certain built-in types. Data Parallel Haskell
uses a non-parametric representation of array types in order to achieve
the memory-access performance typically associated with arrays. The
Haskell community’s traditional interest in loop fusion also provides
performance benefits, eliminating not only intermediate data structures
but also the synchronization that would be necessary to construct them.

Whitney’s K programming language [56] was inspired by his work
with Iverson on APL, but it uses the nested-vector programming model
rather than rank polymorphism. While implicit and explicit mapping
over nested data are available, depending on the operation being mapped,
K is typically used for interacting with the kdb+ database. A language
extension called Q offers conventional relational operators and queries
over kdb+.

The close match between array-oriented programming models and
GPU hardware, which uses widely vectorized functional units with high
memory bandwidth for graphics computation, has sparked several pro-
jects developing high-level languages for general-purpose GPU comput-
ing. Unlike using SIMD instructions on a CPU, GPUs conventionally
have several hardware threads grouped and scheduled together. Condi-
tional branching is discouraged because it forces the group to temporarily
split—only one subgroup can make progress at a time until they reach a
control join point. Conveniently, array-oriented languages favor indepen-
dent operations on many array elements at once with only rare control
divergence.

Harlan [41] targets heterogeneous parallel hardware by allowing the
programmer to specify where particular computation will take place and
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where data will be stored. Data-flow analysis allows the compiler to elide
unnecessary data movement. The distinction between procedures running
on the CPU versus on the GPU reflects a separation required in lower-
level GPU programming languages such as CUDA [70]. Despite this
distinction, Harlan sets a design goal to avoid restricting the computation
model available when writing GPU kernels. Preserving the simplicity
of the programming model motivates much of the research related to
Harlan, including extracting coarse task parallelism from finer-grained
data-parallel code [90] and taking advantage of recent hardware advances
which permit nested parallelism [104].

In Nova, all user-defined functions are meant to be used as parallel
compute kernels, invoked from a second host language [13]. There is no
syntax for array data in Nova because they are meant to be passed in as
arguments from host code or generated from certain built-in functions.
The programming model is otherwise fairly conventional functional
style, with λ and a fixed-point form µ, as well as a combinator library for
common array operations such as map and scan. Arrays inhabit a nestable
vector type. The type system thus tracks the rank of each array, but not
the full shape. Instead, concrete array dimensions are kept alongside
run-time data. Nova is meant to be usable as a compilation target for
domain-specific languages or for embedding in standalone applications.

Futhark shares some of Nova’s design goals—a typed, high-level
GPU language suitable as a compilation target—but it uses a more de-
tailed type system which describes the full shapes of regular arrays [38].
Futhark is less flexible about common functional-language facilities,
like first-class functions and recursion. It is effectively a first-order lan-
guage. Certain second-order functions are provided, but they are built-in
syntax with special treatment by the compiler. Programmers are not
free to implement their own second-order functions. For the sake of
practicality, Futhark’s type system must allow polymorphism over array
dimensions, but Futhark’s compiler aggressively monomorphizes not
only polymorphic function calls but also module instantiations [27].

Accelerate is a Haskell-embedded domain-specific language for GPU
computation [11]. It uses a type encoding similar to Repa, with an array’s
type encoding its rank. Since Accelerate is built as an embedded DSL,
with Haskell serving as a metalanguage for building GPU kernels, Accel-
erate has the opportunity to perform substantial code transformation such
as including fusing array operations without requiring special support
from GHC [57]. The inevitable separation of GPU-resident data and
computation from ordinary Haskell data living in CPU memory makes
Accelerate somewhat less fluid to use than Repa.

While array-oriented programming is already a somewhat domain-
specific programming model to begin with, some languages have targeted
more specific application domains. In machine learning, TensorFlow [1]
and PyTorch [77] provide multidimensional array structures similar to
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those of NumPy, but they provide a collection of automatically differen-
tiable operations, which can be executed on either the CPU or GPU. In
a style similar to Haskell embedded DSLs, Python serves as the meta-
language for constructing array programs. A data-flow graph model of
array programs facilitates automatic differentiation.

Halide was developed to make performance tuning easier by sep-
arating the iteration schedule from the algorithmic core. Rather than
general multidimensional array computation, it focuses specifically on
manipulating image data. Common tasks such as stencil computation
can be stated easily enough in a mainstream C-like language (or in a
rank-polymorphic language), but maximizing performance depends on
the order in which intermediate scalar values are calculated. For example,
two rounds traversing the same image can make poor use of the data
cache. Where a high-level language user might look to the compiler to
perform fusion, Halide allows the programmer to specify when each
iteration of each pass should happen, thus covering transformations such
as loop interchange, fusion, and tiling, as well as rematerialization and
the use of temporary storage. The schedule language is itself a DSL
whose notation is based on commonplace iteration decisions about when
to feed one pass’s results to the next, rather than explicit for loops.

Diderot is a DSL for processing medical and scientific images using
the vocabulary of tensor calculus, which operates on a continuous domain.
Diderot code is explicit about its use of parallelism, with a thread-like
construct separating out responsibility for regions of input and output in
the tensor-field computation. Domain specificity enables Diderot to use
only a small collection of types without polymorphism, thus avoiding the
monomorphization effort of Futhark, and to provide an extensive toolkit
of built-in tensor functions.

Recognizing the fundamentally array-like nature of relational data-
bases, Chen et al developed HorseIR as an intermediate representation
for relational queries, allowing optimizations commonly used in array-
oriented languages to be used in a database engine. Although it is a
3-address notation, as is typical of low-level IRs, all operations are vec-
tor operations. HorseIR is monomorphic, but it does include a “wild card,”
or dynamically checked, type for rare cases in which a table column has
a statically uncertain type.

Some systems take a more conservative approach by injecting par-
allelizable array computation into what is typically thought of as a
mainstream sequential programming model. These include language
extensions such as OpenMP and Coarray Fortran, as well as some in-
dependently standing languages. In SaC, static single assignment form
is enforced at source level—despite a superficially C-like programming
model, mutation is prohibited [89]. Array computation is written us-
ing parallelizable comprehension forms corresponding to conventional
operations (such as map, fold, etc.). Since array data can only be con-
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sumed by extracting an individual element, the body of a comprehension
necessarily computes a location in an array from which to select an ele-
ment. The reliance on array indexing motivated Qube [93], an extension
which uses Xi-style singleton and range types to check that an index fits
within an array’s bounds [103]. The single-assignment approach was
also used in SISAL [67]. While much of SISAL’s design focuses on
stream processing—intrinsically serial computation since data must be
accessed sequentially—the compiler finds opportunities for parallelism
in pipelining stream operations. SISAL also includes parallelizable loops,
though some of the analysis of dependence between iterations may be
left to a run-time scheduler [29].

Of the prior languages discussed here, only APL and J offer general
rank polymorphism, with argument frame shapes chosen based on a func-
tion’s expected argument ranks and the application automatically lifted
over the principal frame. K allows implicit iteration for scalar functions
applied to arguments of identical structure, but functions which consume
aggregate input or are applied to arguments of differing structure require
explicit use of a map-like operator. NumPy’s operator overloading allows
certain primitives to be used on NumPy arrays with compatible shapes.12

MATLAB’s inclusion of iteration in built-in functions’ definitions al-
lows programmers to mostly avoid writing loops themselves. Otherwise,
array-oriented programming languages have required the programmer to
be explicit about using iteration, whether through a function like map or
comprehension-like syntax.

2.4 D E P E N D E N T T Y P E S

Remora’s ability to describe array shapes in detail comes from integrating
rank polymorphism into a dependent type system. In the same way that
parametric polymorphism in System F generalizes simple typing by
allowing terms to be parameterized over types, and type constructors in
the style of System Fω allow types to be parameterized over other types,
dependent typing allows types to be parameterized over terms [5]. A
classic example is a List type which is parameterized over the type of
list elements and the length of the list. Functions which have restrictions
as to the length of list they can accept can encode such restrictions in
their input type. For example, head and tail only work on nonempty
lists, so they would demand input of type List T (n+1). The type of a
list-producing function’s output must also include the length of the list,
so we have a tail producing a List T n.

In order to support such input and output types, a dependent function
type must quantify over the type T and the natural number n. Fully written
out with explicit quantification, the type of tail is

� T:Type, n:Nat . List T (n+1) -> List T n
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We use Π for the generalization of functions and universal quantifica-
tion, but it is commonly known as a “dependent product.” A type of the
form � n:Nat . F[n] can be seen as a product type, much like a tuple,
except that instead of a finite number of elements, this product has one
for every natural number. It is effectively

F[0] ˆ F[1] ˆ F[2] ˆ ...

Element projection from this dependent product works more like function
application than selecting a statically named or numbered field.

The analogous existential quantifier is Σ. The type � n:Nat . F[n]

carries both a hidden natural number n and a datum whose type depends
on n. Since the existential variable n is a term variable, this type acts
somewhat like a tuple, in contrast to a System F-style D type. Similar to
Π types, Σ types are called “dependent sums” because they generalize
sum types to indexing over an arbitrary type. The example � n:Nat .

F[n] encodes the infinite sum

F[0] + F[1] + F[2] + ...

There are two flavors of case analysis on dependent sums. One possibility,
referred to as “strong” dependent sums, is to use projection operators,
similar to those used for tuple types. Applying the projection π1 extracts
the value of the existential variable, and π2 extracts the value whose
type depends on it. Alternatively, “weak” dependent sums limit access
to the existentially quantified value by only offering a let-like form for
destructing. This is more similar to the conventional way of destructing
D types. The two values are temporarily bound to variables, so the first
variable can be used to type operations involving the second, but the let

body’s type must not mention those variables.
Several dependent type theories have been developed, most notably

Martin-Löf type theory [62] and the Calculus of Constructions [14].
They have formed the basis of several programming languages, includ-
ing Agda [72], Coq [91], Epigram [64], and Idris [9]. Development
of such languages and related infrastructure often focuses on tools for
programming-language metatheory, using dependent types to state theo-
rems about a language, with inhabitants of those types serving as proofs.

Even outside of metatheory, dependent type systems allow very de-
tailed invariants about a function to be encoded in its type, for example
requiring that two numbers be relatively prime or that a search tree be
balanced. In Remora’s case, the purpose of the type system is not prov-
ing arbitrary invariants, but establishing enough information about array
shapes to identify the implicit control structure of rank polymorphism.
This is a smaller job, which calls for a smaller tool. The task of pro-
ducing proofs of required properties as some of a function’s arguments
is recognized as a barrier to adoption of dependent typing, motivating
the design of systems which use specific decision procedures to check
whether these type-like invariants are maintained.
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One strategy is to restrict dependent types so that types are only
parameterized over a restricted language with a decidable theory instead
of depending on arbitrary program terms. This restricted dependent
typing is the basis of Dependent ML [102]. The language of type indices
is completely separate from the term-level and type-level languages:
Π and Σ only bind index variables, and a separate @ quantifier is used
for type variables. Some computation can be done in the type-index
language—which is necessary for expressing interesting properties of the
data being typed—but computation is limited for the sake of decidability.
Dependent ML is often presented with an index language based on
Presburger arithmetic, allowing types like that of append:

� T. � m,n:Nat. List T m -> List T n -> List T (m+n)

Presburger arithmetic is unable to express multiplication, so it is impos-
sible to characterize the behavior of flatten, which would turn a List

(List T m) n into a list whose length is m ˚ n. Instead, flatten would
have to return a list of indeterminate length, represented by the type

� l:Nat. List T l

An alternative strategy is to decorate ordinary non-dependent types
with refinements expressed in a carefully chosen logic. In the case of
function types, the refinements on the input and output types correspond
to pre- and post-conditions. This refinement-based approach is known as
“logically qualified datatypes,” or “liquid types” [86].

Restricted dependent types and liquid types are essentially equivalent
in terms of the invariants they can express, with index arguments in the
former corresponding to computationally irrelevant proof witnesses for
logical qualifiers in the latter. Remora uses restricted dependent types
because the goal of Remora’s type system is to identify the implicit
shape-driven control structure. Merely ensuring shape compatibility is
not enough—finding the iteration space requires access to the shape
witnesses themselves.





3
P R O G R A M M I N G W I T H R A N K P O LY M O R P H I S M

Adopting an unfamiliar programming model requires developing a new
mindset and intuition, for both how programs behave and how to make
use of the model’s particular mechanics. Practical use of rank poly-
morphism often relies on manipulating a function’s argument ranks or
generating a data structure which serves to represent an iteration space.

This chapter presents a tutorial on programming with rank polymor-
phism, starting in an untyped variant of Remora. This variant is im-
plemented as an embedded language within Racket [30], invoked by
identifying the language as #lang remora/dynamic. The language itself
is available as a Racket package, with source and installation instructions
at https://github.com/jrslepak/Remora/tree/master/remora.

Some syntactic sugar is included for making arrays easier to write
out. Enclosing a sequence of expressions in brackets stands for a vector
frame built from those expressions, which may themselves be bracketed
sequences. As another syntactic convenience, an atom appearing in a
syntactic position which requires an expression is automatically con-
verted to a scalar. So the numeral 3 appearing in an expression position
is replaced by (array () 3). A vector can be written out as [2 4 6 8],
a matrix as [[2 4] [6 8]], and so on.

3.1 R A N K P O LY M O R P H I S M W I T H DY N A M I C T Y P I N G

The syntax of Remora distinguishes expressions, whose eventual values
must be arrays, from syntactic atoms, which stand for the basic values
which populate an array. The numeric literal 20 is an atom, with no
associated shape information. The array literal (array () 20) is an
expression, denoting a scalar array whose sole atom is 20. Its shape is
the empty sequence because a scalar has rank 0. The expression

(array (2 3) 1 2 3 4 5 6)

is also an array—a 2ˆ 3 matrix containing as atoms the numbers 1
through 6.

Although functions only operate on expressions, an individual function
such as (� ((x 0)) x) is an atom. However, the function position in an
application form must be occupied by an expression. So applying that
function requires it to at least be wrapped as a scalar (or larger array). A
boxed array—the escape hatch from regularity—is also an atom, so it
too must be included in an array in order to compute with it.

A frame expression form allows arrays to be assembled from other
arrays, rather than directly from atoms. This is means we can use an
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expression which will compute the array we want rather than the array
value itself. The shape described in a frame is only the leading dimen-
sions which describe how the sub-array cells are to be laid out. The 2ˆ3
matrix above could be written as follows:

(frame (2)

(array (3) 1 2 3)

(array (3) 4 5 6))

This is a 2-vector frame built around 3-vector cells, which is the same as
a 2ˆ 3 matrix. Writing out constant values with frame instead of array
does not buy us anything. The purpose of the frame form is to build
arrays from expressions which can compute new arrays. The same 2ˆ 3
matrix could be the result of evaluating this expression:

(frame (2)

(- 10 [ 9 8 7])

(sqrt [16 25 36]))

Regularity demands that every cell used to build a frame have the same
shape. There is no matrix whose rows are [1 2 3] and [4 5] because
these two vectors have different length. So they cannot coexist as cells in
the same frame form. In a dynamically typed setting, combining them
like this raises a run-time error:

(frame (2)

(array (3) 1 2 3)

(array (2) 4 5))

When static typing is introduced later, such cases can be ruled out ahead
of time.

The handful of examples from the opening of Chapter 2 demonstrate
several cases of implicitly lifting a function to consume arguments of
various ranks. We now examine the behavior of one of them.

> (+ [10 20]

[[1 2 3]

[4 5 6]])

[[11 12 13]

[24 25 26]]

There are two intuitive ways to understand the lifting behavior. One
option is write out the iteration space as an explicit part of the program’s
control structure by translating to C-like for loops.

for (i = 0; i < 2; i++)

for (j = 0; j < 3; j++)

result[i][j] = vec[i] + mat[i][j];
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Another option is a more evaluation-oriented intuition, keeping the
iteration space represented in the data. In our vector-matrix addition
example, the true iteration space is the r2,3s frame arising from the
matrix argument’s shape, whereas the vector’s shape is just the singleton
sequence r2s. To make the iteration space more apparent, we transform
the vector by replicating each of its cells—in this case, 10 and 20.

(+ [10 20]

[[1 2 3]

[4 5 6]])

Ó

(+ [[10 10 10]

[20 20 20]]

[[1 2 3]

[4 5 6]])

Ó

[[(+ 10 1) (+ 10 2) (+ 10 3)]

[(+ 20 4) (+ 20 5) (+ 20 6)]]

Ó

[[11 12 13]

[24 25 26]]

The evaluation intuition generalizes more easily to situations where
the function being applied includes its own internal looping behavior,
which is a very common situation in array-oriented programming.

A function is written out using a Scheme-like �, but with some extra
information attached to each formal parameter. Application lifts functions
over the arguments’ cells, and that behavior depends on how big those
cells are. So the behavior of a function is not fully specified unless we
also state the cell rank for each argument. For example, the following
mean function has the rank of its formal parameter v specified as 1,
meaning that it operates on vector cells.

(� ((v 1))

(/ (reduce + 0 v)

(length v)))

In #lang remora/dynamic, we can turn this into a declaration for later
use:

> (define (vec-mean (v 1))

(/ (reduce + 0 v)

(length v)))

> (vec-mean [4 8 0])

3

> (vec-mean [[6 3 6]

[4 8 0]])

[5 4]



26 P RO G R A M M I N G W I T H R A N K P O LY M O R P H I S M

Although vector mean serves well as an example of how rank-poly-
morphic programs behave, the above version is less generally applicable
than it could be. Remembering the row-vector versus column-vector
question about addition, we might want the means of a matrix’s columns.
Several built-in functions, including reduce and length, treat the entire
argument as a single cell. No matter how high the argument’s rank,
length returns the size of its major axis—the number of atoms in a
vector, rows in a matrix, planes in a 3D array, etc.

> (length [1 2 3 4])

4

> (length [[1 2 3 4]

[5 6 7 8]])

2

User-written code also has access to this capability by specifying a
parameter’s rank as all. The cell rank we use when applying this sum

function is whatever rank the actual argument happens to have:

> (define (sum (v all))

(reduce + 0 v))

> (sum [[1 2 3 4]

[5 6 7 8]])

[6 8 10 12]

The major-axis mean function is written much like the vector-mean
function, but it lifts differently.

> (define (mean (v all))

(/ (reduce + 0 v)

(length v)))

> (mean [4 8 0])

3

> (mean [[6 3 6]

[4 8 0]])

[5 11/2 3]

Working with rank-polymorphic code favors a geometric intuition
about the data, choosing which axis to use for some operation or how
we want some arguments’ axes aligned. Carrying out that choice means
choosing a function with the right input-cell ranks, so Remora makes it
easy to specify them. In the earlier example of vector-matrix addition,
the vector is effectively treated as a column, but some cases, such as row
operations used in Gaussian elimination, call for a vector to be treated
as a row. All this requires is a version of the + function which expects
rank-1 arguments. Such a function can be written by “reranking” +, that
is, η-expanding it to take arguments of a different rank:
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13 This is a single-character difference
from the previous version, and inlining a
mutation-heavy function can be a
substantial leap of logic, so evaluation
is favored over translation for
describing the intuition behind
array-oriented programming.

(� ((a 1) (b 1)) (+ a b))

This is a common enough pattern to be worth some syntactic sugar.
We will write a reranked function by preceding the original function with
a tilde and a list of new argument ranks: ~(1 1)+ is the vector-addition
function. When we apply this function to a vector and a matrix, their
respective frames are scalar and vector.

(~(1 1)+

[10 20 30] ; scalar frame, one vector cell

[[1 2 3] ; vector frame of vector cells

[4 5 6]])

The explicit-control version of this code is a single for loop around
a call to the function which implements the reranked +. That function
itself is also a single loop traversing its two vector arguments. Inlining
that call produces something quite similar to the previous vector-matrix
addition, but with the inner loop traversing the vector argument.13

for (int i = 0; i < 2; i++)

for (int j = 0; j < 3; j++)

result[i][j] = vec[j] + mat[i][j];

Following the evaluation-based intuition, the 3-vector argument ex-
pands to a vector of vector cells, each of which is identical to the original
vector. In the third step, β reduction reveals the lifted use of +, corre-
sponding to the inlined inner loop above.

(~(1 1)+ [10 20 30]

[[1 2 3]

[4 5 6]])

Ó

(~(1 1)+ [[10 20 30]

[10 20 30]]

[[1 2 3]

[4 5 6]])

Ó

[(~(1 1)+ [10 20 30] [1 2 3])

(~(1 1)+ [10 20 30] [4 5 6])]

Ó

[(+ [10 20 30] [1 2 3])

(+ [10 20 30] [4 5 6])]

Ó

[[(+ 10 1) (+ 20 2) (+ 30 3)]

[(+ 10 4) (+ 20 5) (+ 30 6)]]

Ó

[[11 22 33]

[14 25 36]]
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Reranking is important for effectively using common whole-array
operations, such as append, reduce, and rotate. These functions operate
along the major axis, treating the entire array as a single cell. No matter
the argument’s shape, it will be considered to have a scalar frame.

> (append [[1 2]

[3 4]]

[[5 6]

[7 8]])

[[1 2]

[3 4]

[5 6]

[7 8]]

> (reduce + 0 [[1 2]

[3 4]])

[4 6]

> (rotate [[1 2 3]

[4 5 6]

[7 8 9]]

1)

[[4 5 6]

[7 8 9]

[1 2 3]]

Suppose we instead want to stitch matrices together horizontally or
find the sum of a matrix along its minor axis or rotate the rows instead of
the columns. The minor-axis summation might be rephrased as the “sum
of each vector,” indicating that we want a vector-consuming version of
reduce. We write that function as ~(0 0 1)reduce. Similarly, appending
along the minor axis is the same as appending corresponding rows and
then gathering them back together as a matrix, and rotating along the
minor axis is the same as rotating each row individually:

> (~(1 1)append [[1 2]

[3 4]]

[[5 6]

[7 8]])

[[1 2 5 6]

[3 4 7 8]]

> (~(0 0 1)reduce + 0 [[1 2]

[3 4]])

[3 7]
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> (~(1 0)rotate [[1 2 3]

[4 5 6]

[7 8 9]]

1)

[[2 3 1]

[5 6 4]

[8 9 7]]

Splitting an array into cells means those cells’ major axes are some
later axis of the larger array. So functions initially written to operate
along an argument’s major axis are easy to adapt to use other axes by
reranking. This also applies to the mean function we wrote earlier.

> (~(1)mean [[6 3 6]

[4 8 0]])

[5 4]

Boxed data relaxes the regularity requirements by allowing an array
of any arbitrary shape to be wrapped up as a single atom. Several boxes
can be packed together into an array, although their contents may differ
in shape or even rank. The shape of boxes’ contents has no bearing on
the shape of the array containing the boxes.

> (shape-of [(box [4 5 6])

(box [[1 2]

[3 4]])])

[2]

While common array-computation primitives like iota are available
in #lang remora/dynamic, they are not recommended for lifting over an
argument frame:

> (iota [3])

[0 1 2]

> (iota [4])

[0 1 2 3]

> (iota [[3] [4]])

Error: Result cells have mismatched shapes

A lifting-safe variant iota* instead produces boxed output, ensuring
that the result cell is always scalar.

> (iota* [3])

(box [0 1 2])

> (iota* [4])

(box [0 1 2 3])
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> (iota* [[3] [4]])

[(box [0 1 2])

(box [0 1 2 3])]

Boxed data is consumed using a special unbox form, which acts much
like let, temporarily binding the box’s contents. With unbox, the body
gives the programmer an opportunity to account for the raggedness
remaining in the result data from some lifted operation. Boxing enforces
a separation between the regular outer axes, where implicit lifting is
available, and potentially non-regular inner axes, which require explicit
handling. When taking the sum of several boxed vectors, we know we
get scalar result cells, so there is no need to box them.

> (define (boxvec-sum (b 0))

(unbox vec b

(sum vec)))

> (boxvec-sum [(box [ 5 6 7 8])

(box [12 13 14])])

[26 39]

On the other hand, applying add1 to each box’s contents would pre-
serve their various shapes, so each box’s result needs to be boxed itself.

> (define (box-add1 (b 0))

(unbox contents b

(add1 contents)))

> (box-add1 (box [1 2 3]))

[2 3 4]

> (box-add1 [(box [1 2 3])

(box [7 8])])

Error: Result cells have mismatched shapes

> (define (box-add1* (b 0))

(unbox contents b

(box (add1 contents))))

> (box-add1* (box [1 2 3]))

(box [2 3 4])

> (box-add1* [(box [1 2 3])

(box [7 8])])

[(box [2 3 4])

(box [8 9])]



3.2 A T Y P E D I S C I P L I N E F O R R A N K P O LY M O R P H I S M 31

14 Tracking only rank can solve the
problem of trying to use a matrix-inverse
function on a vector but not the problem
of trying to use it on a non-square
matrix. The problem of trying to use it
on a non-singular matrix is beyond the
scope of this work.

Higher-order programming makes it easy to modify existing functions
to operate within a box or extract data from a box for regularization.

> (define (from-box (f 0))

(� ((b 0)) (unbox contents b (f contents))))

> ((from-box sum) (iota* [[3] [4]]))

[3 6]

> (define (in-box (f 0))

(� ((b 0))

(box (unbox contents b (f contents)))))

> ((in-box double) (iota* [[3] [4]]))

[(box [0 2 4])

(box [0 2 4 6])]

So the list of varying-length strings can be represented with a ragged
array, with each individual string wrapped up as a boxed vector. An
operation which consumes an entire string is still liftable, and a function
like in-box can adapt it to handle boxed strings.

One awkward hole remains in #lang remora/dynamic. When func-
tion application lifts over an empty frame—i.e., the frame has a zero
dimension—what is the shape of the resulting array? The frame portion
of the shape is clear, but the cell portion is indeterminate. Ideally, the
result cell shape should be whatever the function would have produced
as the cell shape had there been any cells. For example, sqrt would
give a scalar cell shape, an RGBα pixel compositing function would
give a 4-vector result shape, and reverse would give a result cell shape
matching the input cell shape. While #lang remora/dynamic offers an
alternative form of application with a user-specified result shape to use if
the frame is empty, a more robust solution is to use static information
about the function’s behavior.

3.2 A T Y P E D I S C I P L I N E F O R R A N K P O LY M O R P H I S M

Although the original motivation for Remora’s type system was static
understanding of rank polymorphism’s data-driven control flow, having
control structure tied so closely to data means that ensuring sensible
control flow requires ensuring valid data. Function application without a
valid frame, whether due to ill-structured data or mutually incompatible
arguments, cannot produce a valid result.

Checking whether the function and argument arrays have compati-
ble shapes for frame lifting requires tracking their shapes within their
types.14 Rank-polymorphic lifting itself is common to all functions, so
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15 For decidability reasons discussed
later, we do not allow multiplication.

16 This desugaring relies on knowing
the difference between shape variables

and dimension variables, so we use
different sigils to distinguish them.

it does not need to be described in each function’s type. Instead, a func-
tion’s type need only describe its behavior on an individual cell, and the
type of its result when lifted over some frame can be derived using the
frame and result-cell shapes. For example, a simple addition function
can itself be typed as consuming two numeric scalars and producing one
numeric scalar. The type resulting from applying it to a 3-vector and a
3ˆ 4 matrix is a 3ˆ 4 matrix, whereas applying it to a 3-vector and a
4-vector is ill-typed.

While we are now stepping outside of what can be done in #lang

remora/dynamic, there should ideally be little difference in the code we
write. Arrays of base values are quite easy to type: [2 4 6 8] is clearly
a 4-vector containing integers, which we’ll write as [Int 4] and [#t #t

#f] is a 3-vector of booleans, or [Bool 3]. For scalar data, we could
write [Float], with no dimensions listed, but when the context clearly
requires an array type, for brevity we can just write the atom type itself:
Float. For higher-rank data, we can list additional axes, such as typing
this 300 rotation matrix

[[0.866 -0.500]

[0.500 0.866]]

as [Float 2 2]. This is shorthand for the more explicit (A Float (shape

2 2))—an array of floating-point numbers with the shape 2ˆ2. The type
constructor Arr builds an array from an atom type, but it is indexed by
a more term-like shape expression. In a context where a type describes
an array as opposed to a bare atom, an unadorned atom type like Int is
taken to mean an array type with the empy shape, (A Int (shape)).

With an array type indexed by shape, we now need a language for type
indices. That language is split into two sorts: dimensions and shapes.
A dimension describes the length of one axis of an array, and a shape
is a sequence of dimensions. Any natural number is a valid dimension.
We also allow addition on dimensions,15 written as (+ d1 d2 ...). This
way, we can support operations like appending new elements onto a
vector. Shapes can also be appended, capturing the nesting of cells in
a frame. The shape of a 3ˆ 7 frame of 2ˆ 4 cells is constructed by
appending the frame shape and cell shape: (++ (shape 3 7) (shape 2

4)) is equal to (shape 3 7 2 4).
The shorthand for array types can be thought of as using an atom type

followed by a sequence of shapes to append, with each dimension d
being implicitly promoted to the vector shape (shape d). Using shape
variable @s and dimension variable $d,16

[Int (+ $d 1) @s 3]

is shorthand for

(A Int (++ (shape (+ $d 1)) @s (shape 3)))
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When writing out functions, we will include a bit more detail. Instead
of stating the cell rank for each formal parameter, we state the entire cell
type. For linear interpolation on floats, we’ll write:

(� ((lo Float) (hi Float) (a Float))

(+ (* a hi) (* (- 1 a) lo)))

Adapting the sum function from the previous section to work on vectors
in typed code introduces a new problem. Suppose we write something
like

(� ((v [Int 3]))

(reduce + 0 v))

We can only use this function on vectors of length 3. What we want
is a function that is polymorphic in the length of the cells, replacing the
concrete dimension 3 with a variable dimension. For now, we’ll call that
dimension $v and write out an explicit abstraction for it:

(I� ((($v Dim)))

(� ((v [Int $v]))

(reduce + 0 v)))

The I� form parameterizes over a dimension, which we then use to
specify the type we want for v’s cells. This way, the function can be used
on vectors of any length, as long as the length is passed in, analogous to
passing a pointer to a buffer along with an integer indicating the buffer’s
size. The type of this function is roughly

(� (($v Dim))

(-> ([Int $v]) Int))

� is a universal quantifier as typically used in dependently typed
languages, though Remora imposes more limits on what computation
can be used to decide how to instantiate a � type.

A single-dimension sum is still a bit unsatisfying compared to our
untyped version which works on all-ranked cells. In order to consume
any arbitrarily high-ranked array as a single cell in typed code, we must
quantify over shapes—sequences of dimensions—not just individual di-
mensions. We might naïvely try asking for any shape at all, remembering
that the untyped sum would lift over anything at all:

(I� (((@v Shape)))

(� ((v [Int @v]))

(reduce + 0 v)))

A Shape is an arbitrary-length sequence of Dims, which turns out to be
too general. In order to reduce along an array’s major axis, it must have
a major axis. A scalar argument cannot be allowed. In order to make this
work, we can parameterize over both the major axis and the remainder
of the shape:
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17 Colleagues in the lab have suggested
that these ought to be called the Dorian,

Phrygian, etc. axes.

(I� ((($v Dim) (@v Shape)))

(� ((v [Float $v @v]))

(reduce + 0 v)))

Note that in the array-type shorthand, the atom type is followed by
a sequence of indices, some of which are Dims while others are Shapes.
These are two different sorts of things—individual dimensions and se-
quences of dimensions—but we will allow them to be interspersed as
a syntactic convenience, such as in [Int 8 @s 10] indicating an array
with major axis 8, minor axis 10, and @s standing for intermediate17

axes. Analogous to the shorthand offered for writing arrays in terms of
their atoms, the notation for a shape as a sequence of components implic-
itly converts Dims to singleton Shapes and concatenates those sequences.
Concatenation on Shapes is possible in user code, via the ++ operation:
(++ (shape 3 4) (shape 2 5)) is equivalent to (shape 3 4 2 5).

The other operation on indices is adding individual dimensions. This
can be used to describe the behavior of functions like append, whose
output’s leading dimension is the sum of its inputs’ leading dimensions.
It can also be used to encode restrictions on argument cell shapes, such
as limiting mean to avoid division by zero:

(I� (($v Dim) (@v Shape))

(� ((v [Int (+ 1 $v) @v])))

(/ (sum v) (length v)))

Typed Remora’s use of boxes effectively treats ragged data and un-
certain result shape as the same problem. Existential quantification can
hide the uncertain portion of an array’s shape, such as giving iota* the
output type (� ((@s Shape)) [Int @s]), or the portion that makes it
incompatible with its sibling cells, such as the typing the ragged array
we got from lifting iota*:

[(box [0 1 2] ((@s Shape)) [Int @s])

(box [0 1 2 3] ((@s Shape)) [Int @s])]

Note that each individual boxed array must be annotated with its �

type. Without this annotation, it is uncertain what shape information is
meant to be hidden and what is meant to be revealed. A box typed as (�
((@s Shape)) [Int @s]) makes no promises at all about the shape of
the underlying array. The more specific type (� (($l Dim)) [Int $l])

would guarantee that the box contains a vector, but that vector could be
of any length.

Suppose we had iota0 as a variant of iota which took a scalar, speci-
fying the result vector length. Then iota0 could have that more specific
output type reflecting the guarantee that the output will be a boxed vector.
Any computation using the unboxed result of iota* must be completely
independent of the rank of the underlying array, which could be a scalar,
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vector, matrix, etc., but with iota0, downstream computation only needs
to accommodate vectors. A function might even give an output type
like (� (($l Dim)) [Float (1 + $l)]), promising a nonempty vector
of floats or (� (($l Dim)) [Float $l $l]) promising a square matrix.

This points to a broader design principle for typed rank-polymorphic
programming: Keep type-level information at type level instead of mov-
ing it to term level and hoping to reconstruct it later.

The code samples above gloss over another important issue, for the
sake of conciseness. Built-in functions with polymorphic types still
have to be instantiated before use. So a fully explicitly typed language
is unsuitable for human use due to the immense and numerous type
annotations required. However it is suitable for developing the formal
semantics of Remora in Chapter 4. Mitigating the verbosity of cell-type
annotations and explicit polymorphic instantiation will be one of the core
goals of type inference in Part II.
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18 Following the style of
Macro-by-Example [54]

S E M A N T I C S O F T Y P E D R E M O R A

This chapter presents a formal semantics for Remora. The formalism
is explicit in quantification and instantiation for cell types, but rank-
polymorphic frame lifting remains implicit. The mechanics of rank-
polymorphic lifting are driven by types, rather than by inspecting array
values’ shapes, resolving the empty-frame problem encountered in some
untyped code. In describing high-arity syntactic forms, ellipses identify
sequences of syntactic elements.18 So the pattern (+ n . . .) stands for an
s-expression with the symbol + followed by zero or more subexpressions,
which are collectively called n . . . .

An ellipsis may be applied to a larger fragment of syntax, such as
in (++ (shape x y) . . .). Here, we have a sequence of s-expressions,
each of which is shape followed by two items. Successfully matching
an s-expression to this pattern also identifies two sequences, x . . . and
y . . . . They are, respectively, the sequence of all first dimensions from
the shapes and the sequence of all second dimensions from the shapes.

Ellipses can be nested, as in (+ (+ n . . .) . . .). This pattern describes
a sequence of sequences of summands. We also lift this sequence notation
to describe sequences of premises in judgment forms, such as checking
the type of every argument in a function application form.

The formalism presented in this chapter is based on a model developed
using PLT Redex [28]. The model is available at https://github.com/
jrslepak/Revised-Remora. Within the model source, language.rkt de-
fines the core language of this chapter (explicitly typed Remora), typing-
rules.rkt implements typing and related judgments, and reduction.rkt

gives the reduction relation on an extended version of the language which
includes full type annotations.

4.1 S Y N TA X

The grammar for Core Remora is given in Figure 4.1, with value forms
specified in Figure 4.2. Term-level syntax is divided into atoms, written
as a, and expressions, written as e. Expressions produce arrays, which
contain atoms. For the most part, atom terms perform only trivial compu-
tation. This rule applies to base values, written as b; primitive operators,
written as o; and λ-abstractions, which may abstract over terms, types,
and type indices. As an exception, a box gives an atomic view of an array
of any shape and may therefore perform any computation to compute its
contents. A box hides part of its contents’ shape, using a dependent sum.
It existentially quantifies type indices, but an explicit type annotation
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e P Expr ::= Expressions

x Variable reference

| (array (n . . . ) a a . . . ) Array, containing atoms

| (array (n . . . ) τ) Empty array and its atom type

| (frame (n . . . ) e e . . . ) Frame, containing array cells

| (frame (n . . . ) τ) Empty frame and its cell type

| (ef ea . . . ) Term application

| (t-app e τ . . . ) Type application

| (i-app e ι . . . ) Index application

| (unbox (xi . . . xe es) eb) Let-binding box contents

a P Atom ::= Atoms

b Base value

| o Primitive operator

| (� ((x τ) . . . ) e) Term abstraction

| (T� ((x k) . . . ) e) Type abstraction

| (I� ((x γ) . . . ) e) Index abstraction

| (box ι . . . e τ) Boxed array

τ P Type ::= Types

x Type variable

| B Base type

| (A τ ι) Array

| (-> (τ . . . ) τ 1) Function

| (� ((x k) . . . ) τ) Universal

| (� ((x γ) . . . ) τ) Dependent product

| (� ((x γ) . . . ) τ) Dependent sum

k P Kind ::= Array | Atom Kinds

ι P Idx ::= Type indices

x Type variable

| n Single dimension

| (shape ι . . . ) Sequence of dimensions

| (+ ι . . . ) Adding dimensions

| (++ ι . . . ) Appending shapes

γ P Sort ::= Shape | Dim Index sorts

o POp ::= %+ | %- | %* | %/ Primitive operators

| %append | %reduce

| %iota | ...

f P Func ::= o | e Functions

t P Term ::= a | (� ((x τ) . . . ) e) Terms

Figure 4.1: Core Remora grammar
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v P Val ::= x | (array (n . . . ) v . . . ) Values

v P Atval ::= b | o Atomic values

| (� ((x τ) . . . ) e)

| (T� ((x k) . . . ) e)

| (I� ((x γ) . . . ) e)

| (box ι . . . v τ)

C ::= E | A Syntactic contexts

E ::= ˝ Expression contexts

| (array (n . . . ) a . . . A a . . . )

| (frame (n . . . ) e . . . E e . . . )

| (e . . . E e . . . )

| (t-app E τ . . . )

| (i-app E ι . . . )

| (unbox (xi . . . xe E) e)

| (unbox (xi . . . xe e) E)

A ::= ˝ Atom contexts

| (� ((x τ) . . . ) E)

| (T� ((x k) . . . ) E)

| (I� ((x γ) . . . ) E)

| (box ι . . . E τ)

V ::= ˝ Evaluation contexts

| (array (n . . . ) a . . . (box ι . . . Vτ) a . . . )

| (frame (n . . . ) e . . . V e . . . )

| (v . . . V e . . . )

| (t-app V τ . . . )

| (i-app V ι . . . )

| (unbox (xi . . . xe V) e)

| (unbox (xi . . . xe v) V)

Figure 4.2: Value forms, syntactic contexts, and evaluation contexts
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is required. A box built from the index 3 and a 3ˆ 3 matrix could be
meant, for example, as an unspecified-length vector containing 3-vectors,
with type (� ((n Dim)) (A Int (shape n 3))) or as a square matrix of
unspecified size, with type (� ((n Dim)) (A Int (shape n n))).

An array can be written as a literal, with its shape and individual atoms
listed directly. It can also be written in nested form as a frame containing
cells (its subexpressions) arranged in the specified shape. For example,
the matrix

“

1 2
3 4

‰

can be written as the literal

(array (2 2) 1 2 3 4)

or as a vector frame of vector literal cells:

(frame (2)

(array (2) 1 2)

(array (2) 3 4))

The frame notation allows construction of arrays from unevaluated cells.
An empty array (i.e., one whose shape includes a zero dimension) must
be written with the type its elements are meant to have. An empty vector
of integers is a different value than an empty vector of booleans, and
they inhabit different types.

Term, type, and index abstractions can be applied to zero or more
expressions, types, or indices. The body of the abstraction must itself be
an expression, i.e., all functions produce arrays as their results.

The unbox form unwraps each box in an array of boxes, let-binding its
index- and term-level contents. Suppose we have M, a boxed square matrix
of unspecified size. Unboxing M as in (unbox (l a M) e) lets us use the
index variable l and term variable a within e, the body. The results from
evaluating the body for each box’s contents are then gathered together to
produce the full result.

Types include base types (written as B), functions, arrays, universal
types, and dependent products and sums. Universals specify the kind
of each type argument, and dependent products and sums specify the
sort of each index argument. Types are classified as either Atom or Array.
Type indices are naturals and sequences of naturals, with addition and
appending as the only operators. They are classified into sorts, Dim and
Shape.

The grammar in Figure 4.1 does not require any specific set of prim-
itive operators, base types, and base values. An example collection of
array-manipulation primitives and their types is given in Figure 4.3. Most
of these primitives perform some operation along the argument’s major
axis. For example, head extracts the first scalar of a vector, the first row
of a matrix, etc.This means that the argument shape must have one di-
mension more than the result shape, and that extra dimension must be
nonzero. This is expressed in the type of head by giving the argument
shape (++ (+ 1 d) s), i.e., a single dimension which is 1 plus any arbi-
trary natural followed by any arbitrary sequence of naturals. In taking
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one scalar from a 3-vector, we would instantiate d as the dimension 2

and s as the empty shape (shape). If we want to extract the first plane of
a 5ˆ 6ˆ 7 array, we use 4 for d and (shape 6 7) for s.

Since these operations work along the major axis, we can use other
axes instead by instantiating them differently. Suppose mtx is the ma-
trix (array (3 2) 0 1 2 3 4 5), with the type (A Num (shape 3 2)).
Then (t-app (i-app head 2 (shape 2)) Num) is a function which ex-
tracts the first row of a p1`2qˆ2 (i.e., 3ˆ2) matrix. So ((t-app (i-app

head 2 (shape 2)) Num) mtx) evaluates to (array (2) 0 1). Instead,
consider (t-app (i-app head 1 (shape)) Num). This is a function with
input type (A Num (shape 2)) and output type (A Num (shape)). It ex-
tracts the first scalar of a 2-vector. When applied to mtx, this function
lifts to extract the first scalar from each 2-vector, gathering the results as
(frame (3) (array () 0) (array () 2) (array () 4)). Then evalua-
tion proceeds, reducing to (array (3) 0 2 4), the first column of mtx.

Several primitives must return boxed arrays because the type system
cannot keep track of enough information to fully describe the result
shape. As an extreme example, read-nums reads a vector of numbers
from user input, and there is no way of knowing until run time how long
a vector the user will enter. In other cases, the necessity of boxing comes
from a limit on the type system’s expressive power. The ravel function
produces a vector whose atoms are all those of the argument array, laid
out in row-major order. The length of the ravel of some array is fully
determined by that array’s shape: it is the product of all of its dimensions.
However the undecidability of Peano arithmetic would interfere with
type checking (not to mention future efforts on type inference). Since
“product of all dimensions” is not expressible in Presburger arithmetic,
we instead have ravel return a boxed vector.

Boxing is not limited to vectors. For example, filter uses a vector of
booleans to decide which parts of an array to retain. Since the number of
true entries in that vector is unknown, the size of the result’s major axis
is also unknown. The resulting � type existentially quantifies only that
one dimension, and leaves the remaining dimensions externally visible.

The iota functions and their variants, described in Figure 4.4, form
a useful case study on what invariants can be expressed in Remora’s
type system. These functions produce arrays whose atoms are successive
natural numbers starting from 0, such as (array (2 3) 0 1 2 3 4 5),
representing the matrix

“

0 1 2
3 4 5

‰

. The argument to iota is a vector of
numbers specifying the result array’s shape. Since this vector can be
dynamically computed, we cannot give any specific shape for iota’s
return type. Instead, iota must return a box with existentially quantified
shape. Recall that boxing arrays allows functions with data-dependent
result shape to lift safely, since applying iota to (array (2 2) 3 3 4

4) must produce a 3ˆ 3 matrix and a 4ˆ 4 matrix as its two result cells.
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Function Type

head, tail (-> ((A t (++ (shape (+ 1 d)) s)))

(A t s))

behead, curtail (-> ((A t (++ (shape (+ 1 d)) s)))

(A t (++ (shape d) s)))

length (-> ((A t (++ (shape d) s)))

(A Int (shape)))

shape, ravel (-> ((A t s))

(A (� ((d Dim)) (A Int (shape d)))

(shape)))

append (-> ((A t (++ (shape m) s))

(A t (++ (shape n) s)))

(A t (++ (shape (+ m n)) s)))

reverse (-> ((A t (++ (shape d) s)))

(A t (++ (shape d) s)))

rotate (-> ((A t (++ (shape d) s))

(A Int (shape)))

(A t (++ (shape d) s)))

fold (-> ((A (-> ((A t s) T) T) (shape))

T

(A t (++ (shape d) s)))

T)

reduce (-> ((A (-> ((A t s) (A t s))

(A t s)) (shape))

(A t (++ (shape (+ 1 d)) s)))

(A t s))

scan (-> ((A (-> ((A u r) (A t s))

(A u r)) (shape))

(A u r)

(A t (++ (shape d) s)))

(A u (++ (shape d) r)))

filter (-> ((A Bool d)

(A t (++ (shape d) s)))

(A (� ((k Dim)) (A t (++ (shape k) s)))

(shape)))

read-nums (-> ()

(A (� ((k Dim))

(A Int (shape k))) (shape)))

iota (-> ((A Int (shape d)))

(A (� ((s Shape)) (A Int s)) (shape)))

reshape (-> ((A Int (shape d))

(A t r))

(A (� ((s Shape)) (A Int s)) (shape)))

Figure 4.3: Common array-manipulation primitive operations and their Remora
types. Each function type is wrapped in a scalar, with the func-
tion name bound at that scalar type in the base environment. For
readability, we elide the enclosing � and � forms.



4.2 S TAT I C S E M A N T I C S 43

Variants on iota allow the programmer to communicate more detailed
knowledge to the type system. When the result is meant to be a vector,
iota/v takes that vector’s length as the argument. The resulting box is
typed as a vector of unknown length rather than an array of completely
unknown shape. Knowing that we have a vector of numbers rather than
any arbitrary array means, for example, that summing the box’s contents
with reduce is certain to produce a scalar. We can thus type the following
function as consuming and producing non-boxed scalars:

(� ((n (A Num (shape))))

(unbox (len nums (iota/v n))

((t-app (i-app reduce len (shape)) Num)

+

((t-app (i-app append 1 len (shape)) Num)

(array () 0)

nums))))

In a more programmer-friendly surface language, with automatic instan-
tiation of polymorphic functions and conversion of bare atoms to scalar
arrays, this might be written as:

(� ((n (A Num (shape))))

(unbox (len nums (iota/v n))

(reduce + (append [0] nums))))

Alternatively, the programmer might prefer to use iota/s to pass the
desired result shape as a type index rather than as a term-level vector.
In that case, there is no need to box the result array. In the automatic-
instantiation shorthand, iota/s may be stylistically awkward, calling
for the variant iota/w, which takes an extra array argument as a “shape
witness” rather than instantiating at a shape index. Producing a number
array whose shape matches some existing array xs could then be written
as (iota/w xs) instead of ((i-app iota/s shape-of-xs)).

The reshape function behaves similarly to iota, except that the atoms
in the result array are drawn from the second argument, repeating them
cyclically if necessary. So using reshape with the shape specification
(array (2) 3 2) and the vector (array (5) 1 2 3 4 5) produces the
3ˆ 2 matrix (array (3 2) 1 2 3 4 5 1). Like iota, reshape benefits
from alternative ways for the programmer to specify the result shape.

4.2 S TAT I C S E M A N T I C S

We present typing rules for Remora as well as supporting judgment
forms: sorting rules for type indices, kinding rules for types, and a type
equivalence judgment handling both α-conversion of polymorphic types
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Function Type

iota (-> ((A Int (shape d)))

(A (� ((s Shape)) (A Int s)) (shape)))

iota/v (-> ((A Int (shape)))

(A (� ((d Dim)) (A t (shape d)))

(shape)))

iota/s (� ((s Shape))

(-> () (A Int s)))

iota/w (-> ((A t s))

(A Int s))

Figure 4.4: Types for iota and its variants. More detailed argument-shape infor-
mation allows a more precise result shape: iota/v always produces
a vector, while iota/s and iota/w have their result shape specified
by their input.

and the multiple different ways a particular shape might be written.
Typing Core Remora uses a three-part environment structure: Θ is a
partial function mapping index variables to sorts; ∆ maps type variables
to their kinds; and Γ maps term variables to their types. The stratification
of Dependent ML-style types allows indices to be checked using only the
sort environment and types using only the sort and kind environments.
Following the definition of each judgment form, we give a handful of
lemmas which will be needed for a type soundness argument in Section
4.4. The well-formedness judgments each come with a lemma stating
that the judgment gives a unique result to each well-formed term and
that unique result is preserved by substituting well-formed assignments
for free variables. When we show type soundness for Remora, these
results will be needed to prove the preservation lemma. Uniqueness of
typing is particularly important for Remora, where the implicit iteration
in function application (including index and type abstractions) is driven
by the types ascribed to the function and argument expressions. Well-
defined program behavior relies on having a unique decomposition of
each array into a frame of cells.

4.2.1 Sorting

Figure 4.5 defines the sorting judgment, Θ $ ι :: γ , which states that
in sort environment Θ, the index ι has sort γ . Natural number literals
have sort Dim. A sequence of indices is a Shape, provided that every
element of the sequence is a Dim. Addition is used on Dim arguments to
produce a Dim. Shape arguments may be appended, to form another Shape.
Variables may be bound at either sort, but they can only be introduced
into the environment by index abstraction and unboxing terms—the
index language itself has no binding forms.
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Θ $ ι :: γ

n PN

Θ $ n :: Dim
S:NAT

px :: γq PΘ

Θ $ x :: γ
S:VAR

Θ $ ι :: Dim ¨ ¨ ¨

Θ $ (shape ι . . . ) :: Shape
S:SHAPE

Θ $ ι :: Dim ¨ ¨ ¨

Θ $ (+ ι . . . ) :: Dim
S:PLUS

Θ $ ι :: Shape ¨ ¨ ¨

Θ $ (++ ι . . . ) :: Shape
S:APPEND

Figure 4.5: Sorting rules

We give two results about the well-behaved nature of the sorting rules:
No type index inhabits two different sorts (in the same environment),
and replacing an index’s variables with appropriately sorted indices does
not change the sort.

Lemma 4.2.1 (Uniqueness of sorting). If Θ $ ι :: γ and Θ $ ι :: γ 1,
then γ “ γ 1.

Proof. No non-variable index form is compatible with multiple sorting
rules, so they can only have whichever sort their one compatible rule
concludes. It remains to show that uniqueness holds for variables. Since
Θ is a well-defined partial function, mapping variables to sorts, Θpxq
can only have one value. If Θpxq “ γ and Θpxq “ γ 1, γ “ γ 1.

Lemma 4.2.2 (Preservation of sorts under index substitution). If Θ,x ::
γx $ ι :: γ and Θ $ ιx :: γx then Θ $ ιrx ÞÑ ιxs :: γ .

Proof sketch. This is straightforward induction on the original sort de-
rivation.

4.2.2 Kinding

Kinding rules are given in Figure 4.6. The Array kind is only ascribed to
types built by the array type constructor and type variables bound at that
kind. The array type constructor requires as its arguments an Atom type
and a Shape index. Base types are fundamental, non-aggregate types,
such as Float or Bool, so they are Atoms. Function types have kind Atom,
but their input and output types must be Arrays. This reflects the rule that
application is performed on arrays, and the function produces an array
result. Similarly, universal types and dependent products, describing type
and index abstractions, must have an Array as their body, while they
themselves are Atoms. This rules out types whose inhabitants would have
to be syntactically illegal due to containing expressions instead of atoms
as their bodies. Since boxes present arrays as atoms, dependent sum
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Θ;∆$ τ :: k

px :: kq P ∆

Θ;∆$ x :: k
K:VAR

Θ;∆$ B :: Atom
K:BASE

Θ;∆$ τ :: Array ¨ ¨ ¨

Θ;∆$ τ 1 :: Array

Θ;∆$ (-> (τ . . . ) τ 1) :: Atom
K:FN

Θ;∆,x :: k . . . $ τ :: Array

Θ;∆$ (� ((x k) . . . ) τ) :: Atom
K:UNIV

Θ,x :: γ . . . ;∆$ τ :: Array

Θ;∆$ (� ((x γ) . . . ) τ) :: Atom
K:PI

Θ,x :: γ . . . ;∆$ τ :: Array

Θ;∆$ (� ((x γ) . . . ) τ) :: Atom
K:SIGMA

Θ $ ι :: Shape Θ;∆$ τ :: Atom

Θ;∆$ (A τ ι) :: Array
K:ARRAY

Figure 4.6: Kinding rules

types also have an Array body and are kinded as Atoms. A universal type
adds bindings for its quantified type variables to ∆. Dependent products
and sums do the same for their index variables in Θ.

As with sorting of indices, we expect a well-kinded type to inhabit
only a single kind (fixing a particular environment). The kinding system
should also allow free index or type variables to be replaced with appro-
priately sorted or kinded indices or types without changing the original
type’s kind.

Lemma 4.2.3 (Uniqueness of kinding). If Θ;∆$ τ :: k and Θ;∆$ τ ::
k1, then k“ k1.

Proof. As with uniqueness of sorting, no non-variable type is compatible
with multiple kinding rules. Since all kinding rules except for K:VAR

ascribe a specific kind, the only remaining case is for type variables. The
kind environment ∆ is a well-defined partial function, so ∆pxq “ k and
∆pxq “ k1 imply k“ k1.

Lemma 4.2.4 (Preservation of kinds under index substitution). If Θ,x ::
γ ;∆$ τ :: k and Θ $ ιx :: γ then Θ;∆$ τrx ÞÑ ιxs :: k.

Proof sketch. This is straightforward induction on the original kind de-
rivation.

Lemma 4.2.5 (Preservation of kinds under type substitution). Given
Θ;∆,x :: kx $ τ :: k and Θ;∆$ τx :: kx then Θ;∆$ τrx ÞÑ τxs :: k.
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Proof sketch. This is also provable by induction on the kind derivation
for τ .

4.2.3 Typing

The typing rules in Figures 4.7 and 4.8 relate a full environment (Θ
mapping index variables to sorts, ∆ mapping type variables to kinds,
and Γ mapping term variables to types), a term (whether an atom or an
expression), and its type under that environment. Since an array type
might have its shape described in multiple different ways, e.g., a vector of
length 6 or a vector of length (+ 1 5), the T:EQV rule makes reference
to a type-equivalence judgment (presented in full detail in §4.2.4) which
reconciles such differences according to the algebraic theory of type
indices.

The signature S , referenced in the T:OP rule, is a function mapping
from primitive operators to their types. For example, SJ+K is (-> ((A

Num (shape)) (A Num (shape))) (A Num (shape))), meaning + is an
operator which consumes two scalar numbers and produces one scalar
number.

Array literals (T:ARRAY) and nested frames (T:FRAME) both in-
clude a length check: the number of atoms or cells must be equal to
the product of the given dimensions. In the case of empty arrays, the
length-matching condition is fulfilled if and only if the array has a 0

as one of its dimensions. Term, type, and index abstractions (T:LAM,
T:TLAM, and T:ILAM respectively) all bind their arguments’ names in
the appropriate environment.

Typing function application (T:APP) starts by identifying the type of
the expression in function position. It must be an array of functions, and
the array’s entire shape ιf is treated as the function frame. The function
input types, also arrays, specify the element type and cell shape for
each argument. Each cell shape ι must be a suffix of the shape of the
corresponding actual argument; the remainder ιa is the argument’s frame.
In the semilattice defined by the sequence-prefix relation Ď, the least
upper bound of a collection of sequences (written as \) is the one which
has all the others as prefixes. The maximum of these frames under prefix
ordering (where r23sĎ r232s but r23sĘ r632s) is the principal frame
ιp. That is, the function and argument arrays will all be lifted so as to
have ιp as their frames when the program runs. Then ιp is used as the
frame around the function’s output type to give the result type for this
function application.

Type application (T:TAPP) and index application (T:IAPP) also re-
quire arrays in function position, but they can skip prefix comparison
as type and index arguments do not come in arrays that must be split
into frames of cells. Thus the function’s frame shape ιf passes through
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Θ;∆;Γ $ t : τ

Θ;∆;Γ $ o : SJoK
T:OP

px : τq P Γ

Θ;∆;Γ $ x : τ
T:VAR

Θ;∆;Γ $ t : τ 1 τ – τ 1

Θ;∆;Γ $ t : τ
T:EQV

Θ;∆;Γ $ a : τ ¨ ¨ ¨

Θ;∆$ τ :: Atom LengthJa . . .K“
ź

n . . .

Θ;∆;Γ $ (array (n . . . ) a . . . ) : (A τ (shape n . . . ))
T:ARRAY

Θ;∆$ τ :: Atom 0 P n . . .

Θ;∆;Γ $ (array (n . . . ) τ) : (A τ (shape n . . . ))
T:0A

Θ;∆;Γ $ e : (A τ ι) ¨ ¨ ¨

Θ;∆$ (A τ ι) :: Array LengthJe . . .K“
ź

n . . .

Θ;∆;Γ $ (frame (n . . . ) e . . . ) : (A τ (++ (shape n . . . ) ι))
T:FRAME

Θ;∆$ τ :: Atom Θ $ ι :: Shape 0 P n . . .

Θ;∆;Γ $ (frame (n . . . ) (A τ ι)) : (A τ (++ (shape n . . . ) ι))
T:0F

Θ;∆;Γ ,x : τ . . . $ e : τ 1 Θ;∆$ τ :: Array ¨ ¨ ¨

Θ;∆;Γ $ (� ((x τ) . . . ) e) : (-> (τ . . . ) τ 1)
T:LAM

Θ;∆,x :: k . . . ;Γ $ e : τ

Θ;∆;Γ $ (T� ((x k) . . . ) e) : (� ((x k) . . . ) τ)
T:TLAM

Θ,x :: γ . . . ;∆;Γ $ e : τ

Θ;∆;Γ $ (I� ((x γ) . . . ) e) : (� ((x γ) . . . ) τ)
T:ILAM

Θ $ ι :: γ ¨ ¨ ¨

Θ;∆$ (� ((x γ) . . . ) τ) :: Atom Θ;∆;Γ $ e : τrx ÞÑ ι, . . . s

Θ;∆;Γ $ (box ι . . . e (� ((x γ) . . . ) τ)) : (� ((x γ) . . . ) τ)
T:BOX

Figure 4.7: Typing rules (introduction forms)
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Θ;∆;Γ $ t : τ

Θ;∆;Γ $ e : (A (� ((x k) . . . ) (A τu ιu)) ιf ) Θ;∆$ τ :: k ¨ ¨ ¨

Θ;∆;Γ $ (t-app e τ . . . ) : (A τurx ÞÑ τ , . . . s (++ ιf ιu))
T:TAPP

Θ;∆;Γ $ e : (A (� ((x γ) . . . ) (A τp ιp)) ιf ) Θ $ ι :: γ ¨ ¨ ¨

Θ;∆;Γ $ (i-app e ι . . . ) : (A τprx ÞÑ ι, . . . s (++ ιf ιprx ÞÑ ι, . . . s))
T:IAPP

Θ;∆;Γ $ es : (A (� ((x1i γ) . . . ) τs) ιs)
Θ,xi :: γ . . . ;∆;Γ ,xe : τs

“

x1i ÞÑ xi , . . .
‰

$ eb : (A τb ιb)
Θ;∆$ (A τb ιb) :: Array

Θ;∆;Γ $ (unbox (xi . . . xe es) eb) : (A τb (++ ιs ιb))
T:UNBOX

Θ;∆;Γ $ ef : (A (-> ((A τ ι) . . . ) (A τ 1 ι1)) ιf )
Θ;∆;Γ $ ea : (A τ (++ ιa ι)) ¨ ¨ ¨ ιp “

ğ

 

ιf ιa . . .
(

Θ;∆;Γ $ (ef ea . . . ) : (A τ 1 (++ ιp ι
1))

T:APP

Figure 4.8: Typing rules (elimination forms)

unaltered, and arguments are substituted into the body type τb to produce
the resulting array’s element type.

When constructing a box (T:BOX), a dependent-sum type annotation
is provided. The box’s index components must match their declared
sorts, and substituting them into the body of the dependent sum type
must produce a type that matches the box’s array component. Unboxing
(T:UNBOX) requires that ebox, the expression being destructed, be a
dependent sum. The unbox form names the sum’s index and array com-
ponents and adds them to the sort and type environments when checking
ebody. Although the index components are in scope while checking the
body, information hidden by the existential is not permitted to leak out:
The end result type τbody must be well-formed without relying on the ex-
tended sort environment. Unboxing a frame of boxes (scalars) produces
a frame of result cells, similar to lifting function application.

Anticipating a progress lemma, we prove a canonical-forms lemma
for Remora’s typing rules. Following the atom/array distinction, we have
separate lemmas for atoms and arrays. Although an atom can contain
an array if that atom is a box, we avoid mutual dependence between the
lemmas by not making any claim about the syntactic structure of the
box’s contents.

Lemma 4.2.6 (Canonical forms for atomic values). Let v be a well-typed
atomic value, that is, ¨; ¨; ¨ $ v : τ .

1. If τ is of the form (-> (τi . . . ) τo),
then v is of the form
o or (� ((x τi) . . . ) e).
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2. If τ is of the form (� ((x k) . . . ) τu),
then v is of the form
(T� ((xu k) . . . ) e).

3. If τ is of the form (� ((x γ) . . . ) τp),
then v is of the form
(I� ((xp γ) . . . ) e).

4. If τ is of the form (� ((x γ) . . . ) τb),
then v is of the form
(box ι . . . vb (� ((xb γ) . . . ) τ 1b)),
with τ – (� ((xb γ) . . . ) τ 1b).

5. If τ is of the form B,
then v is of the form
b.

Proof sketch. The type derivation may end with T:EQV, so we consider
the sub-derivation prior to all final T:EQV instances. We examine which
typing rules can ascribe a type of the right form and then identify what
form the term must take to match those rule.

Lemma 4.2.7 (Canonical forms for arrays). Let v be a well-typed value,
that is, ¨; ¨; ¨ $ v : τ ,

1. If τ is of the form (A (-> (τi . . . ) τo) ι),
then v is of the form
(array (n . . . ) f . . . ).

2. If τ is of the form (A (� ((x k) . . . ) τu) ι),
then v is of the form
(array (n . . . ) (T� ((xu k) . . . ) e) . . . ).

3. If τ is of the form (A (� ((x γ) . . . ) τp) ι),
then v is of the form
(array (n . . . ) (I� ((xp γ) . . . ) e) . . . ).

4. If τ is of the form (A (� ((x γ) . . . ) τb) ι),
then v is of the form
(array (n . . . ) (box ι . . . vb (� ((xb γ) . . . ) τb)) . . . ),
with τ – (� ((xb γ) . . . ) τ 1b).

5. If τ is of the form (A B ι),
then v is of the form
(array (n . . . ) b . . . ),
with ¨; ¨; ¨ $ b : B for each of b . . . .

Proof sketch. This proceeds like the proof for Lemma 4.2.6.
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τ – τ 1

τ – τ
TEQV:REFL

τ – τ 1 ( ι” ι1

(A τ ι)– (A τ 1 ι1)
TEQV:ARRAY

τi j – τ
1
i j ¨ ¨ ¨ τo – τ

1
o

(-> (τi . . . ) τo)– (-> (τ 1i . . . ) τ
1
o)

TEQV:FN

τ
“

x ÞÑ xf , . . .
‰

– τ 1
“

x1 ÞÑ xf , . . .
‰

with fresh xf . . .

(� ((x k) . . . ) τ)– (� ((x1 k) . . . ) τ 1)
TEQV:UNIV

τ
“

x ÞÑ xf , . . .
‰

– τ 1
“

x1 ÞÑ xf , . . .
‰

with fresh xf . . .

(� ((x γ) . . . ) τ)– (� ((x1 γ) . . . ) τ 1)
TEQV:PI

τ
“

x ÞÑ xf , . . .
‰

– τ 1
“

x1 ÞÑ xf , . . .
‰

with fresh xf . . .

(� ((x γ) . . . ) τ)– (� ((x1 γ) . . . ) τ 1)
TEQV:SIGMA

Figure 4.9: Type equivalence

4.2.4 Type Equivalence

Remora’s typing rules rely on a type-equivalence relation defined in Fig-
ure 4.9. The equivalence relation is essentially α-equivalence augmented
with a check as to whether array shapes are guaranteed to be equal.

The index equality check in TEQV:ARRAY, stated as ( ι ” ι1, asks
whether the equality of ι and ι1 is valid, i.e., whether it is true for every
possible choice of values for the variables appearing in the equality. This
is based on the algebraic laws of the theory of type indices. For example,
since appending is associative, the type indices (++ (++ ι0 . . .) ι1 . . .),
(++ ι0 . . . (++ ι1 . . .)), and (++ ι0 . . . ι1 . . .) are all equal, no matter
the values chosen for the variables appearing in ι0 . . . and ι1 . . . . So any
nesting of ++ forms can be rewritten in a canonical form by flattening.
Individual dimensions are sums of natural-number literals and variables,
i.e., affine combinations of variables. So a dimension can be written in a
canonical representation with the number of occurrences of each variable
and the total of all natural-number literals.

Then type indices ι and ι1—whether they are shapes or dimensions—
are guaranteed to be equal if and only if their canonical forms are the
same. Two shapes built by appending components must have the compo-
nents match, or else an assignment of variables might give corresponding
components different lengths or place a mismatching dimension in com-
ponents of equal length. For example, the equality (++ x y) ” (++ x

x) is falsified by any choice of x which has a different length than y

(such as x“ (shape 3),y“ (shape 3 3)) or which makes any individ-
ual dimension differ (such as x“ (shape 2 3),y“ (shape 3 3)). When
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coefficients on variables within corresponding dimensions do not match
perfectly, that is an opportunity for a variable assignment to force those
dimensions to differ, e.g., (shape (+ a a 2) 4) ” (shape (+ b a) 4)

can be falsified by choosing a“ 1,b“ 2.
We expect the relation – actually to be an equivalence relation, i.e.,

reflexive, symmetric, and transitive. Only reflexivity has its own inference
rule, so we now show symmetry and transitivity.

Lemma 4.2.8 (Symmetry of –). If τ – τ 1, then τ 1 – τ .

Proof sketch. This follows via straightforward induction on the equiva-
lence derivation.

Lemma 4.2.9 (Transitivity of –). If τ0 – τ1 and τ1 – τ2, then τ0 – τ2.

Proof sketch. This follows from induction on the derivations of τ0 – τ1
and τ1 – τ2. Since both derivations mention τ1, the structure of the
equivalence rules prohibits the derivations from ending with different
rules (other than TEQV:REFL, which passes that structural requirement
on to its premises).

Theorem 4.2.1. – is an equivalence relation.

A type-equivalence relation should not cross kind boundaries. Viola-
tion of this principle would allow use of T:EQV to ascribe an ill-kinded
type to a well-typed term. It follows directly from inspection of the
equivalence rules that they will not relate an Atom with an Array, but
correct use of type and index variables remains to be proven. To that end,
we show that two equivalent types will be ascribed the same kind by the
same environment.

Lemma 4.2.10. If Θ;∆$ τ :: k and τ – τ 1, then Θ;∆$ τ 1 :: k.

Proof sketch. This result is proven by induction on the derivation of τ –
τ 1. In each case, the induction hypothesis converts a kind derivation for
some fragment of τ into a kind derivation for a corresponding fragment
of τ 1 (and similar for index fragments).

We also expect type equivalence to be well-behaved under substitution.
Ultimately, substituting equivalent types or indices into equivalent types
ought to produce equivalent types. Proving that result by induction on
derivation of equivalence is straightforward except for the REFL case.

Lemma 4.2.11. If ( ι ” ι1, then for any index variable x, τrx ÞÑ ιs –
τrx ÞÑ ι1s.

Proof sketch. This is provable using induction on the structure of τ . Only
the case for arrays makes direct use of ι and ι1; the other cases simply
use the induction hypothesis to prove the premises of the derivation of
τrx ÞÑ ιs – τrx ÞÑ ι1s.
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Lemma 4.2.12. If τx – τ 1x, then for any type variable x, τrx ÞÑ τxs –
τrx ÞÑ τ 1xs.

Proof. We use induction on the structure of τ . The cases for univer-
sals, dependent products, and dependent sums require instantiating the
induction hypothesis with a substitution of fresh type variables xf . . . .
For example, when τ “ (� ((xu k) . . . ) τu), the induction hypothesis
promises the equivalence of τu after substituting in xf . . . for xu . . . and
also τx or τ 1x for x.

Theorem 4.2.2. If τ – τ 1 and τx – τ 1x, then for any type variable x,
τrx ÞÑ τxs – τ

1rx ÞÑ τ 1xs.

Proof sketch. We use induction on the derivation of τ – τ 1. In each
case, the induction hypothesis provides equivalence derivations for cor-
responding fragments of τrx ÞÑ τxs and τ 1rx ÞÑ τ 1xs, which can then be
used to prove the substituted types themselves equivalent.

Having defined the typing judgment and the type-equivalence relation
on which it builds, we can now prove the usual results about typing in
Remora. The T:EQV rule can allow many types to be ascribed to a single
term, but we will prove that an environment and term can only map to a
single equivalence class.

Theorem 4.2.3 (Uniqueness of typing, up to equivalence). If Θ;∆;Γ $
t : τ and Θ;∆;Γ $ t : τ 1, then τ – τ 1.

Proof sketch. This can be proven by induction on t, showing that all
derivations of Θ;∆;Γ $ t : τ 1 must end with the same non-T:EQV rule
(chosen according to the structure of t) followed by 0 or more T:EQV

instances, which keeps the result in the same equivalence class as τ .

We also require guarantees about substitution in terms: replacing an
index variable with an appropriately sorted index, a type variable with an
appropriately kinded type, or a term variable with an appropriately typed
expression should not change the type of the original term. If substitution
turns a term t with type τ into t1 with type τ 1, where τ – τ 1, we can add
a T:EQV at the end of the new type derivation to conclude t1 has type τ .
As such, we do not need to include an “up to equivalence” caveat when
stating the preservation of typing lemmas.

Lemma 4.2.13 (Preservation of types under index substitution). Given
Θ,x :: γ ;∆;Γ $ t : τ and Θ $ ιx :: γ then Θ;∆;Γrx ÞÑ ιxs $ trx ÞÑ ιxs :
τrx ÞÑ ιxs.

Proof sketch. This is straightforward induction on the type derivation
Θ,x :: γ ;∆;Γ $ t : τ .

Lemma 4.2.14 (Preservation of types under type substitution).
Given Θ;∆,x :: k;Γ $ t : τ and Θ;∆$ τx :: k,
then Θ;∆;Γrx ÞÑ τxs $ trx ÞÑ τxs : τrx ÞÑ τxs.
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Proof sketch. This is straightforward induction on the type derivation
Θ;∆,x :: k;Γ $ t : τ .

Lemma 4.2.15 (Preservation of types under term substitution). Given
Θ;∆;Γ ,x : τx $ t : τ and Θ;∆;Γ $ ex : τx then Θ;∆;Γ $ trx ÞÑ exs : τ .

Proof sketch. We use induction on the derivation of Θ;∆;Γ ,x : τx $ t :
τ .

We call an environment well-formed, written as Θ;∆$ Γ , if for every
binding x : τ P Γ , we can derive Θ;∆$ τ :: Array. This is the expected
case, rather than permitting τ to have kind Atom, because a lone variable
is an expression and ought to stand for an array value.

When we show that the typing judgment only ascribes types of the
appropriate kind, the case for the T:EQV rule relies on the earlier lemma
that the type equivalence relation respects kinding, i.e., two equivalent
types will have the same kind when checked in the same environment.

Theorem 4.2.4 (Ascription of well-kinded types). Given Θ;∆;Γ $ t : τ
where Θ;∆$ Γ :

• If t is an expression, then Θ;∆$ τ :: Array

• If t is an atom, then Θ;∆$ τ :: Atom

Proof sketch. This follows by induction on the derivation of Θ;∆;Γ $
t : τ . It is not sufficient to point out that each typing rule ascribes a
type whose form matches the appropriate kind. Elimination-form cases
call for a little extra work. For UNBOX, the kind check on the result
type is necessary to ensure that existentially quantified variables do not
leak out. The APP case must ensure that index variables in the ascribed
type actually appear in the environment. This is guaranteed because the
principal frame is always chosen to be one of the function- or argument-
position frames.

4.3 DY N A M I C S E M A N T I C S

In the dynamic semantics for Remora, the way function application is
lifted to work on aggregate data depends on the types of the function
and argument terms. Consulting type information avoids a “hole” in the
semantics of untyped array-oriented code, where a frame whose shape
includes a 0 dimension evaluates to an array with indeterminate shape—
there are no concrete cells whose shape can be used to determine the
overall shape of the resulting array. Instead, the function’s type tells us
the shape of the resulting cells, even when there are zero such cells.

The small-step operational semantics is the compatible closure of
the reduction rules given in Figure 4.11, using the evaluation contexts
V defined in Figure 4.2. It assumes every atom and expression has
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Splitn J(a1, . . . ,am)K

“ ((a1, . . . ,an),(an`1, . . . ,a2n), . . . ,(am´n`1, . . . ,am))

Repn J(a1, . . . ,am)K

“ (a1,1, . . . ,a1,n, . . . ,am,1, . . . ,am,n) where ai,j “ ai

Concat
q
((a1,1, . . . ,a1,n), . . . ,(am,1, . . . ,am,n))

y

“ (a1,1, . . . ,a1,n, . . . ,am,1, . . . ,am,n)

Transpose((a1,1, . . . ,a1,n), . . . ,(am,1, . . . ,am,n))

“ ((a1,1, . . . ,am,1), . . . ,(a1,n, . . . ,am,n))

Figure 4.10: List-processing metafunctions

been tagged with its type. For example, β-reduction requires that each
atom in the function-position array have input types τ . . . and that the
argument arrays’ types also match τ . . . . This matching is still subject to
the type-equivalence rules described in §4.2, e.g., a function tagged as
having input type (A Int (++ (shape 3) (shape 4))) can be applied
to an argument tagged with type (A Int (shape 3 4)). Because every
term now has type annotations attached, we drop the “empty” array and
frame syntactic forms. Their replacements use the standard array and
frame syntax with an empty list of atoms or cells, and the atom or cell
type is implied by the expression’s type annotation.

Several list-processing metafunctions are used in defining the reduc-
tion rules. These metafunctions are defined in Figure 4.10. Splitn turns
a list into a list of lists, made up of the consecutive length-n pieces of
the original list. For example, Split3 J(1 2 3 4 5 6)K is ((1 2 3) (4 5

6)). Concat flattens a list of lists into a single list, effectively undoing
a Split. Repn constructs a new list by repeating each element of the
original list n times. Rep2 J(0 1)K is (0 0 1 1). Used on nested lists,
the inner lists are treated atomically: Rep2 J((1 2 3) (4 5 6))K is ((1

2 3) (1 2 3) (4 5 6) (4 5 6)). Transpose takes a list of lists, where
the inner lists all have the same length, and produces a new list of lists
whose ith element contains the ith elements of each original inner list.

The reduction rules themselves are given in Figure 4.11. Remora’s
function application is split into stages for replicating cells to make frame
shapes match (lift), mapping the functions to corresponding argument
cells (map), and gathering the result cells back into an array (collapse).

Performing a lift step identifies the function array’s frame, the se-
quence rnf . . . s, and each argument’s frame, rna . . . s. Then the sequence
rnp . . . s is chosen to be the largest frame according to prefix ordering.
We require that at least one function or argument frame be different from
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the principal frame—otherwise, a map step would be appropriate instead.
Each argument’s cell size nac is the product of the dimensions rnin . . . s
of the function’s input type at that position; the function array’s cell size
is always 1. The number of replicas needed for each cell (nfe for the
function and nfa for each argument) is determined by multiplying the
dimensions that must be added to each corresponding frame to produce
the principal frame, i.e., the principal frame minus whatever prefix was
already present in the original array’s shape. Given these numbers, we
split each array’s atom list into its cells, replicate those cells to match the
new array shapes, and then concatenate each array’s replicated cells to
produce the new function and argument arrays. Type annotations on the
individual arrays update to reflect their new shapes, but the application
form’s type remains unchanged.

A map step is possible when every piece of a function application
has the same frame shape. Then the application becomes a frame of
application forms, which themselves all have scalar principal frame. This
requires breaking each argument array’s atom list into its individual
cells’ atom lists, then transposing to match the first cell of each argument
with the first function, the second cell of each argument with the second
function, and so on.

When function application has a scalar in function position, and every
argument array matches the function’s corresponding input type, then we
can β-reduce or δ-reduce. β-reduction performs conventional λ-calculus
substitution. The δ rule uses a family of metafunctions, each associated
with a primitive operator. No frame construct is necessary in either result,
as this is the degenerate case of function lifting—the principal frame is
scalar.

Applying type and index abstractions is handled by the tβ and iβ
rules. The application frame is the shape of the array of type or index
abstractions, since there are no argument arrays. Every T� or I� is ap-
plied to the full list of type or index arguments. Substitution into the
body of each abstraction should be read as affecting type annotations as
well as subterms: if we are replacing the type variable T with Int, then
x(A T (shape 3)) becomes x(A Int (shape 3)).

Once a frame has every one of its cells reduced to an array literal,
the nested representation can be merged into a single literal. In the case
where one of n . . . is 0, there will be no cells to examine to determine
the cell dimensions n1 . . . , so this information is taken from the type
annotation on the frame form. The type annotation itself passes through
unchanged. The atom lists from the cells are concatenated to produce the
collapsed array’s atom list.

Destructing a box with an unbox form behaves like a conventional let.
The result is the body e, where the index variables xi . . . are replaced
with the box’s indices ι . . . , and the term variable xe is replaced with the
contained array v.
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((array (nf . . .) vf . . .)
(A (-> ((A τi (shape ni ...)) ...) τo) (shape nf ...))

(array (na . . . ni . . .) va . . .)(A τi (shape na ...ni ...)) . . .)
ÞÑlift
((array (np . . .)

Concat
r
Repnfe

q
Split1

q
vf . . .

yyz
)(A (-> ((A τi (shape ni ...)) ...) τo) (shape np ...))

(array (np . . . ni . . .)

Concat
r
Repnae

r
Splitnac Jva . . .K

zz
)(A τi (shape np ...ni ...)) . . .)

where
Not all of

`

nf . . .
˘

,pna . . .q . . . are equal

np . . . =
ğq`

nf . . .
˘

pna . . .q . . .
y

nfe =

ź

`

np . . .
˘

ź

`

nf . . .
˘

nae . . . =

ź

`

np . . .
˘

ź

pna . . .q
. . . nac . . . =

´

ź

pni . . .q
¯

. . .

((array (nf . . .) vf . . .)
(A (-> ((A τi (shape ni ...)) ...) τo) (shape nf ...))

(array (nf . . . ni . . .) va . . .)
(A τi (shape nf ... ni ...)) . . .)

ÞÑmap
(frame (nf . . .)

((array () vf )
(A (-> ((A τi (shape ni ...)) ...) τo) (shape))

(array (ni . . .) vc . . .)(A τi (shape ni ...)). . .)τo . . .)
where

nc . . . = p
ś

ni . . .q . . .

ppvc . . .q . . .q . . . = Transpose
r
Splitnc Jva . . .K . . .

z

Length
q
nf . . .

y
> 0

((array () (� ((x τ) . . .) e)) vτ . . .)
ÞÑβ erx ÞÑ vτ , . . . s

(t-app (array (n . . .) (T� ((x k) . . .) e) . . .) τ . . .)
ÞÑtβ (frame (n . . .) erx ÞÑ τ , . . . s . . .)

(i-app (array (n . . .) (I� ((x γ) . . .) e) . . .) ι . . .)
ÞÑiβ (frame (n . . .) erx ÞÑ ι, . . . s . . .)

(frame (n . . .) (array (n1 . . .) v . . .) . . .)(A τ (shape n ...n1 ...))

ÞÑcollapse (array (n . . . n1 . . .) ConcatJpv . . .q . . .K)(A τ (shape n ...n1 ...))

(unbox (xi . . . xe (array (ns . . .) (box ι . . . v τ) . . .)) e)
ÞÑunbox (frame (ns . . .) erxi ÞÑ ι, . . . ,xe ÞÑ vs)

Figure 4.11: Dynamic semantics for Remora
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4.4 T Y P E S O U N D N E S S

The value of a type-soundness theorem for Remora is not only assurance
that well-typed programs do not suffer from shape-mismatching errors. It
also ensures that the types ascribed to program terms accurately describe
the shapes of the data those terms compute. That is the guarantee that
justifies a compiler’s use of the type system as a static analysis for array
shape.

With supporting lemmas such as canonical forms and substitution al-
ready taken care of, we now establish progress and preservation lemmas.
Since we have not committed to a collection of primitive operators that
are all total functions, the progress lemma acknowledges the possibility
of non-shape errors, such as division by zero. However, we do assume
that any value returned by a primitive operator inhabits that operator’s
output type.

Lemma 4.4.1 (Progress). Given an expression e such that ¨; ¨; ¨ $ e : τ ,
one of the following holds:

• e is a value v

• There exists e1 such that e ÞÑ e1

• e is V r((array () o) v . . . )s where o is a partial function applied
to appropriately typed values outside its domain.

Proof sketch. We use induction on the derivation of ¨; ¨; ¨ $ e : τ . We
consider only cases for typing rules which apply to expressions (as
opposed to atoms). Since we do not reduce under a binder, our assumed
type derivation ensures that the reducible subexpression of e is also
typable using an empty environment.

An array form which is not already a value must have some non-value
atom. That atom must itself contain a non-value expression, with its own
type derivation. So the induction hypothesis implies that it can take a
reduction step or is a mis-applied primitive operator. Similar reasoning
applies to frame forms: either we have a collapse redex, or some cell
subexpression in the frame can make progress.

An unbox form can either make progress in the box position (via the
induction hypothesis) or take an unbox step. Similarly, a type or index
application can make progress in function position or take a tβ or iβ
step.

The function-application case splits into subcases depending on whe-
ther the function and argument arrays are fully reduced and if so what
their frame shapes are. If they are all value forms, we have all scalar
frames (a β or δ redex) or all identical non-scalar frames (a map redex), or
non-identical prefix-compatible frames (a lift redex). Prefix-incompatible
frames are ruled out by the type derivation.
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19 I conjecture that divergence is not
possible because Remora effectively
extends System F with more detailed
types and an iteration construct
bounded by the size of actual data.
However, the statement of this theorem
must account for the possibility of
divergence because I have not proven
that Remora is normalizing.

Lemma 4.4.2 (Preservation). Let Θ,∆,Γ be a well-formed environment,
i.e., Θ;∆$ Γ . If Θ;∆;Γ $ e : τ and e ÞÑ e1 then Θ;∆;Γ $ e1 : τ .

Proof sketch. We use induction on the derivation of Θ;∆;Γ $ e : τ . An
array form which can take a reduction step must contain a reducible
subexpression. Many typing rules give rise to subcases where the e itself
is not a redex but contains some subexpression er which steps to e1r .
In these situations, the typing derivation for er is included in that for
e, so replacing that sub-derivation with one for e1r (deriving the same
type, according to the induction hypothesis) produces a derivation of
Θ;∆;Γ $ e : τ .

The remaining nontrivial subcases each correspond to particular re-
duction rules. As in proving Progress, the T:APP case is split into sub-
cases based on the function and argument frames. When frames are
non-identical but prefix-compatible, the resulting lift reduction produces
an application form with the same principal frame and thus the same
result type. When we have identical non-scalar frames, the map reduction
produces a frame form whose frame shape is equal to the application
form’s principal frame and whose cell shape and atom type is the same as
the function’s return shape and atom type. This gives it a type equivalent
to that of the map redex. With a scalar principal frame, we have a δ
redex (trivial) or β redex (follows from Lemma 4.2.15, preservation of
types under term substitution). Reasoning for type- and index-application
forms is similar (via Lemma 4.2.13 and Lemma 4.2.14 respectively). A
reducible unbox form also substitutes a value in for a variable which is
intended to have the same type, so Lemma 4.2.15 again ensures the result
type is τ .

Theorem 4.4.1 (Type soundness). If ¨; ¨; ¨ $ e : τ , then either e di-
verges,19 there exists v such that e ÞÑ˚ v and ¨; ¨; ¨ $ v : τ , or there
exist partial function o and appropriately typed arguments v . . . such that
e ÞÑ˚ V r((array () o) v . . . )s and v . . . are outside the domain of o.

Proof. We argue coinductively using the sequence of reduction steps
from e. For any well-typed e, Progress (Lemma 4.4.1) implies that either
e has the form v, e has the form Vr((array () o) v . . .)s, or e ÞÑ e1.
In the first case, the reduction sequence terminates in a value, so we
have e ÞÑ˚ v. Furthermore, Preservation (Lemma 4.4.2) implies that
¨; ¨; ¨ $ v : τ . In the second case, the reduction sequence terminates in a
mis-applied primitive operator. In the third case, the Preservation lemma
implies that ¨; ¨; ¨ $ e1 : τ .





Part II

T Y P E I N F E R E N C E





5

20 Presentations of simply typed
λ-calculus, such as in Pierce’s Types
and Programming Languages [78],
often require a type annotation on each
formal parameter in order to make
unidirectional typing rules algorithmic.

B A C K G R O U N D

Remora’s type inference builds on three major lines of prior work, Han-
dling implicit instantiation of polymorphism is based on bidirectional
type checking, a form of local type inference discussed in Section 5.1.
The general theme in bidirectional type inference is recognizing when
partial knowledge about a term’s type is available from the immediate
surroundings. One can thus turn a conventional typing judgment into al-
gorithmic rules which may treat the ascribed type as either input or output
depending on how much the program context reveals about a subterm’s
type. Dependent typing brings in its own type inference issues, which are
discussed in Section 5.2. The fundamental challenge for the restricted
style of dependent typing used by Remora is integration with a solver
for the theory of type indices. Reasoning about array shapes—Remora’s
type indices—uses the first-order theory of sequences, whose logical
presentation and related algorithmic results are described in Section 5.3.

5.1 L O C A L T Y P E I N F E R E N C E A N D B I D I R E C T I O N A L T Y P I N G

The general technique of bidirectional type checking existed as folklore
for some time before Pierce and Turner published a pair of type inference
systems based on bidirectional checking [79]. The core of such type
inference methods is recognizing that in conventional typing judgments,
certain rules would permit a type checking algorithm to identify the type
ascribed in the conclusion simply by inspecting the term. We can tell that
5 has type Int without being told that we are looking for an Int. Other
rules, like those for functions and sums, require some information about
the whole term’s type in order to properly check subterms on whose
types the whole term’s well-typedness depends. Type checking (� (x)

(+ x 1)) requires type checking (+ x 1), which in turn requires having
a type for x.20 Since type information might in different situations flow
into or out of the type ascribed to some term, bidirectional type checking
uses two separate judgment forms. The conventional type judgment form
Γ $ e : τ is split into two judgment forms, Γ $ eð τ and Γ $ eñ τ ,
respectively called “checking” and “synthesis.” They represent whether
in algorithmic terms the type is an input or an output. Checking is used
when a goal type is known and can therefore guide checking of subterms.
For example, a function can be checked against a known -> type as
follows:

Γ ,x : τi $ eð τo

Γ $ (� (x) e)ð (-> τi τo)
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Synthesis is used when there is no particular goal in mind and the term’s
type must be discovered by inspecting its subterms.

The two judgment forms are mutually inductively defined, and both
might appear as premises in the same rule. To synthesize a type for
function application, first synthesize a type for the term in function
position, and then check the argument against the function input type.
Two rules provide the ability to reverse direction. To turn a checking
goal into a synthesis goal, a subsumption rule allows a term e to check at
type τ by synthesizing the type τ 1 for it and then ensuring that τ 1 ď τ .
To turn a synthesis goal into a checking goal, an annotation rule allows
the annotated term (: e τ) to have the type τ synthesized as long as e
checks at type τ . Pierce and Turner also demonstrate how bidirectional
rules can be used to select type arguments for instantiating polymorphic
functions in the presence of subtyping and bounded quantification using
a constraint solver over the language of types.

The overall design of Remora’s type inference is based on the “Pfen-
ning recipe” for bidirectional type checking, as described by Dunfield
and Krishnaswami [21, 23]. As a general principle, the Pfenning recipe
calls for checking types of introduction forms and synthesizing types of
elimination forms. Choosing which judgment to use in the premises of a
rule is driven by what information is known about the types involved. For
example, injecting some term into a sum type—the introduction form for
sums—calls for a checking rule, where the goal type would identify the
summand type we are not using. Since the goal type also identifies the
desired type for the term we’re injecting, the premise judgment should be
to check the term at that type. To eliminate a sum, via match, we would
have to synthesize a sum type for the value we are inspecting because
even specifying the type of the end result for each branch of the match

does not say enough about the type of the contents extracted from the
sum in those branches.

Dunfield and Krishnaswami’s system for handling higher-rank poly-
morphism [22] adds some flexibility to the bidirectional checking process
by introducing a separate class of variables to represent unresolved por-
tions of a type. For example, with the unsolved type variable p&t as a
goal type, if we check that the literal 10 has type p&t, we would conclude
that p&t stands for Int. This allows synthesis rules to succeed when only
partial information about a term’s type is discernible, and checking rules
can work with partial information, possibly filling in details about the
unresolved portions of a type.

The same authors have worked on a follow-up system which encodes
indexed types using generalized algebraic datatypes and existential types
[20]. In such a system, the List type constructor takes a type-level natural
number (defined using Peano-like type constructors S and Z) as one of its
arguments. This then requires index-level operators to be implemented
as type-level functions, which becomes ergonomically awkward if the
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universe of indices is meant to have a rich equality theory. While append

can be typed in GADT style as producing a list whose length is the sum
of its inputs’ lengths, this process only goes smoothly if the type-level +
function recurs down the same argument as append. Otherwise, typing an
append-like function requires an explicit invocation of the commutativity
of +, represented as a function which transforms a type constructed with
n + m into one constructed from m + n. Other equalities in the algebra
of tN ,`,0u would require similar equality proofs.

Concoqtion [76] addresses the task of proving equalities on GADT
indices by extending OCaml’s type language to include Coq’s term
language. Recurring on the argument on which + doesn’t recur can still
be addressed by invoking a plus_comm lemma, but the full flexibility of
Coq proof scripts is also at the programmer’s disposal. For a decidable
index theory, a proof script could just invoke the corresponding decision
procedure tactic (such as omega for Presburger arithmetic).

Boxy types [98] and its descendant FPH [99] also build on Pierce
and Turner’s bidirectional system but with a single judgment form de-
scribing both “directions.” The abstract syntax tree for types used during
inference permits a “boxed” subtree within a type, identifying variable
instantiations which remain to be guessed. This is in contrast to the
Dunfield-Krishnaswami style, where metavariables stand in for unre-
solved portions of types, with witnesses to be found during an eventual
subtype check.

5.2 D E P E N D E N T T Y P E I N F E R E N C E

Dependent ML presents two versions of bidirectional rules. The first set
of rules is meant as a declarative (i.e., non-algorithmic) description of
how code which uses dependent types implicitly may be rewritten to
use them explicitly. Some rules, such as dependent product elimination,
require some oracle to identify indices to use for instantiation:

Γ $ eñΠx.τ ãÑ e Γ $ ι

Γ $ eñ τrx ÞÑ ιs ãÑ erxs

If we synthesize a Pi type for e, then we can also synthesize any
instantiation of that type with a well-formed index ι. This rule appearing
at some position in a type derivation does not have access to enough
information about which instantiation is actually needed, so the choice
of index must be left to the oracle.

The second set of rules algorithmically generates a constraint formula
over type indices. That formula can then be passed off to a standalone
constraint solver. If the formula is true, then the program is well-typed.
The constraint solver serves the role of the index-selection oracle, though



66 B AC K G RO U N D

the constraint-based bidirectional rules do not actually generate an elab-
orated program. The dependent product elimination rule is quite similar:

Γ $ eñΠxp.τ ) Drpxi . . . s.Φ

Γ $ eñ τ
“

xp ÞÑ pxp
‰

) Drpxi . . . , pxps.Φ

Rather than nondeterministically choosing an index, this rule marks
pxp as a new existential variable which the constraint solver must resolve.
The underlying formula Φ is untouched by this rule, but other rules can
introduce connectives or equalities on types. For example, the product
introduction rule generates the conjunction of the two constraints gener-
ated for the pair’s elements, and a rule for checking application of cons
equates a synthesized length argument for the List type constructor with
the goal type’s length argument.

There is still some disconnect between Dependent ML’s constraint
generation and elaboration, which makes Dependent ML’s strategy ill-
suited for Remora. Since the constraint solver is only asked to sign off
on whether suitable type indices exist, it does not generate the actual
index-level code for them.

In some cases, the suitable type indices may not be definable within
the index language itself. Consider the pairoff function in Standard
ML, which splits any even-length list into a list of consecutive pairs of
elements.

fun pairoff [] = []

| pairoff (x::y::more) = (x, y)::(pairoff more);;

In Dependent ML, it could be given the type

Πn.@t.ptqListrn+ns Ñ pt * tqListrns

That is, for any length n and any element type t, this function transforms a
list containing 2n of these ts into a list containing n pairs of ts. However,
a fully elaborated form would require giving the recursive call an index
argument, which must be equal to n-1. The elaborated form of the pattern
(x::y::more) will bind index variables equal to n+n-1 and n+n-2, but
the index language must be augmented with subtraction or division, in
order to be able to express n-1 itself.

The constraints generated by Dependent ML may also have deeply
nested quantifier alternation, depending on the structure of the source pro-
gram. Even for Presburger arithmetic, which is often used in Dependent
ML examples, quantifier alternation makes formulae expensive to solve
(triply exponential time in the worst case, as opposed to merely doubly
exponential when the number of quantifier alternations is bounded [74,
84]). Quantifier alternation presents more difficulty for Remora, due to
its more complex index language.
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Besides Dependent ML, there have been other efforts to build a practi-
cal language with dependent types. In PIE [97], the type-index language
mirrors the term language, but a phase distinction prohibits term vari-
ables from being referenced within types. Soundness also relies on an
effect system to ensure no effects happen within a type index. The type
inference machinery is a bidirectional system inspired by Pierce and
Turner [79], but how the technique was adapted for PIE is not described
in detail.

Elaboration in Idris [9] is performed via tactic-based proof search, with
implicit arguments at a function call resolved via unification. The proof
search is a heavier hammer than necessary for Dependent ML, doing
extra work to handle additional language features such as identifying
type-class constraints and then choosing appropriate type-class instances.
Unification alone is also ill-suited for index arguments in Dependent ML,
where the universe of type indices is meant to have its own nontrivial
equality theory.

Liquid types [86] attach a logical qualifier to base data types, and
functions’ types may be refined to demand data qualified in a certain way.
A naïvely generated whole-program constraint is repeatedly updated
until either a scope-respecting solution is apparent or contradiction leads
to a dead end. In a related method, Unno and Kobayashi [95] use Craig
interpolation [15] to infer possible specifications for a function. Based
on its definition and uses, the system searches for formulae that both are
implied by the function’s definition and themselves imply the success of
assert statements which mention the function. The possibility of interpo-
lation is a property of first-order logic, rather than any particular theory,
so generating definable predicates works as a method for iteratively
refining the description of a function’s behavior until either a satisfied
specification can be found or an input which leads to assertion failure can
be generated. The fact that an interpolant will only reference symbols
used in both formulae “between” which it sits ensures that candidate
specifications for a function only mention its inputs and output.

Neither liquid types nor interpolation-based inference is quite suited
to our purposes, since we intend to make more detailed knowledge about
program data available for guiding compilation decisions. We wish to
know not just whether a program will go wrong and whether functions’
arguments meet their effective preconditions, but what particular aspects
of these inputs make them acceptable.

5.3 T H E O RY O F S E Q U E N C E S

Type indices, given in program syntax as ι, represent individual dimen-
sions, taken from N, and array shapes, taken from the free monoid on N.
The theory of the free monoid on N includes as axioms the associativity
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a b

c d

w

Figure 5.1: Overlap axiom, visualized: w is the overlapping portion of a and d.

of adding naturals and appending sequences as well as unique identity
elements for addition (zero) and appending (the scalar shape, ˝):

0` i “ i` 0“ i

pi` jq` k “ i`pj ` kq

˝ `̀ a“ a `̀ ˝“ a

pa `̀ bq `̀ c “ a `̀ pb `̀ cq

As the free monoid, it also follows an equidivisibility rule which states
that if two uses of the append operator give the same result, there is some
completing subsequence, representing the overlap between each use’s
larger argument (demonstrated in Figure 5.1):

a `̀ b “ c `̀ d ùñ

Dw.pa `̀ w “ c^w `̀ d “ bq_ pc `̀ w “ a^w `̀ b “ dq

A free monoid (on any set of generators) also has a homomorphism
to the monoid formed by N under addition, with the property that only
the free monoid’s identity element can be mapped to 0. This can be
axiomatized with one additional function symbol L:

Lpaq “ 0 ùñ a“ ˝

Lpa `̀ bq “ Lpaq`Lpbq

The length function is a suitable candidate for L, but the most general
requirement is that L take a weighted count of elements in a sequence,
where every generator of the monoid is assigned a non-zero weight.
In the free monoid on N, this includes functions such as summing all
numbers in a sequence or adding the sequence’s length to its population
of even numbers.

Using equidivisibility and the homomorphism to the additive monoid
N, we can define a partial operator ´ for prefix subtraction: a´ b “
c iff b `̀ c “ a. For example, r3,4,5,6s ´ r3,4s “ r5,6s, whereas
r3,4,5,6s´r4s is undefined. It is also possible to define suffix subtraction
in a similar manner.

The full theory of sequences is undecidable, as proven by Durnev [25]
and Marchenkov [61]. Later work by Durnev [24] tightened the result
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21 This portion of the cost analysis is
gathered together neatly by Jaffar [45],
though the original derivation of part of
it is due to prior authors.

to the @D3p_^q fragment, i.e., a single universal quantifier and three
existential quantifiers with only conjunction and disjunction is enough
to be undecidable. Durnev shows that a predicate for valid start-to-finish
execution traces of a particular Turing-complete abstract machine can
be encoded in the @D3p_^q fragment, so this fragment is powerful
enough to express halting. Since type inference for Remora treats bound
shapes as universal variables and shape arguments to solve as existential
variables, a naïve inference strategy would run up against this boundary.
Although the mixed quantifier prefix is necessary, we can avoid asking a
constraint solver to deal with disjunction.

The first decision procedure for the existential fragment of the the-
ory of strings over a finite alphabet was presented by Makanin [59]
and later simplified by Jaffar [45] and Gutiérrez [36]. Solving a string
equation gives an assignment for the variables appearing in it, which
in turn identifies the entire string denoted by both sides of the equation.
Strictly speaking, Makanin’s algorithm handles the existential fragment
of the theory of a free semigroup. A semigroup is associative, like a
monoid, but may not have an identity element. The free semigroup—
with no nontrivial identities—therefore does not have one. This is the
algebra of nonempty sequences, and Makanin’s search procedure relies
on the assumption that any named portion of an unknown string must
be nonempty. In order to use Makanin’s algorithm for equations in a
free monoid instead of a free semigroup, we must identify a subset of
existential variables to assume represent the empty sequence and drop
them from the equation. The algorithm is described in more detail in
Chapter 7.

Makanin uses the exponent of periodicity, the number of consecutive
repetitions of a substring in some longer string, to bound the depth of
the search tree. As such, arguments deriving complexity bounds for
Makanin’s algorithm focus on bounding the exponent of periodicity of
the string denoted by each side of the equation, which in turn can be used
to derive a bound on the depth of the search tree. Makanin initially gave
an upper bound on the exponent spnq for an initial equation of length n

as 2`p6nq2
p2n4q

.
The search process itself uses a more detailed representation of an

equation, which assigns variables and constants to ranges between ab-
stract boundaries within the equation’s full solution.21 Given the number
of bases x and the number of still possibly distinct boundaries y, the
search depth dpx,yq is bounded by y ˚ psp2 ˚ px` 2yq ˚ py ` 2qq ` 1q.
Kościelski and Pacholski tightened the upper bound on the exponent
of periodicity to spnq ď 21.07n [55], leading to a doubly exponential
nondeterministic time bound (stated as Op22

cn
q, for a constant c). While

this result only suffices to establish a triply exponential deterministic
time bound, further work by Gutiérrez showed an exponential space
bound [35]. By Savitch’s theorem, this exponential bound applies to both
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22 The conjunction and disjunction
constructions require selecting two

distinct generators, and the negation
construction requires enumerating the

full set of generators.

nondeterministic and deterministic machines [88], implying a doubly
exponential deterministic time cost.

Despite the extremely heavy worst-case cost, the shape constraints
arising from typical rank-polymorphic code avoid the algorithm’s worst
case. Deep search is only realized by Makanin’s algorithm in cases where
different occurrences of some variable represent overlapping sections
of the denoted string, which does not happen with frame shapes. Wide
branching requires having many variables on one side of an equation,
as the branching corresponds to choosing how to align the boundaries
of regions those variables represent. When there is only one variable,
Makanin’s algorithm degrades into peeling generators off of the ends
until either a conflict is discovered (and we have found a contradiction)
or the variable’s region is isolated (and we have found a solution).

Karhumäki et al explored the problem of which properties of se-
quences can be stated by an equation [51]. Of particular importance,
within the existential fragment of the theory of sequences with a finite,
non-singleton generator set,22 the conjunction, disjunction, and nega-
tion connectives applied to sequence equations can be rewritten as a
single sequence equation, possibly introducing fresh variables. Thus any
quantifier-free formula can be queried for satisfiability by condensing it
to a single equation. The set of languages expressible in the existential
fragment is also closed under finite intersection, finite union, Kleene star,
concatenation, reverse, and cyclic rotation. Despite these capabilities,
some regular languages, such as pa|bq˚ are not definable—trying to use
a disjunction like x “ a_ x “ b still requires committing to a specific
choice which will be used for every repetition of pa|bq. Disjunction only
allows a bounded number of choices, whereas using Kleene star around
a union of subterms in a regular expression corresponds to an unbounded
number of choices.

Plandowski described an algorithm for solving string equations which
works by exploring a graph of equations reachable via satisfiability-
preserving transformations [80]. A constant can have all occurrences
replaced by a chosen term, a variable in the equation can have a chosen
term inserted immediately prior to all its occurrences, and a fresh variable
can replace some (or all) occurrences of a chosen subterm in the equation.
Following the above rules, a nondeterministic search for a transformation
path from a trivial equation a“ a to the original satisfiability query has
polynomially bounded space cost. That the transformations preserve
satisfiability implies the decision procedure is sound, but the proof of
completeness (i.e., that all satisfiable equations are reachable from a“ a)
is more involved.

Key to Plandowski’s reduction in asymptotic cost is a more compact
representation of intermediate steps in transforming a string equation.
The possibly exponential blowup in the size of a solution, compared
to the size of the original equation, comes from consecutive repetition



5.3 T H E O RY O F S E Q U E N C E S 71

of smaller substrings (recall, Makanin’s original termination argument
arises from bounding that repetition). Plandowski and Rytter showed
that this repetition provides enough of the blowup in solution size that
conventional dictionary-based compression asymptotically shrinks the
solutions [82]. Plandowski therefore includes exponentiation in the repre-
sentation of equations and ensures a cubic bound on the size of rewritten
forms of the original equation.

Follow up work by Plandowski extends the solution from determining
whether an equation is satisfiable to whether the solution set is finite
and characterizing maximal exponents of periodicity of solutions to the
equation [81]. This extended algorithm still runs in polynomial space.

Jeż’s “recompression” algorithm uses a similar strategy of compress-
ing the expression by allowing exponentiation, but Jeż’s representation is
based on introducing fresh monoid generators which stand for sequences
of pre-existing generators, rather than writing numeric exponents in the
equation itself [47]. The algorithm is able to produce a description of
the full solution set, rather than nondeterministically choosing a single
solution, and Jeż argues that local decision-making in this algorithm
means there is more hinting available to guide the nondeterministic
choices essential to equation-transformation search algorithms. Further
development of the recompression algorithm achieves a nondetermin-
istic linear space bound [48], corresponding via Savitch’s theorem to
quadratic space on a deterministic machine.

A significant difference between Makanin-style boundary alignment
search and later algorithms based on searching for sequences of trans-
formations between equations is that the more recent algorithms rely on
recognizing which monoid generators (i.e., sequence element symbols)
are equal to each other during the search process, whereas Makanin’s
algorithm can be tweaked to allow such checks to be delayed until a leaf
of the search tree is reached. In the case of type inference for Remora,
the equality relation on generators may be uncertain because they are
given as terms of Presburger arithmetic rather than simply symbols or
numeric literals.
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L O C A L LY I N F E R R I N G D E P E N D E N T T Y P E S

The explicitly typed language presented in Chapter 4 has implicit frame
polymorphism in function application, but cell polymorphism is explicit.
Quantifying over and instantiating portions of cell shape using T�, I�,
t-app, and i-app is an excessive annotation burden for a programmer
and typically exceeds the boilerplate eliminated by implicit frame poly-
morphism. The primary goal for a type inference strategy for Remora
must be to allow the programmer to call cell-polymorphic functions like
mean and reduce, without stating how they are instantiated.

Automatically generalizing Remora code to take a polymorphic type,
in the style of Hindley-Milner type inference [39], is infeasible because
Remora lacks principal types. In addition to the usual limitations aris-
ing from including parametric polymorphism over atom types (which
might themselves be polymorphic functions), even the @-free fragment
of Remora includes functions which have no most general type. Consider
defining a function app+ as follows:

(� ((x 1) (y 1))

(+ (append x y)

[1 2 3 4 5]))

The length of x can be anything from t0, . . . ,5u, which then determines
the exact length of y. So the function has six possible monomorphic
types, and no � type includes all of and only those six as its possible
instantiations. Lacking principal types, a more robust option is to require
the programmer to specify when a function is meant to be polymorphic.
Code comprehensibility is often mentioned as mitigating the cost of
requiring polymorphic functions to be so annotated, including by Pierce
and Turner’s paper which forms the foundation for much work in bidirec-
tional type checking [79]. Including a type annotation explains to other
programmers how a polymorphic function is meant to be used without
requiring them to reconstruct its type themselves.

In both the untyped and typed forms of Remora, a function’s formal pa-
rameters must be marked with a description of the expected cells, which
determines how applying the function to aggregate arguments will break
those arguments into cells. In the untyped version, those annotations are
numeric cell ranks, or all for a function which is polymorphic in cell
rank. The explicitly typed form replaces these rank annotations—both
numeric and all—with type annotations.

For a human-facing implicitly typed language, rank annotations are
preferable. First, they are more concise, reducing the programmer’s

73



74 L O C A L LY I N F E R R I N G D E P E N D E N T T Y P E S

annotation burden. The prevalence of reranking (recall, a form of η-
expansion) means that describing cell shapes is common. Second, they
retain some flexibility which would be lost by specifying a particular
cell type. For example, specifying cell rank instead of cell type allows
app+ to be written without specifying the lengths of x and y. It would be
up to type inference to examine the actual arguments passed to app+ to
determine those lengths. That is, one of many possible monomorphic
types can be chosen without first identifying a principal polymorphic type.
Automatic �-generalization for app+ is impossible but also turns out to be
unnecessary. Viewing �- and �-generalization as identifying a “weakest
precondition” on some term’s type, a type inference algorithm is allowed
to keep track of finer-grained preconditions than can be expressed using
the type system itself.

Supporting rank annotations requires converting them into type anno-
tations. This is fairly straightforward for some cases, such as outer*:

(� ((x 0) (y 1))

(* x y))

We have x whose shape must be scalar and y whose shape can be a vector
of any length. Other cases are trickier, like vec+:

(� ((x 1) (y 1))

(+ x y))

Here, each argument is a vector which may have any length, but both
must have the same length (otherwise the application of + is ill typed).
Type inference must recognize that x’s and y’s lengths are related and
ensure that when vec+ is elaborated into a form with cell type annotations,
the arguments’ annotations both use the same dimension. If we imagine
the formal parameters to vec+ being described as (x [Int $x]) and
(y [Int $y]), the call to + forces the frame shapes [$x] and [$y] to
match, and [$x] � [$y] ( $x � $y. In Remora’s type inference, these
relationships between pieces of the implicit shapes arising from rank
annotations are to be discovered by a constraint solver for array shapes.

The key design points for Remora’s type inference are

1. Elaborate programs to explicitly typed code

2. Explicitly introduce and implicitly eliminate cell polymorphism

3. Discover dependence between portions of rank-annotated argu-
ments’ types

Prior work on bidirectional type checking offers a starting point for
automatically instantiating cell-polymorphic functions. The flexibility
of Dunfield and Krishnaswami’s bidirectional type system[22] arises
partly from the ability to delay selecting unsolved portions of types.
So the “checking” judgment can succeed without a fully specified goal
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type, and the “synthesis” judgment has the ability to return only partial
information about a term’s type. Some new machinery is needed to grow
from implicitly instantiating � types to explicit instantiation for both �

types and DML-style � types. Elaboration itself requires constructing
instantiation witnesses, and type indices come with a richer theory of
equality.

First, emitting an elaborated program requires that each judgment
form include either the elaborated term or, for subtyping, code that can
be wrapped around the lower-typed term to form the higher-typed term.
Second, the subtyping judgment must add a new rule to require equality
of dependent type indices. Third, the solver used for checking whether
shapes can be equated must be able to point out an equivalence relation
on dimensions which would make a shape equation solvable.

The first two requirements are handled within the bidirectional typing
and subtyping judgments themselves, which are presented in this chapter.
The structure of the solver needed to accommodate rank annotations on
formal parameters is discussed in Chapter 7.

The Redex model from Chapter 423 also includes bidirectional typing
rules for an implicitly typed variant of the core language. The implicitly
typed language is defined in implicit-lang.rkt, the bidirectional rules
in bidirectional.rkt, and an adapter layer for linking to the shape
theory solver in makanin-wrapper.rkt. The bidirectional rules rely on
some utility judgments for identifying array types, atom types, shapes,
and dimensions, which is found in well-formedness.rkt. In order to
allow Redex code to handle a mix of implicit and explicit Remora code,
a combined language is defined in elab-lang.rkt.

6.1 S Y N TA X

The grammar for Implicit Remora, a variant without explicit instantia-
tion of type- and index-polymorphic functions, is given in Figure 6.1.
As in the explicitly typed grammar (Figure 4.1), fraktur typeface is
used in nonterminals which stand for fragments—atoms, atom types,
and dimensions—and italic typeface for composites—expressions, array
types, and shapes. An overline is used to distinguish syntactic classes in
implicitly typed Remora which differ from the explicitly typed versions.

Beyond eliding type and index application, as is typical in bidirectional
systems, a general-purpose annotation form is provided, allowing the
programmer to specify when a function is meant to be polymorphic and
disambiguate cases where a term’s type is uncertain. To move closer to
a concise surface syntax, this variant of Remora uses distinct classes of
variables for terms (a, with no sigil), array types (ρ, prefixed with *), atom
types (α, prefixed with &), shapes (σ , prefixed with @), and dimensions
(δ, prefixed with $). This facilitates syntactic sugar analogous to that
used in untyped code. An atom type appearing where an array type is

https://github.com/jrslepak/Revised-Remora
https://github.com/jrslepak/Revised-Remora
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expected can be implicitly converted to a scalar array containing that
atom, and a dimension appearing where a shape is expected can be
implicitly converted to a vector shape. For purposes of type inference,
it is necessary to distinguish monomorphic types, as they are the only
permitted meanings for type variables.

The environment structure used for bidirectional type checking is
described in Figure 6.2. Some environment manipulations performed
in the bidirectional rules—particularly those which make reference to
which variables were brought into scope when—are easier to state using
an environment with a single namespace rather than using separate type,
kind, and sort environments. Having separate classes of variables means
individual environment entries do not need to specify the kind or sort
of a type or index variable. During elaboration, an environment will
sometimes be treated as a substitution, written as Γ J¨K, replacing any
resolved type or index variables with their solutions.

Three environment-manipulating metafunctions are used to connect
the bidirectional type derivations with type derivations for explicitly
typed code: TBJ¨K, KBJ¨K, and SBJ¨K extract variable-to-type, variable-
to-kind, and variable-to-sort bindings from a bidirectional environment
to produce a typing, kinding, and sorting environment respectively.

Tracking dependence among the type indices which must be inserted
into the elaborated program is more difficult due to Remora’s particular
index theory. Predicative System F types (as in past work [22]) permit
gradually resolving a type by picking a type constructor and then seeking
solutions for that type constructor’s arguments. On the other hand, most
objects in Presburger arithmetic’s universe cannot be uniquely charac-
terized by a constructor and its arguments. Any type equal to (-> px px)

must be constructed by -> and must have its input type equal to its output
type. However (+ pm pm) could be equal to (+ 5 pn), for many possible pn,
not only 5. Accommodating such partial information about dimensions
and propagating it through an implicitly typed program can complicate
the environment somewhat.

For example, an existential dimension variable p$k might be discovered
in one subexpression to be a multiple of two and in another to be a
multiple of three. This might come from adding a vector of length p$k to
vectors of length 2p p$mq and 3p p$nq. Suppose also that the scopes of p$m and
p$n are nested within that of p$k. That is, a solution for p$k cannot mention
p$m and p$n, and type inference must still remember the requirements they
imposed on p$k after they go out of scope.

If we had only p$m to deal with, we might generate a fresh “placeholder”
variable y$k/2, resolve p$k as (+ $k/2 $k/2), and resolve p$m as y$k/2. This
strategy runs into trouble when we include p$n and possibly more exis-
tential dimension variables. To handle both p$m and p$n, we would need
a y$k/6 placeholder because the environment cannot resolve p$k as both
(+ $k/2 $k/2) and (+ $k/3 $k/3 $k/3) (an existential type or index vari-
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e P Expr ::= Implicitly typed expressioins

a Term variable

| (array (n . . . ) a . . . ) Array

| (frame (n . . . ) e . . . ) Frame

| (ef ea . . . ) Term application

| (unbox (xi . . . xe es) eb) Let-binding box contents

| (: ea T) Type annotation

a P Atom ::= Implicitly typed atoms

b Base value

| o Primitive operator

| (� ((a ς) . . . ) e) Term abstraction

| (box ι . . . e) Boxed array

| (: ea T) Type annotation

ς ::= n | all | τ Cell specifier

τ P Type ::= T | T Types

T P ArrayT ::= Array types

(A T I) Array

| ρ Array type variable

T P AtomT ::= Atom types

B Base type

| (-> (T . . . ) T1) Function

| (� (X . . . ) τ) Universal

| (� (S . . . ) τ) Dependent product

| (� (S . . . ) τ) Dependent sum

| α Atom type variable

ι P Idx ::= I | dim Indices

I P Shp ::= Shape indices

(shape I . . . ) Sequence of dimensions

| (++ I . . . ) Appending shapes

| σ Shape variable

I PDim ::= Dimension indices

n Natural number

| (+ dim . . . ) Adding dimensions

| δ Dimension variable

x ::= S | X Variables

X ::= ρ | α Type variables

S ::= σ | δ Index variables

µ PMonotype ::= T | T Monomorphic types

M P ArrayM ::= (AM I) | ρ Array monotypes

M P AtomM ::= B | (-> (M . . . )M1) | α Atom monotypes

Figure 6.1: Grammar for implicitly typed Remora
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γ ::= Environment entries

| a : T Term variable bound at array type

| X Bound type variable

| pX Unresolved type

| pX ÞÑ τ Resolved type

| S Bound index variable

| pS Unresolved index

| pS ÞÑ ι Resolved index

| §x Scope marker

Γ ::= γ , . . . Inference environment

Φ ::= I � I1, . . . Dimension equalities

Figure 6.2: Environment structure for implicitly typed Remora

able gets only one solution in Γ ). If we had already substituted y$k/2 into
the elaborated program, there would be more work needed when y$k/6

is introduced. Discovering later that p$k must be equal to (+ p$p 1) forces
even more placeholders into the environment.

Instead of expanding the variable-scope environment Γ in this manner,
Remora’s type inference algorithm adds an “archive” Φ containing the
discovered equalities on dimensions. An existential dimension variable
in Γ will still have a solution noted, since that is needed for elaboration,
but the accumulation of constraints is collected in Φ . The archive ensures
that constraints involving variables which have gone out of scope are not
forgotten. As a demonstrative example, a program of the following form
places contradictory constraints on the length of x:

(� ((x 1))

(f ((� ((y 1))

(+ x (append y y)))

some-computation)

((� ((z 1))

(+ x (append z z [1])))

other-computation)))

We need to make sure that the use of y which requires x to have even
length is remembered when we encounter the use of z which requires x
to have odd length.
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6.2 S O LV E R I N VO C AT I O N

The judgment forms defined later in this chapter require access to a
solver for the theory of shapes. The interface to this solver is phrased as

Γ ;Φ ( I � I1 ) Γ
1
;Φ 1

This means that given the input environment Γ and equation archiveΦ ,
the solver equates shapes I and I1 (which may contain existential index
variables) by constructing the output environment Γ

1
and archive Φ 1.

Proposition 6.2.1 (Solver specification). Given Γ ;Φ ( I � I1 ) Γ
1
;Φ 1,

then all of the following hold:

• Γ
1

preserves all entries of Γ , except for solving some existential
variables and introducing new existential variables

• Φ 1 is Φ augmented with new equalities which entail the minimal
equivalence relation on dimensions appearing in I and I1 for some
alignment of existential shape variables’ boundaries.

• New entries added to Γ
1
, when taken as equations on dimensions

and shapes, are consistent with Φ 1.

• Φ 1 ( Γ
1
JIK � Γ

1
JI1K

A description of how to modify Makanin’s string equation algorithm
to satisfy the above specification is given in Chapter 7.

An equation on appended shapes may have multiple solutions corre-
sponding to different ways that variables in the shape equation might be
aligned. For example, the equation

(shape p$a p$b p$c p$d p$e) � (++ p@s p@t p@s)

gives three possibilities for the length of x@s: 0, 1, or 2. Each alignment
gives rise to a particular minimal equivalence relation—an equivalence
class identifies a set of dimensions that are aligned at the same position
within some shape variable. If we take 0 as the length of p@s in the above
equation, there is no need to equate any of the existential dimension
variables. Choosing a length of 1 means that the first occurrence of p@s

covers p$a, and the second covers p$e. So the minimal equivalence relation
for that alignment equates p$a with p$e but no other dimension variables.
For a length of 2, we have p@s equal to both (shape p$a p$b) and (shape
p$d p$e), so the solver should equate p$a and p$d and p$b and p$e. For an
equation that allows multiple alignments, there can be multiple possible
values for the solver outputs Γ

1
and Φ 1.

Producing an unsatisfiable Φ 1 indicates a dimension mismatch. Al-
though an internally inconsistent equivalence relation for this particular
equation means the chosen alignment is impossible, it is possible for



80 L O C A L LY I N F E R R I N G D E P E N D E N T T Y P E S

an internally consistent equivalence relation to be inconsistent with ear-
lier choices. If an earlier shape equation solution included p$n = (+ p$m
p$m) while the new one includes p$n = (+ 1 p$l p$l), we have discovered
conflicting constraints on p$n. A practical implementation may choose to
proceed anyway. At the end of bidirectional inference, an output archive
with multiple disjoint unsatisfiable cores can point to multiple parts of
the program which warrant type error messages. The decision of when
to filter out a solver result with an inconsistent output archive is beyond
the scope of this work.

6.3 B I D I R E C T I O N A L J U D G M E N T F O R M S

Similar to Dunfield and Krishnaswami’s work [22], Remora uses the
usual “synthesis” and “checking” judgments—corresponding to seeking
to derive a type and already having a goal type—alongside a third “ap-
plication” judgment. All three judgments update the environment as new
information about unresolved type and index variables is discovered. The
judgments themselves are given in Figures 6.3, 6.4, and 6.5. The three
are defined mutually inductively. As is typical in bidirectional systems,
a subsumption rule allows a goal type to be satisfied by a “lower,” i.e.,
more polymorphic type, and an annotation rule allows the programmer to
provide a hint as to what type ought to be synthesized for an expression
or atom. The application judgment must also check arguments’ types
against possibly incompletely resolved function input types.

6.3.1 Synthesis

The synthesis judgment is written out as

Γ ;Φ $ tñ τ % Γ
1
;Φ 1 ãÑ t

The environment structure includes both bindings (Γ ) and collected
restrictions on dimensions (Φ). The judgment states that in the given
environment:

• The term t is discovered to have type τ

• In making that discovery, the environment is updated to Γ
1
;Φ 1

• The implicitly typed t elaborates to the explicitly typed t

Of the synthesis rules, the most straightforward is the rule for variable
references. Whichever type is given to x in the binding environment is
the type synthesized for x, and there is no change to the environment
from looking up a variable. A variable reference (absent a particular goal
type) elaborates to just the original variable reference.
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Following the Pfenning recipe, the elimination forms which require
synthesis rules are unboxing and function application. In order to syn-
thesize a type for an unbox form, we first must synthesize a type for es,
the array of boxes being destructed. One tempting next step would be
to synthesize a type for eb, the body of the unbox. However, we already
know what type constructor we want to find. We need to get an array
type and also be able to refer to its shape. So instead we check against
a partially specified type: (A xαb pσb), with fresh existential atom type
variable xαb and shape variable pσb. We leave it to the checking derivation
to resolve the existential variables. The final result’s type uses Is (the
shape of es) as the frame shape and pσb, (the shape of eb) as the result
cells’ shape. There is no extra elaboration needed for unbox beyond
what its subexpressions es and eb require, and the only changes to the
environment are those made while typing es and eb.

The major elimination form in Remora is function application, and
most of the work in synthesizing a type for an application is pushed into
the application judgment. The role of the SYN:APP rule is to kick off
that process and then report its end result. First, we need to synthesize a
type for the function-position expression, but we do not insist on finding
an Arr type containing -> atoms. The application judgment handles
instantiating polymorphism, so we may proceed using an array of � or �
atoms instead.

Other synthesis rules—SYN:FN, SYN:ARRAY, and SYN:FRAME—
are optional according to the Pfenning recipe but still convenient for
reducing the annotation burden.

A function has each formal parameter annotated with either a cell type
or a cell rank. SYN:FN must handle the conversion from cell-rank anno-
tations in implicit Remora to cell-type annotations in explicit Remora.
The NewVars and NewType metafunctions are used for elaborating the
cell specification.

NewVars behaves like the new-vars Racket procedure below. If the
specification is a rank n, NewVars produces n fresh existential dimension
variables to include in the environment for the function body. For all, it
produces a single fresh existential shape variable. Both rank cases must
also produce an existential atom type variable. If the cell specification is
a type rather than a rank, NewVars produces an empty sequence.

(define (new-vars var spec)

(match spec

[(? natural? _)

(cons

(gensym (format "^&~a" var))

(for/list ([i n])

(gensym (format "^$~a~a" var i))))]

['all (list (gensym (format "^*~a" var)))]

[(? type? _) '()]))
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Once we have any fresh atom-type and index variables needed for
the function’s formal parameters, NewType, following the procedure
new-type, constructs the type we ascribe to a parameter. If we have only
a rank specification, this will be a partially unresolved type. It is up to
the premise—synthesizing a type for the function body—and lower parts
of the derivation tree to discover further restrictions on the parameters’
underlying atom types and dimensions or shapes. When given a type
specification instead of only a rank, we can use the type as is.

(define (new-type var spec)

(match spec

[(? natural? _)

`(A ,(first (new-vars var spec))

,(rest (new-vars var spec)))]

['all (gensym (format "*~a" var))]

[(? type? _) spec]))

Finally, to produce the argument cell type annotations in the elaborated
output code, ElabType is needed to smooth over the difference between
the core language used for the formalism, where type and index variables
are annotated with a kind or sort, and implicit Remora’s syntax, where
programmer-friendly shorthand for types rests on using different classes
of variables for different kinds and sorts. The ElabType metafunction is
a simple pass over a type adding kind and sort annotations to each type-
and index-variable binding. In cases where only a type- or index-variable
binding must be converted, r¨s stands for the type or index variable
annotated with its appropriate kind or sort. For example, r$qs is ($q

Dim), and r*ms is (*m Array).
SYN:ARRAY is more straightforward than the previous rules. Since an

array form states its shape directly, synthesizing its type only requires
synthesizing an atom type. Since arrays are homogeneous, we must check
that all other atoms agree with the synthesized type. The SYN:FRAME

rule is similar to SYN:ARRAY, but requires synthesizing a cell type
rather than an atom type. Subtyping offers no flexibility about shapes, so
all cells in a frame must have equatable shapes. However, success still
depends on argument order. Rules like SYN:ARRAY and SYN:FRAME

would benefit from computing a least upper bound on the atoms’ or cells’
types, but extending Remora’s language of types to form a lattice, in
the style of MLsub [19], is left to future work. The only opportunity for
dependence on argument order is if an array or frame contains atoms
or cells with differing degrees of polymorphism. The common case of
gathering first-order values into an aggregate structure leaves no room
for different types to be synthesized for different elements.
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Γ ;Φ $ tñ τ % Γ
1
;Φ 1 ãÑ t

Γ 0;Φ0 $ tð τ % Γ 1;Φ1 ãÑ t

Γ 0;Φ0 $ (: t τ)ñ τ % Γ 1;Φ1 ãÑ t
SYN:ANNOT

Γ 0,x : τ ,Γ 1;Φ $ xñ τ % Γ 0,x : τ ,Γ 1;Φ ãÑ x
SYN:VAR

with fresh xαb, pσb
Γ 0 Φ0 $ esñ (A (box x1i . . . τs) Is)% Γ 1;Φ1 ãÑ es

Γ 1,xαb, pσb,xi . . . ,xe : τs
“

x1i ÞÑ xi , . . .
‰

;Φ1 $ ebð (A xαb pσb)
% Γ 2,xi . . . ,Γ 3;Φ2 ãÑ eb

KB
r
Γ 3

z
;SB

r
Γ 3

z
$ (A Tb (++ Is pσb)) :: Array

Γ 0;Φ0 $ (unbox (xi . . . xe es) eb)ñ (A Tb (++ Is pσb))
% Γ 2;Φ2 ãÑ (unbox (xi . . . xe es) eb)

SYN:UNBOX

Γ 0;Φ0 $ ef ñ τf % Γ 1;Φ1 ãÑ ef
Γ 1;Φ1 $ (ef : τf ) ‚ rea . . . s ññ τr % Γ 2;Φ2 ãÑ (e1f ea . . . )

Γ 0;Φ0 $ (ef ea . . . )ñ τr % Γ 2;Φ2 ãÑ (e1f ea . . . )
SYN:APP

Γ 0,§xf ,NewVarsJx,ςK . . . ,x : τi . . . ;Φ0 $ eñ τo
% Γ 1,§xf ,Γ 2;Φ1 ãÑ e

where τi . . . “ ElabTypeJx,ςK . . .
with fresh xf

Γ 0;Φ0 $ (� ((x ς) . . . ) e)ñ Γ 2 J(-> (τi . . . ) τo)K
% Γ 1;Φ1 ãÑ Γ 2 J(� ((x ElabTypeJτiK) . . . ) e)K

SYN:FN

Γ 0;Φ0 $ añ T % Γ 1;Φ1 ãÑ a

Γ 1;Φ1 $ a
1ð T % Γm;Φm ãÑ a1 . . .

LengthJa . . .K“
ź

n . . .

Γ 0;Φ0 $ (array (n . . . ) a a1 . . . )ñ (A T (shape n . . . ))
% Γm;Φm ãÑ (array (n . . . ) a a1 . . . )

SYN:ARRAY

Γ 0;Φ0 $ eñ (A T ι)% Γ 1;Φ1 ãÑ e
Γ 1;Φ1 $ e1ð (A T ι)% Γm;Φm ãÑ e1 . . .

Γ 0;Φ0 $ (frame (n . . . ) e e1 . . . )
ñ (A T (++ (shape n . . . ) ι))

% Γm;Φm ãÑ (frame (n . . . ) e e1 . . . )

SYN:FRAME

Figure 6.3: Type synthesis judgment
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6.3.2 Checking

The checking judgment is written as

Γ ;Φ $ tð τ % Γ
1
;Φ 1 ãÑ t

The meaning is similar to that of synthesis, except that τ here is a goal,
i.e., input to the judgment, rather than discovered by the judgment.

Analogous to the annotation rule for synthesis, the subsumption rule
CHK:SUB allows a checking judgment for a term to be reached via a
synthesis judgment for that same term. The elaborated code generated by
synthesis might be, for example, a polymorphic function where checking
had a monomorphic function as the goal type. The subtype judgment’s
output C is an explicit Remora context (i.e., term with a hole) which
coerces terms from the low type τl to the high type τh. If we discovered
that t has type

(A (� (&e)

(A (-> ((A &e (shape)))

(A &e (shape)))

(shape)))

(shape))

i.e., a scalar containing a polymorphic function on scalars, the context
(t-app ˝ Int) would coerce t to have type

(A (-> ((A Int (shape)))

(A Int (shape)))

(shape))

For functions, the requirement to include a cell specification turns
the Pfenning recipe on its head. CHK:FN operates much like SYN:FN,
except that introducing a goal type means there may be conflict between
the goal’s input types and the specified input cell ranks. Checking (�

((x 1)) (+ x x)) at type (-> ((A Int (shape))) (A Int (shape)))

should not succeed because this function requires vector input rather
than scalar. The subtyping checks between the desired input types τi . . .
and the input types generated by ElabType ensure that the partial shape
specification implied by a parameter’s cell rank annotation is compatible
with the possibly partial specification of that parameter’s type.

Typing a box requires knowing how the hidden type indices are meant
to relate to the overall type. Since we have two classes of index variables,
ranging over shapes and dimensions respectively, CHK:SIGMA must
first make sure that each �-bound variable in the goal type is allowed
to represent the corresponding index. If so, then we also check that the
body of the � with those indices substituted in can type the contents
of the box, just as in checking a box’s type in explicit Remora. The
syntactic difference between implicit and explicit Remora’s box forms is
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that implicit Remora excludes the type annotation, which can instead be
provided using the general-purpose annotation (:) form. The elaborated
code, however, requires it.

CHK:PI and CHK:FORALL, like analogous rules in explicit Remora,
simply add the new type or index variables into the environment and
check against the underlying type. Since there is no explicit I� or T�, the
only way to introduce a � or � is to force a term to be checked at that
type. The expectation of a polymorphic type can propagate from other
parts of the program by applying a function which expects a polymor-
phic function as an argument or placing functions in an array alongside
another polymorphic function. However, this can be done most directly
using an explicit annotation on the polymorphic term itself.

The question of how polymorphic array elements ought to be is not an
issue for CHK:ARRAY and CHK:FRAME, since it is specified by the goal
type. Similar to CHK:FN, there is the potential for disagreement between
the shape specified in the array or frame form and that specified by the
goal type, so a shape equality check is required. In the case where the
goal shape was partially unresolved, this can resolve shape or dimension
variables appearing in the goal.

6.3.3 Application

The application judgment, responsible for identifying how both cell
and frame polymorphism are used and making the instantiation of cell
polymorphism explicit, is written as

Γ ;Φ $ (ef : τf ) ‚ rea . . . s ññ τr % Γ
1
;Φ 1 ãÑ er

In the given environment, if the explicitly-typed function ef has type τf :

• Applying it to arguments ea . . . produces a result of type τr

• The environment is updated to Γ
1
;Φ 1

• The application form elaborates to er

The input ef is only needed for elaboration. In a non-elaborating system,
only its type τf would be needed.

The invariant to maintain through the application type derivation is that
the “input” elaborated function may be partly instantiated but must carry
along a type which describes how much more instantiation is needed. In
essence, the judgment asks, “If ef had type τf , what type would we get
by applying it to the arguments ea . . .?” Each step in the derivation either
removes one layer of type or index polymorphism or, after reaching an
->, removes one input type. When a polymorphism layer is removed,
elaboration generates unsolved existential variables in order to later solve
for the type or index arguments. When an input type is removed, we
update what we know about the application form’s principal frame, and



86 L O C A L LY I N F E R R I N G D E P E N D E N T T Y P E S

Γ ;Φ $ tð τ % Γ
1
;Φ 1 ãÑ t

Γ 0;Φ0 $ tñ τl % Γ 1;Φ1 ãÑ t
Γ 1;Φ1 $ τl ď τh % Γ 2;Φ2 ãÑ C

Γ 0;Φ0 $ tð τh % Γ 2;Φ2 ãÑ Crts
CHK:SUB

Γ 0,§xf ,NewVarsJx,ςK . . . ,x : ElabTypeJx,ςK . . . ;Φ0 $

τi ď ElabTypeJx,ςK% Γ 1;Φ1 ãÑE . . .
Γ n;Φn $ eð τo % Γ n`1,§xf ,Γ n`2;Φn`1 ãÑ e

with fresh xf
Γ 0;Φ0 $ (� ((x ς) . . . ) e)ð (-> (τi . . . ) τo)

% Γ n`1;Φn`1 ãÑ (� ((x τi) . . . ) erx ÞÑErxs , . . . s)

CHK:FN

Γ 0 $ ι :: SortJxK . . .
Γ 0;Φ0 $ eð τrx ÞÑ ι, . . . s % Γ 1;Φ1 ãÑ e

Γ 0;Φ0 $ (box ι . . . e)ð (� (x . . . ) τ)
% Γ 1;Φ1 ãÑ (box ι . . . e ElabTypeJ(� (x . . . ) τ)K)

CHK:SIGMA

Γ 0,x . . . ;Φ0 $ vð T % Γ 1,x . . . ,Γ 2;Φ1 ãÑ v

Γ 0;Φ0 $ vð (� (x . . . ) (A T (shape)))

% Γ 1;Φ1 ãÑ (I� (rxs . . . ) (array () v))

CHK:PI

Γ 0,x . . . ;Φ0 $ vð T % Γ 1,x . . . ,Γ 2;Φ1 ãÑ v

Γ 0;Φ0 $ vð (� (x . . . ) (A T (shape)))

% Γ 1;Φ1 ãÑ (T� (rxs . . . ) (array () v))

CHK:ALL

ź

n . . . “ LengthJa . . .K
Γ 0;Φ0 $ að τ % Γ 1;Φ1 ãÑ a . . .

Γm;Φm ( (shape n . . . ) � ι) Γm`1;Φm`1

Γ 0;Φ0 $ (array (n . . . ) a . . . )ð (A τ ι)
% Γm`1;Φm`1 ãÑ (array (n . . . ) a . . . )

CHK:ARRAY

ź

n . . . “ LengthJe . . .K
Γ 0;Φ0 $ eð (A τ px)% Γ 1;Φ1 ãÑ e . . . with fresh px

Γ n;Φn ( (++ (shape n . . . ) px) � ι) Γ n`1;Φn`1

Γ 0;Φ0 $ (array (n . . . ) e . . . )ð (A τ ι)
% Γ n`1;Φn`1 ãÑ (array (n . . . ) e . . . )

CHK:FRAME

Figure 6.4: Type checking judgment
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we carry that new frame along as the function expression’s shape. In
effect, we are pretending that the n-ary function ef is actually curried
and being applied to a spine of arguments one by one. At each step in
the quasi-curried application, the shape attributed to ef accounts for the
frames of all the arguments we have already consumed. This process
ends when there are no input types left, and we are treating ef as though
its type had the form (A (-> () τo) If ).

When the function expression is polymorphic, we must monomor-
phize it before consuming any arguments. A �-typed expression must
be wrapped in an appropriate t-app by the APP:ALL rule and a �-typed
expression in an appropriate i-app by APP:PI. With Dunfield and Krish-
naswami’s trick for delaying resolution [22], we can do this monomor-
phization by simply turning the �- and �-bound variables into unsolved
existential type and index variables.

The environment used in the premise is constructed by an array-type
articulation metafunction, which accounts for the possibility that the
type underneath the quantifier might not be explicitly an Arr. Articulate
converts an existential array-type variable into an Arr built from fresh
existential atom-type and shape variable and builds an appropriately
extended environment:

Articulate
Γ l ,pρ,Γ r

JpρK“ pΓ l , pα, pσ , pρ ÞÑ (A pα pσ),Γ r ;(A pα pσ)q

with fresh pα, pσ

Articulate
Γ
JτK“ pΓ ;τq otherwise

Subtype checks which are required later, when checking arguments’
types and using the function’s result type, can resolve the existential
variables used for articulation and instantiation arguments. In order to
maintain the application judgment’s invariant, we must pass the t-app

or i-app “upwards” as input to the premise judgment. If we are handed
a � around an ->, the judgment rules which deal with arguments and
their frames will need an elaborated term which is typable with an ->.
For nested layers of � and �, instantiating in the upward position ensures
that the instantiation layer closest to the original expression corresponds
to the outermost layer of polymorphism: a � containing a � should be
t-apped and then i-apped.

There are three rules which might be applicable when consuming an
argument to an ->-typed function. The CellPoly metafunction enforces
the disambiguating restriction that a function which is polymorphic in
some argument’s cell rank must be monomorphic in its frame rank. It
is true for all universal and existential type variables, as well as any Arr

type whose shape includes a universal or existential shape variable. If
the function is polymorphic in the argument’s cell rank, only APP:FN*C

is applicable. No frame matching is needed because of the mandatory
scalar frame, so APP:FN*C looks much like an application rule for a
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conventional non-array oriented language. Otherwise, synthesis uses
APP:FN*F or APP:FN*A.

APP:FN*F describes the case where the function array contributes
the largest frame seen so far, and the argument must therefore be frame-
extended. Checking the argument against type (A τi (++ xσF Ii)), i.e.,
a xσF frame of Ii cells, uses the subtype judgment to resolve xσF . We then
identify the argument frame extension by equating the function frame If
with the extended argument frame (++ xσF pσe). Having consumed the
argument ea, we drop it from the list of remaining arguments, pretend
ef now lacks its first input type (A τi Ii), and then continue processing

the remaining arguments e1a . . . . Once we have elaborated forms for
the remaining arguments e1a . . . , we reinsert the elaborated ea into the
argument list.

APP:FN*A is similar, except that it is applicable when the function
frame must extend to match the argument frame. The first difference
appears in the shape equality premise, where we equate the argument
frame xσF with an extension of the function expression’s shape If , rather
than the other way around. The type we pretend ef has when processing
the remaining arguments now uses the frame shape from ea instead
of the function array’s old frame shape. This way, we ensure that all
later arguments are still compared for compatibility with the current
argument’s frame.

When there are no more arguments left to handle, APP:FN0 says
that the result type is cells of the function’s output type, (A τo ιo),
inside whatever frame shape ιf was determined during the pass over
the arguments. None of the application judgment rules for dealing with
an -> in function position need to elaborate the function expression
itself. By the time these rules are applicable, it has already been cell-
monomorphized.

Forcing frame comparisons to be handled one argument at a time
keeps the shape theory solver from having to select which function or
argument frame in an application to use as the principal frame. Doing so
would require support for disjunction, which raises decidability problems
(this is discussed more thoroughly in Chapter 7). Offering these two rules
keeps all disjunctive reasoning confined within the bidirectional rules
and out of the theory solver.

Although APP:FN*F and APP:FN*A are presented formally as two
separate rules, they only differ in outcome once one of them fails to solve
the frame equation in the second premise. A practical implementation
might prefer to simply identify the argument frame and then choose one
applicable rule. The PLT Redex model used to develop this presentation
faces a separate problem. Since Redex will explore all possible deriva-
tions for a judgment, any case where an argument’s frame is the same
as the largest frame seen so far allows both rules to succeed, leading to
possible exponential blowup in the number of derivations. This can be
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Γ ;Φ $ (ef : τf ) ‚ rea . . . s ññ τr % Γ
1
;Φ 1 ãÑ er

where pΓ r ;(A τf ιf )q “ Articulate
Γ 0

q
Tf

y

Γ a,px . . . ;Φ0 $

((t-app ef px . . . ) : (A τf (++ ιa ιf ))rx ÞÑ px, . . . s)
‚ rea . . . s ññ τr % Γ 1;Φ1 ãÑ (e1f ea . . . )

Γ 0;Φ0 $ (ef : (A (� (x . . . ) Tf ) ιa))
‚ rea . . . s ññ τr % Γ 1;Φ1 ãÑ (e1f ea . . . )

APP:ALL

where pΓ r ;(A τf ιf )q “ Articulate
Γ 0

q
Tf

y

Γ a,px . . . ;Φ0 $

((i-app ef px . . . ) : (A τf (++ ιa ιf ))rx ÞÑ px, . . . s)
‚ rea . . . s ññ τr % Γ 1;Φ1 ãÑ (e1f ea . . . )

Γ 0;Φ0 $ (ef : (A (� (x . . . ) Tf ) ιa))
‚ rea . . . s ññ τr % Γ 1;Φ1 ãÑ (e1f ea . . . )

APP:PI

where  CellPolyJτiK with fresh xσF ,xσE
Γ 0,xσF ,xσE ;Φ0 $ eað (A τi (++ xσF Ii))% Γ 1;Φ1 ãÑ ea

Γ 1;Φ1 ( If � (++ xσF xσE)) Γ 2;Φ2

Γ 2;Φ2 $ (ef : (A (-> (τ 1a . . . ) τo) If ))
‚ re1a . . . s ññ τr % Γ 3;Φ3 ãÑ (ef e

1
a . . . )

Γ 0;Φ0 $ (ef : (A (-> ((A τi Ii) τ
1
a . . . ) τo) If ))

‚ rea e
1
a . . . s ññ τr % Γ 3;Φ3 ãÑ (ef ea e

1
a . . . )

APP:FN*F

where  CellPolyJτiK with fresh xσF ,xσE
Γ 0,xσF ,xσE ;Φ0 $ eað (A τi (++ xσF Ii))% Γ 1;Φ1 ãÑ ea

Γ 1;Φ1 (xσF � (++ If xσE)) Γ 2;Φ2

Γ 2;Φ2 $ (ef : (A (-> (τ 1a . . . ) τo) IF))
‚ re1a . . . s ññ τr % Γ 3;Φ3 ãÑ (ef e

1
a . . . )

Γ 0;Φ0 $ (ef : (A (-> ((A τi Ii) τ
1
a . . . ) τo) If ))

‚ rea e
1
a . . . s ññ τr % Γ 3;Φ3 ãÑ (ef ea e

1
a . . . )

APP:FN*A

where CellPolyJτiK Γ 0;Φ0 $ eað Ti % Γ 1;Φ1 ãÑ e1f
Γ 1;Φ1 $ (ef : (A (-> (T1i . . . ) τo) If ))
‚ rea . . . s ññ Tr % Γ 2;Φ2 ãÑ (e1f e

1
a . . . )

Γ 0;Φ0 $ (ef : (A (-> (Ti T
1
i . . . ) τo) If ))

‚ rea;e1a . . . s ññ τr % Γ 2;Φ2 ãÑ (e1f ea ea . . . )

APP:FN*C

Γ ;Φ $ (e : (A (-> () (A τo Io)) ιf ))
‚ r s ññ (A τo (++ If Io))% Γ ;Φ ãÑ (e)

APP:FN0

Figure 6.5: Application synthesis judgment
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averted by having one of the two rules fail when the frame extension xσE
is found to be (shape).

6.4 S U B T Y P I N G J U D G M E N T F O R M S

The purpose of the subtype judgment is to resolve existential type and
index variables based on how types which mention them are used. When
an array of type (A pt ps) is used where an (A Int (shape 3)) is required,
the bidirectional rule which discovered that use will attempt to derive
(A pt ps)ď (A Int (shape 3)) as a premise. In doing so, the subtype judg-
ment will update the environment to reflect that pt stands for Int and ps for
(shape 3). The task of checking subtyping questions in an environment
which may contain unresolved variables can be conceptually split into
two pieces, for which we use separate judgments: breaking down types to
determine which variables instantiate as which pieces and then updating
the environment to reflect those instantiations. The environment-update
task covers the “base case” of reasoning about subtyping, so we discuss
the variable-instantiation judgments first. However, some instantiation
rules do involve additional destructuring steps.

While the subtype judgment emits a coercing context, Remora’s term-
level syntax, being stratified into atoms and expressions, limits the oppor-
tunities for coercing atoms. All computation is stated in expressions, not
atoms, so there is no general way to coerce an implicitly typed polymor-
phic function to an explicitly typed monomorphic function. For example,
the polymorphic identity function and the integer increment function
ought to be able to coexist in the same array, with the identity function
instantiated for integers. However the simple

(array (2) (%id %inc))

is not well-typed without somehow coercing the polymorphic %id to
have the monomorphic type

(-> ((A Int (shape)))

(A Int (shape)))

We cannot simply insert a t-app wrapper because type application
requires an expression rather than an atom. This makes the array literal
something of a dead end. The only atom form which has the desired type
is a λ-abstraction, and producing an appropriate one may require looking
several layers down into the original type to find the piece which can
match the goal type. The result code would be something like

(� ((x (A Int (shape)))

((t-app id Int) x)))

Having to generate a � as the outermost part of the coercion for id—or
more generally, having to choose the introduction form corresponding
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to the goal type—means that subtype rules for � and � types must be
specific to the form of goal type. A more easily generalized option is to
instead aim to coerce arrays of polymorphic values.

Requiring polymorphic functions which are implicitly instantiated to
be wrapped in their own array literal is not a terrible burden due to the
nested-vector syntax sugar for large arrays. Since the surface syntax for
Remora uses [a ...] to stand for a frame form of the appropriate vector
shape, each atom a is implicitly wrapped in a scalar array form. This
array can be coerced using t-app and i-app directly.

It is useful to have a collection of metafunctions which describe how
coercions are constructed. The judgments described in this section make
use of three: LiftC converts a coercion between atom types into a coer-
cion between scalar arrays; EachC converts a coercion between array
types of a particular shape into a coercion for arrays of some larger
shape; and FnC builds a coercion for between function types from the
coercions for their corresponding input and output types. Since these
metafunctions work by constructing explicitly typed functions which
perform the appropriate conversion steps, they need to know the input
types for those generated functions.

LiftCT JAK“

((array ()

(� ((x (A T (shape))))

(array () Arxs)))
˝)

EachCT JEK“

((array ()

(� ((x T))
Erxs))

˝)

FnC(-> (Til ...) Tol)Ñ(-> (Tih ...) Toh) JpEi . . .q;pEoqK“

((array ()

(� ((xf (A (-> (Tih . . .) Tol) (shape))))

(array ()

(� ((xi Til) . . .)
(Eo

“

(xf Eirxis . . . )
‰

)))))

˝)

In the interest of generating smaller elaborated code, all three coercion
metafunctions can be augmented with a special case which produces the
identity coercion ˝ when building entirely from identity coercions.
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24 Recall, using multiple classes of
variables means that an atom type can

only be represented by an atom-type
variable and an array type by an

array-type variable.

6.4.1 Existential Variable Instantiation

When a subtype goal is articulated enough that one side of the subtyp-
ing relation is an unsolved existential variable, it is time to update the
environment. We use two judgments for this instantiation, depending
on whether the variable to be instantiated is meant to be a subtype or
supertype of the goal type:

Γ ;Φ $ pX :ď τ % Γ
1
;Φ 1 ãÑ C

and

Γ ;Φ $ τ ď: pX % Γ 1;Φ 1 ãÑ C

In the simplest cases (the SOLVE rules), we have a monotype µ as
the goal for pX . As long as Γ 0, the portion of the environment to the left
of pX , is sufficient to show that µ is well-formed at the kind appropriate
for the variable X ,24 we update the environment entry for pX to show
µ as the solution. The goal µ will not be properly kinded under Γ 0 if
µ mentions universal type variables introduced in Γ 1. Such a situation
corresponds to a point in the program where explicitly typed code would
have to mention a type variable which is not in scope. The program must
then be ill-typed.

However, if the goal for type variable instantiation is an existential
type variable which appears later in the environment, the elaborated code
need not mention an out-of-scope variable. That later-bound existential
variable is a temporary stand-in for a concrete piece of syntax. We can
update the environment to say that px0 and px1 stand for the same type by
making whichever one appears later refer to the other (as in the REACH

rules).
If that later-bound existential variable appears deep inside the goal

type, rather than as the goal itself, we must pick apart the goal and
articulate the variable we are instantiating accordingly. Although p@v

cannot stand for (-> ([int]) [ p&m]) if p&m is bound later, we can freely
insert new existential variables to represent pieces of p@v. Breaking p@v

into (-> (x@in) y@out) and then y@out into (A {&out_a {*out_s)—i.e., p@v

now stands for (-> (x@in) (A {&out_a {*out_s))—gives the finer-grained
pieces we need to use a SOLVE or REACH rule for p&m. Tracing through
all the instantiations for the fresh existential variables, we will resolve
x@in as [int], {*out_s as (shape), and p&m as {&out_a.

Managing this simultaneous breakdown of the goal type and genera-
tion of fresh variables for its pieces is handled by the ARRAY rule and
FN* rule (specifically for arrays of functions). For ARRAY, we must
generate a fresh atom-type variable pα. For FN*, we need fresh existential
variables for input atom types and shapes as well as the output atom type
and shape. Both cases require a fresh existential shape variable for the
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Γ ;Φ $ px :ď τ % Γ
1
;Φ 1 ãÑ C

Γ 0 $ µ :: KindJX K

Γ 0, pX ,Γ 1;Φ $ pX :ď µ% Γ 0, pX ÞÑ µ,Γ 1;Φ ãÑ ˝
ILOW:SOLVE

KindJX0K“ KindJX1K

Γ l ,xX0,Γ c,xX1,Γ r ;Φ $xX0 :ďxX1 %
Γ l ,xX0,Γ c,xX1 ÞÑ X0,Γ r ;Φ ãÑ ˝

ILOW:REACH

Γ l , pα, pσ , pX ÞÑ (A pα pσ),Γ r ;Φ0 $ pα :ď T % Γ 1;Φ1 ãÑA

Γ 1;Φ1 ( pσ � I ) Γ 2;Φ2 with fresh pα, pσ

Γ l , pX ,Γ r ;Φ0 $
pX :ď (A T I)% Γ 2;Φ2 ãÑ LiftC

pα JAK
ILOW:ARRAY

Γ l ,xXi . . . ,xXo, pσ , pX ÞÑ (A (-> (xXi . . . ) xXo) pσ),Γ r ;Φ0

$ Ti ď: xXi % Γ 1;Φ1 ãÑEi . . .

Γ n;Φn $xXo :ď To % Γ n`1;Φn`1 ãÑEo

Γ n`1;Φn`1 ( pσ � I ) Γ n`2;Φn`2
with fresh Xi . . . ,Xo,σ

Γ l , pX ,Γ r ;Φ0 $
pX :ď (A (-> (Ti . . . ) To) I)% Γ n`2;Φn`2

ãÑ FnC
(-> ( pXi ...) xXo)Ñ(-> (Ti ...) To)

JpEi . . .q;pEoqK

ILOW:FN*

Γ l , pX ,Γ r ,xa . . . ;Φ0 $
pX :ď (A T (++ If Ic))%

Γ 1,xa . . . ,Γ 2;Φ1 ãÑE

Γ l , pX ,Γ r ;Φ0 $
pX :ď (A (� (xa . . . ) (A T Ic)) If )% Γ 1;Φ1

ãÑ EachC(A T Ic) J(array () (T� (rxas . . . ) ˝ ))KrEs

ILOW:ALL*

Γ l , pX ,Γ r ,xa . . . ;Φ0 $
pX :ď (A T (++ If Ic))%

Γ 1,xa . . . ,Γ 2;Φ1 ãÑE

Γ l , pX ,Γ r ;Φ0 $
pX :ď (A (� (xa . . . ) (A T Ic)) If )% Γ 1;Φ1

ãÑ EachC(A T Ic) J(array () (I� (rxas . . . ) ˝ ))KrEs

ILOW:PI*

Γ l , pX ,Γ r ,§xf ,xSa . . . ;Φ0 $

pX :ď (A T (++ If Ic))
”

Sa ÞÑxSa, . . .
ı

% Γ 1,§xf ,Γ 2;Φ1 ãÑE

with fresh xf

Γ l , pX ,Γ r ;Φ0 $
pX :ď (A (� (Sa . . . ) (A T Ic)) If )%

Γ 1;Φ1 ãÑ EachC
Γ 2

r
(A T (++ If Ic))

”

Sa ÞÑ pSa, ...
ız

s
(array () Γ 2

r
(boxxSa ˝ (� (Sa . . . ) (A T Ic)))

z
)

{
rEs

ILOW:SIGMA*

Figure 6.6: Instantiating existential type variables as subtypes
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Γ ;Φ $ τ ď: px% Γ
1
;Φ 1 ãÑ C

Γ 0 $ µ :: KindJX K

Γ 0, pX ,Γ 1;Φ $ µď: pX % Γ 0, pX ÞÑ µ,Γ 1;Φ ãÑ ˝
IHIGH:SOLVE

KindJX0K“ KindJX1K

Γ l ,xX0,Γ c,xX1,Γ r ;Φ $xX1 ď: xX0 %
Γ l ,xX0,Γ c,xX1 ÞÑ X0,Γ r ;Φ ãÑ ˝

IHIGH:REACH

Γ l , pα, pσ , pX ÞÑ (A pα pσ),Γ r ;Φ0 $ T ď: pα % Γ 1;Φ1 ãÑA

Γ 1;Φ1 ( pσ � I ) Γ 2;Φ2 with fresh pα, pσ

Γ l , pX ,Γ r ;Φ0 $ (A T I)ď: pX % Γ 2;Φ2 ãÑ LiftC
pα JAK

IHIGH:ARRAY

Γ l ,xXi . . . ,xXo, pσ , pX ÞÑ (A (-> (xXi . . . ) xXo) pσ),Γ r ;Φ0

$xXi :ď Ti % Γ 1;Φ1 ãÑEi . . .

Γ n;Φn $ To ď: xXo % Γ n`1;Φn`1 ãÑEo

Γ n`1;Φn`1 ( pσ � I ) Γ n`2;Φn`2
with fresh Xi . . . ,Xo,σ

Γ l , pX ,Γ r ;Φ0 $ (A (-> (Ti . . . ) To) I)ď: pX % Γ n`2;Φn`2
ãÑ FnC

(-> (Ti ...) To)Ñ(-> ( pXi ...) xXo)
JpEi . . .q;pEoqK

IHIGH:Ñ*

Γ l , pX ,Γ r ,§Xa ,xXa . . . ;Φ0 $

(A T (++ If Ic))rXa ÞÑ pxa, . . . s ď: pX
% Γ 1,§xa ,Γ 2;Φ1 ãÑE

Γ l , pX ,Γ r ;Φ0 $ (A (� (xa . . . ) (A T Ic)) If )ď: pX %
Γ 1;Φ1 ãÑE

”

(t-app ˝ Γ 2 J pxaK . . . )
ı

IHIGH:ALL*

Γ l , pX ,Γ r ,§xa , pxa . . . ;Φ0 $

(A T (++ If Ic))rxa ÞÑ pxa, . . . s ď: pX % Γ 1,§xa ,Γ 2;Φ1 ãÑE

Γ l , pX ,Γ r ;Φ0 $ (A (� (xa . . . ) (A T Ic)) If )ď: pX %
Γ 1;Φ1 ãÑE

”

(i-app ˝ Γ 2 J pxaK . . . )
ı

IHIGH:PI*

KB
r
Γ l , pX ,Γ r

z
;SB

r
Γ l , pX ,Γ r

z
$ (A T Ic) :: Array

Γ l , pX ,Γ r ,Sa . . . ;Φ0 $ (A T (++ If Ic))ď: pX
% Γ 1,Sa . . . ,Γ 2;Φ1 ãÑE

Γ l , pX ,Γ r ;Φ0 $ (A (� (Sa . . . ) (A T Ic)) If )ď: pX %
Γ 1;Φ1 ãÑE

“

(unbox (Sf . . . xf ˝ ) xf )
‰

IHIGH:SIGMA*

Figure 6.7: Instantiating existential type variables as supertypes
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array itself. The use of a rule for arrays of functions—rather than for
functions themselves—may seem odd, but it is essential in order to avoid
the limits on atom-level coercion.

The eventual underlying source of all nontrivial coercions in instanti-
ating existential type variables is the rules for handling polymorphism.
Instantiation involving no polymorphic types at all can safely generate
the identity coercion. The only major asymmetry between correspond-
ing ILOW and IHIGH rules in the instantiation judgments appears in
handling polymorphism, i.e., �, �, and � types.

This type inference system only guesses monomorphic types, so if
we need pX to be a subtype of a universal type, ILOW:ALL* must find
some monomorphic type which can have quantifiers added on to it to
produce the goal type. Instantiation is more restrictive than the subtyping
judgment itself: The type of the identity function has a subtype (by reflex-
ivity), but it has no monomorphic subtype. This type inference strategy
will give up if forced to guess some portion of a type which is polymor-
phic. Requiring well-formedness means that this can only succeed if the
body of the goal type does not mention its @-bound variables. In that
case, the coercion performs any necessary atom conversion, then wraps
each cell of the input as a scalar containing a type abstraction.

We have more flexiblity in finding a monomorphic supertype of a
universal, using IHIGH:ALL*. Any instantiation of the universal—as
would be produced by type application in the coercion—is a supertype,
so we convert the universal type variables to unsolved existentials. The
corresponding coercion is straightforward type application. Choosing
the concrete type arguments is deferred to later reasoning about type
structure.

The PI* instantiation rules are nearly identical to the ALL* rules,
using index variables instead of type variables. A subtype of a dependent
product type is a type which can have the appropriate � quantifier added
to it, and a subtype is an instantiation of the dependent product.

Dependent sums reverse the intuition from universals and dependent
products. The monomorphic subtypes of a dependent sum are the array
types which can be turned into that sum by hiding part of their shape
information. While substituting particular indices into the body of a �

type produces a supertype, substituting them into the body of a � type
produces a subtype. So ILOW:SIGMA* generates existential index vari-
ables to represent the � type’s existential witnesses—dual to a � type’s
index arguments. The coercion must first apply whatever coercion turns
the eventually chosen solution for pX into the non-boxed form, and then
it wraps each cell in a box with the appropriate witnesses.

IHIGH:SIGMA*, tasked with finding a type we are guaranteed to get
by unboxing the given dependent sum, must ensure that the shape of
the boxes’ contents does not depend on the existential witnesses. Like
ILOW:ALL* and ILOW:PI*, this instantiation rule is more restrictive
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25 It is possible for a practical
implementation to include a special case
for converting the atom coercion ˝ into

the expression coercion ˝.

than the corresponding subtyping rule because instantiation only guesses
monomorphic types. There is no opportunity to re-box the extracted
contents with shape information hidden.

6.4.2 Subtyping Proper

The subtype judgment, used for premises in several bidirectional rules,
is given in Figures 6.8 and 6.9. The judgment form itself is

Γ 0;Φ0 $ τl ď τh % Γ 1;Φ1 ãÑ C

This states that with the starting environment Γ 0 and archive Φ0, a value
of type τl can be used as a value of type τh by wrapping it in the coercion
C, and newly discovered information about existential variables and
indices gives the output environment Γ 1 and archive Φ1.

The simplest of these rules serve as the reflexive base cases, comparing
matching base types (SUB:BASE) or type variables (SUB:VAR). No
change to the environment or archive is needed, and having the lower and
higher types match means we only need the identity coercion, represented
by the trivial syntactic context ˝.

Although SUB:ARRAY is usable for matching up base types and type
variables, it has trouble with nontrivial coercions, such as instantiating
polymorphic functions. To get around the limits of atom-level compu-
tation, several subtyping rules compare arrays of particular atom types
rather than comparing the atom types directly. These rules are identified
by the asterisks in their names.

Including similar rules for trivial coercion cases can simplify the
generated coercion too. Where SUB:ARRAY turns the discovered atom
coercion (such as the ˝ generated by SUB:BASE) into a function to apply
to the lower-typed array,25 SUB:BASE* can avoid mapping the identity
function.

Subtype rules for polymorphic types gain some flexibility by be-
ing allowed to relate two polymorphic types. While SUB:ALL*L and
SUB:ALL*R look similar to ILOW:ALL* and IHIGH:ALL*, combin-
ing these rules makes it possible to find one polymorphic type to be
more polymorphic than another. Consider two polymorphic types (in
shorthand):

(� [&q &r]

(-> (&q &r) &q))

(� [&t]

(-> (&t &t) &t))

We can relate the two as subtypes by first using SUB:ALL*R to introduce
the universal type variable &t into the environment, with the subgoal
of relating the first polymorphic type to the monomorphic (-> (&t &t)
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Γ ;Φ $ τ ď τ 1 % Γ
1
;Φ 1 ãÑ C

Γ ;Φ $ Bď B% Γ ;Φ ãÑ ˝
SUB:BASE

Γ ;Φ $ X ď X % Γ ;Φ ãÑ ˝
SUB:VAR

Γ ;Φ $ pX ď pX % Γ ;Φ ãÑ ˝
SUB:EXVAR

px R FreeVarsJτK Γ 0;Φ0 $
pX :ď τ % Γ 1;Φ1 ãÑ C

Γ 0;Φ0 $
pX ď τ % Γ 1;Φ1 ãÑ C

SUB:INSTL

px R FreeVarsJτK Γ 0;Φ0 $ τ ď: pX % Γ 1;Φ1 ãÑ C

Γ 0;Φ0 $ τ ď pX % Γ 1;Φ1 ãÑ C
SUB:INSTR

Γ 0;Φ0 $ Tl ď Th % Γ 1;Φ1 ãÑA

Γ 1;Φ1 ( Il � Ih ) Γ 2;Φ2

Γ 0;Φ0 $ (A Tl Il)ď (A Th Ih)% Γ 2;Φ2 ãÑ LiftCTl JAK
SUB:ARRAY

Γ 0;Φ0 ( If � I1f ) Γ 1;Φ1

Γ 1;Φ1 $ τ
1
i ď τi % Γ 2;Φ2 ãÑEi . . .

Γ n;Φn $ τo ď τ
1
o % Γ n`1;Φn`1 ãÑEo

Γ 0;Φ0 $ (A (-> (τi . . . ) τo) If )ď (A (-> (τ 1i . . . ) τ
1
o) I

1
f )

% Γ n`1;Φn`1 ãÑ FnC(-> (τi ...) τo)Ñ(-> (τ1
i ...) τ

1
o)

JpEi . . .q;pEoqK

SUB:FN*

Figure 6.8: Subtype rules, part 1: simple type forms
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Γ ;Φ $ τ ď τ 1 % Γ
1
;Φ 1 ãÑ C

Γ 0,§xf ,
pX . . . ;Φ0 $ (A Tl (++ If Ic))

ď (A Th Ih)% Γ 1,§xf ,Γ 2;Φ1 ãÑE

with fresh xf
Γ 0;Φ0 $ (A (� (X . . . ) (A Tl Ic)) If )

ď (A Th Ih)% Γ 1;Φ1 ãÑE
”

(t-app ˝ Γ 2

r
pX
z
. . . )

ı

SUB:ALL*L

Γ 0,X . . . ;Φ0 $ (A Tl Il)ď (A Th (++ If Ic))
% Γ 1,X . . . ,Γ 2;Φ1 ãÑE

Γ 0;Φ0 $ (A Tl Il)ď (A (� (X . . . ) (A Th Ic)) If )
% Γ 1;Φ1 ãÑ EachC(A Tl Ic) J(array ((T� (rX s . . . ) E)))K

SUB:ALL*R

Γ 0,§xf ,
pS . . . ;Φ0 $ (A Tl (++ If Ic))

ď (A Th Ih)% Γ 1,§xf ,Γ 2;Φ1 ãÑE

with fresh xf
Γ 0;Φ0 $ (A (� (S . . . ) (A Tl Ic)) If )

ď (A Th Ih)% Γ 1;Φ1 ãÑE
”

(i-app ˝ Γ 2

r
pS
z
. . . )

ı

SUB:PI*L

Γ 0,S . . . ;Φ0 $ (A Tl Il)ď (A Th (++ If Ic))
% Γ 1,S . . . ,Γ 2;Φ1 ãÑE

Γ 0;Φ0 $ (A Tl Il)ď (A (� (S . . . ) (A Th Ic)) If )
% Γ 1;Φ1 ãÑ EachC(A Tl Ic) J(array ((I� (rSs . . . ) E)))K

SUB:PI*R

Γ 0,xσh;Φ0 ( (++ If xσh) � Ih ) Γ 1;Φ1

Γ 1,S . . . ;Φ1 $ (A Tl Ic)ď (A Th xσh)
% Γ 2,S . . . ,Γ 3 ãÑE

with fresh σh,Ss . . . ,xs
Γ 0;Φ0 $ (A (� (S . . . ) Th) If )ď (A Th Ih)
% Γ 2;Φ2 ãÑ (unbox (Ss . . . xs ˝ ) Erxss)

SUB:SIGMA*L

where Th “ (A Th Ic)
Γ 0,§xs ,

pS . . . ;Φ0 $ (A Tl Il)

ď (A Th (++ If Ic))
”

S ÞÑ pS , . . .
ı

% Γ 1,§xs ,Γ 2;Φ1 ãÑE

Γ 0;Φ0 $ (A Tl Il)ď (A (� (S . . . ) Th) If )% Γ 1;Φ1

ãÑ Γ 1

s
EachC

Th
”

S ÞÑpS , ...
ı

r
(array ((box pS . . . ˝ (� (S . . . ) Th))))

z
rEs

{

SUB:SIGMA*R

Figure 6.9: Subtype rules, part 2: polymorphic type forms
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&t). This subgoal succeeds using SUB:ALL*L to add existential type
variables p&q and p&r to the environment and then eventually resolving
them both as &t.

Similar results are available from SUB:PI*R and SUB:PI*L, relating
types such as a function on integer vectors and a function on nonempty
integer vectors:

(� [$r]

(-> ([Int $r]) [Int $r]))

(� [$t]

(-> ([Int (+ 1 $t)]) [Int (+ 1 $t)]))

First, SUB:PI*R adds $t to the environment. Then the subgoal of relat-
ing the first type to (-> ([Int (+ 1 $t)]) [Int (+ 1 $t)]) is accom-
plished by SUB:PI*L, which generates the existential dimension variable
p$r and resolves it as (+ 1 $t). Reversing the order, trying to conclude
the second type is a subtype of the first, ends with the constraint solver
failing to find a solution for the existential p$t equal to one less than the
universal $r.

Analogous reasoning allows dependent sums to be ordered by hiding
more or less information about their contents’ shapes. With existential
quantification, the type of integer vectors of completely unknown length
is higher than the type of integer vectors of nonzero length:

(� [$t] [Int (+ 1 $t)])

(� [$r] [Int $r])

We derive this result by using SUB:SIGMA*L to add the universal vari-
able $t to the environment and then using SUB:SIGMA*R to introduce
the existential variable p$r, which can be resolved as (+ 1 $t). Unlike
in the instantiation rules, where only a flat array type can be found as a
subtype of a dependent sum, the full subtyping judgment is able to relate
two arrays of uncertain shape as long as what is known about one shape
implies what is known about the other.

The limitation on atom coercions makes it potentially awkward to
instantiate an existential atom type variable within the instantiation judg-
ments. We can escape these limitations by merging the atom variable
instantiation into what would be the subtype rule for an array containing
an unsolved atom type and an array of -> type, producing the rules shown
in Figure 6.10. Only rules for -> types are included here (SUB:INSTÑL
and SUB:INSTÑR). No such rules are needed for base types, which
use the identity coercion, and guessing only monomorphic types means
that unresolved existential type variables do not stand for universals,
dependent products, or dependent sums. In a language with additional
type constructors for atoms, such as products or sums, equivalent rules
for those constructors should be added.
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Γ l , pαi . . . , pσi . . . ,xαo, pσo, pX ÞÑ Tf ,Γ r ;Φ0 $

(A Tf Il)ď (A (-> (τi . . . ) τo) Ih)% Γ 1;Φ1 ãÑE

where Tf “ (-> ((A pαi pσi) . . . ) (A xαo pσo))
with fresh pαi . . . , pσi . . . ,xαo, pσo

Γ l , pX ,Γ r ;Φ0 $ (A pX Il)ď (A (-> (τi . . . ) τo) Ih)
% Γ 1;Φ1 ãÑE

SUB:INSTÑL

Γ l , pαi . . . , pσi . . . ,xαo, pσo, pX ÞÑ Tf ,Γ r ;Φ0 $

(A (-> (τi . . . ) τo) Il)ď (A Tf Ih)% Γ 1;Φ1 ãÑE

where Tf “ (-> ((A pαi pσi) . . . ) (A xαo pσo))
with fresh pαi . . . , pσi . . . ,xαo, pσo

Γ l , pX ,Γ r ;Φ0 $ (A (-> (τi . . . ) τo) Il)ď (A pX Ih)
% Γ 1;Φ1 ãÑE

SUB:INSTÑR

Figure 6.10: Supplemental “reach-through” rules for instantiating existential
variables
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Type checking only requires a very restricted fragment of the theory
of the free monoid over the natural numbers. Pairs of indices are only
checked for equality in isolation from each other, and no information
about an index (other than its sort) is given in the program. So the check
is for the validity of a single equality—no connectives or quantifiers
needed. This fragment can be decided efficiently by comparing indices
written in canonical form. Two Dims which are equal must simplify to
sums with the same constant component and the same coefficient on
corresponding variables. For example,

(+ x y 5 x)“ (+ (+ x x) 5 y)

is valid because both simplify to 2x` y` 5, whereas

(+ q 5 y)“ (+ (+ x x) 5 y)

is false for any interpretation which does not assign q to twice the value
assigned to x (and thus is not valid).

To decide the validity of an equality on Shapes (i.e., sequences of
naturals), we can again test by conversion to a canonical form: a sequence
is written out as the concatenation of single Dims and Shape variables.
Sorting rules guarantee that the individual elements of a sequence are
natural numbers, and associativity permits nested appends to be collapsed
away. Thus the index

(++ (shape 2 (+ x 5 x)) (++ d (shape 3)))

canonicalizes to

(++ (shape 2) (shape (+ x x 5)) d (shape 3))

To show that this process does produce a canonical form, consider two
shapes in this form which differ, and focus on the leftmost differing
position in their respective lists of appended components. If they are
syntactically different singleton shapes—their respective contents are two
different canonicalized naturals—then an assignment under which those
naturals differ will also make the full shapes differ at this position. If one
is a singleton (shape ι) and the other a variable s (of sort Shape), then an
interpretation which assigns the variables in ι such that its components
sum to n may also assign s to be the shape (shape (+ n 1)). Again, an
interpretation forces the shapes to be unequal. Finally, if this position has
variables s and t, choose an interpretation mapping s to (shape 1) and t

to (shape 2) to produce unequal interpretations of the whole shapes.

101
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26 Recall, this is the expanded form of
~(1 2)+.

27 https://github.com/jrslepak/

Revised-Remora

Although type checking itself only requires this canonicalization pro-
cess, constraint-based type inference would call for a more sophisticated
solver due to the use of existential variables for choosing pieces of an
index.

In order to describe when arguments’ shapes are compatible, it is
useful to impose a lattice structure on the universe of shapes. The lattice
is built with the order Ď meaning that one shape is a prefix of another; a
J is added to represent the join of incompatible shapes (we already have
K“ ˝, as the empty shape is a prefix of every shape). For shapes s0 and
s1, we have s0\ s1 “ J if and only if s0 Ď s1 or s1 Ď s0. Generalizing
to arbitrary finite joins,

ğ

ts . . .u “ J implies that the shapes s . . . are
totally ordered, and the lattice structure means the shapes’ join is one of
the shapes themselves.

7.1 S T RU C T U R E O F S O LV E R Q U E R I E S

The particular form of constraint problem associated with Remora’s type
inference strategy asks, “How can existential variables be written in
terms of universal variables in the environment so that these two shapes
are equal?” This differs from the usual mode of use for constraint solvers.
Instead of a satisfying assignment for a formula, which effectively treats
all variables as existential, we want Skolem functions which show how
to construct the existential variables’ values from the universals’ values.

Furthermore, instead of seeking concrete values or Skolem functions
for all existential variables, we often want the solver to give a less specific
answer about the values of existential dimension variables. When a
function is written with a rank specifier such as (� ((x 1) (y 2)) (+ x

y)) 26, we shouldn’t necessarily infer a different argument for every input
dimension. In this example, the length of the vector x must be the same
as the leading dimension of the matrix y. Although it seems at first glance
to have three dimension arguments—perhaps $x1, $y1, and $y2—it really
ought to have only two. It is not enough for a shape equality solver to
say whether {++ [$x1] f} � [$y1 $y2]. Those two shapes are not equal
in general. Instead, we need the solver to account for the possibility that
$x1 � $y1 and report that the shape equation is solved by f ÞÑ [$y2] as
long as $x1 � $y1 (but it is unsolvable otherwise). Rather than viewing
unsolved existential dimension variables as sequence elements to select,
the solver must defer that selection.

The “satisfying assignment” produced by the shape theory solver then
is a pair: a sequence of dimensions and universal shape variables corre-
sponding to each existential shape variable and the minimal equivalence
relation on dimensions that makes the offered solution correct. These are
then used to construct the output environment and archive. The Redex
model of Remora27 calls out to a separate shape-theory solver, provided
as a Racket package at https://github.com/jrslepak/makanin-algo.

https://github.com/jrslepak/Revised-Remora
https://github.com/jrslepak/Revised-Remora
https://github.com/jrslepak/makanin-algo
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28 Most literature on solving equations
on strings makes heavy use of
nondeterminism, and Makanin’s
algorithm is no exception. What is stated
here as nondeterministic choice can be
considered intuitively as branching in a
backtracking search.

Recall that it is not always safe to forget restrictions on existential vari-
ables that have gone out of scope because multiple different existential
variables might be aliased to a single one. For example, suppose we have
a local existential variable p$x, introduce a new existential variable p$y, and
then discover via a shape constraint that p$y` p$y � p$x. This implies that
p$x must be an even number. If the function which introduced p$x is found
to be polymorphic over p$x, then its elaborated form must instead param-
eterize over some fresh variable $d which serves as the “witness” to the
fact that p$x is even (uses of p$x will have to be rewritten as (+ $d $d)). So
we must remember for a time that p$x is even. However, another variable
which comes into scope after p$y goes out of scope might introduce more
restrictions on p$x. Perhaps we eventually discover p$z` p$z` p$z � p$x. It
is not safe to conclude that p$x must actually be thrice some universal
variable. We need to remember the earlier result that p$x is even as well.
Combining these facts tells us instead that p$x is 6 times some universal
variable. We might continue finding more such restrictions until p$x goes
out of scope.

Equations on sequences may have multiple or even infinitely many
solutions.

7.2 S T R I N G E Q UAT I O N S M O D U L O T H E O R I E S

From the perspective of the bidirectional typing rules, invocation of the
solver happens through a premise of the form

Γ ;Φ ( ι � ι1 ) Γ
1
;Φ 1

The solver’s obligation, as described in Proposition 6.2.1, is to con-
struct Γ

1
and Φ 1 by adding new solutions and existential variable entries

to Γ and Φ so that the minimal equivalence relation which is compati-
ble with decisions made during the solver’s internal search process is
encoded in Γ

1
and Φ 1.

Since we must account for the possibility that some existential shape
variables generated during type inference stand for the empty shape,
we must precede the semigroup solution search by nondeterministically
choosing28 a subset of the sequence variables to remove. In some cases
it is immediately evident that a particular variable should stand for [],
such as identifying the frame shape when applying a rank-1 function to
rank-1 input, but this does not hold in the general case for equations on
sequences. Although the worst case for this adaptation strategy is choos-
ing from Op2nq possible sets of variables to drop, typical queries for
type inference purposes do not have many existential sequence variables.
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7.2.1 A Sketch of Makanin’s algorithm

The algorithm for a free semigroup follows a search procedure which
considers the ways that appended components of equated sequences
might align with each other. Since both sides of an equation are meant
as descriptions of the same sequence, Makanin’s algorithm tries to find
which contiguous region of the unknown sequence is described by each
component. A potential alignment is described by stating which bound-
aries between appended components are located at the same place in the
actual underlying sequence. For example, suppose the goal is to solve
(++ x [3]) � (++ [3] x). The left-hand side of the equation can be
broken into two components x and [3], and the right-hand side breaks
into [3] and x. Consider laying the equation’s two sides out parallel to
each other: the width of x is not yet certain. In our search for a solution
to the equation, we must decide whether the left-hand side’s compo-
nent boundary occurs before, after, or simultaneous with the right-hand
side’s component boundary. That is, we decide whether the left-hand x is
shorter than, longer than, or the same length as the right-hand [3]. The
first case turns out to be impossible. Since x must stand for a nonempty
sequence, it cannot end before the singleton sequence [3].

The other two cases lead to actual solutions. In the second case, the
left side’s x is longer than [3], and it must overlap with the x on the right.
To try out a possible alignment of component boundaries, Makanin’s
algorithm will “transport” the left x to the right x’s position. In doing so,
it must carry along all components that appear within that x’s boundaries.
Since the left side’s x begins with the right side’s singleton [3], the
updated version of the equation tells us that x � (++ [3] [3]) � [3 3].
So we choose [3 3 3] as the sequence described by each side of the
original equation.

The third case proceeds more simply. Since the left x and the right
[3] share both left and right boundaries, transporting the left x to the
right x’s location moves the right [3] to cover the entire span of the right
x. We get the equation x � [3]. The resulting sequence for the original
equation is [3 3].

The transport procedure which forms the core of Makanin’s search al-
gorithm is analogous to the unit propagation step of a DPLL satisfiability
solver [16, 17]. After we discover that some sequence variable’s meaning
contains a particular sequence component at a particular position within
it, we trace that implication through to subsequent occurrences of the
same variable. However, specifying the “particular position” raises a
problem. When choosing how components are aligned, we may have
set things up so that different occurrences of one variable don’t span
the same number of abstract boundaries. For example, we might have
equated x with [1 2 3] in one place and (++ y z) in another. We know
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that y must start with 1 and that z must with 3, but whether 2 is the end
of y or the beginning of z comes down to nondeterministic choice.

7.2.2 Makanin’s algorithm

Makanin’s algorithm operates on a “generalized equation,” a data struc-
ture representing decisions made during the search process about which
components of the equated sequence terms stand for which portions of
the sequence they denote. For example, in the equation (++ [1] x) �

(++ x [1]), one occurrence of x represents some prefix of the sequence,
and the other represents some suffix. Whether that prefix and suffix over-
lap is a decision the constraint solver must make while searching for
a solution. In lining up the components of each side of the equation, a
generalized equation decomposes the denoted sequence into “columns”
which contain consecutive nonempty subsequences. Every boundary
between components in a term on one side of the equation is also a
boundary between columns. Since columns must be linearly ordered, we
will index them by natural numbers.

The essential information a generalized equation tracks is a conjunc-
tion of atomic statements of the form, “This variable or sequence element
spans this interval of columns.” The basic search step in Makanin’s al-
gorithm is to find a variable which spans two different intervals (due
to occurring multiple times in the equation) and copy the contents of
one interval into the other. Each of these atomic statements is called a
“base” in the generalized equation, and is represented by a record con-
taining the column boundaries that mark the base’s edges, the variable
or sequence element constant spanning that interval, and a tag which
will be used to indicate whether information from this base’s range has
already been propagated elsewhere. To keep the set of elements abstract,
we will refer to individual elements as ei with i ranging over N. The
programmatic representation of a base containing a specific element
will store the identification number i. So individual bases take the form
pv, rn,n1sq meaning the variable v spans the interval from boundary n to
boundary n1 or pi, rn,n1sq meaning that element ei spans that interval. A
generalized equation is then represented as a collection of bases.

A generalized equation can be visualized as a table of columns with
each base drawn with its label across its spanned columns:

0 1 2 3

x x

1 y 2
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In a serial notation, this generalized equation might be written as

tppx, r0,2sq,px, r2,3sq,p1, r0,2sq,py, r1,2sq,p2, r2,3squ

There are often several generalized equations corresponding to a single
equation. The equation which produced the above generalized equation,
(++ x x) � (++ [1] y [2]), has two other ways its components’ bound-
aries might be aligned:

0 1 2 3

x x

1 y 2

0 1 2 3 4

x x

1 y 2

In serial notation, these might respectively be expressed as

tpx, r0,1sq,px, r1,3sq,p1, r0,1sq,py, r1,2sq,p2, r2,3squ

and

tpx, r0,2sq,px, r2,4sq,p1, r0,1sq,py, r1,3sq,p2, r3,4squ

The three generalized equations correspond to a decision about how the
boundary between the two occurrences of x lines up with the boundaries
of y: Does it coincide with the right boundary, coincide with the left
boundary, or fall somewhere between them? Only the last of these options
leads to a solution. The first two both require x to span exactly one
column in order to be equal to the one constant base and span at least
two columns in order to cover the other constant base and all of y.

Makanin’s algorithm therefore begins with a nondeterministic choice
of how to align the components on opposite sides of the equation. Since
we intend to compile Remora on a deterministic machine, nondetermin-
istic choice is encoded as backtracking search. The left-hand and right-
hand sides’ leftmost boundaries must coincide, as must their rightmost
boundaries, but intermediate boundaries might be sometimes interleaved
and sometimes simultaneous. A component alignment, which gener-
ates a generalized equation, can be viewed as a sequence of decisions
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about which side of the equation will have an intermediate component
boundary at a given point in the equation’s denoted sequence. To gener-
ate alignments, make a series of nondeterministic choices of left-hand
side, right-hand side, or both—as long as both sides still have unused
component boundaries—and after each choice, place the chosen side’s
(or sides’) next component boundary. Once all of one side’s component
boundaries have been placed, follow them with the other side’s remaining
boundaries.

As an example, suppose we have the equation

(++ x [1] x) � (++ y z y [2])

We need to decide where to place two component boundaries from the
left-hand side (between the first x and [1] and then between [1] and
the other x) and three component boundaries from the right-hand side
(between the first y and z, between z and the second y, and between
the second y and [2]). The leftmost component boundary must be col-
umn boundary 0. Our first choice is whether column boundary 1 is a
component boundary for the left, right, or both. If we first choose to
place a right-hand side boundary, we have a base (y, [0, 1]). We might
then choose to place a component boundary for both sides at column
boundary 2, generating bases (x, [0, 2]) and (z, [1, 2]). Placing a
left-hand side boundary at column boundary 3 would produce (1, [2,

3]). We would then be out of component boundaries on the left, so col-
umn boundary 4 would have to have only a right-hand side component
boundary, producing the base (y, [2, 4]). Finally, column boundary 5
finishes both sides of the equation, with bases (x, [3, 5]) and (2, [4,

5]) completing the generalized equation:

0 1 2 3 4 5

x 1 x

y
z

y
2

Generating the possible component alignments is analogous to gener-
ating monotonic lattice paths—moving from one grid point to another
using only northward and eastward movements. Unlike the North-East
lattice path problem which is solved by counting combinations, these
lattice paths also may include diagonal Northeast steps. This generaliza-
tion of N-E lattice paths to N-E-NE was investigated by Delannoy as the
number of monotonic paths a queen can take across a chess board [18],
which are now known as Delannoy numbers.

Once we have a generalized equation, Makanin’s search algorithm
proceeds using a subroutine called transport, which involves finding
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two occurrences of the same variable and copying the bases contained
within the column span of one base, called the carrier, into the position
of the other, called the dual. In order to ensure full propagation, the con-
ventional ordering is to always copy from the leftmost-reaching variable
base which has not yet been copied from; ties are resolved by choosing
the widest variable base. So a base px, r1,3sq would take precedence
over px, r2,8sq due to extending further to the left, but py, r1,4sq would
take precedence over px, r1,3sq due to being wider while having the
same left boundary. Any variable base copied in this manner can itself be
removed from the worklist. When we copy px, r1,3sq as part of handling
py, r1,4sq, that must include copying any bases within x’s span because
they are also contained in y’s span.

The simple case for transport is when the carrier and dual bases
span the same number of columns. Then each base copied from the
mth through nth columns of the carrier can move to the mth through nth

columns of the dual. Consider the example of (++ [1] x) � (++ x [1])

with the variable bases overlapping. The carrier base is px, r0,2sq, and
the dual is px, r1,3sq. The base p1, r0,1sq, occupying the first column
of the carrier, is copied to produce p1, r1,2sq, which occupies the first
column of the dual.

0 1 2 3

1
x

x
1

1

The situation is trickier if the carrier and dual have different column
widths. Perhaps one occurrence of x spans three columns, while another
spans four. In order to unify the four components of one occurrence
with the three components of the other, we must choose a finer-grained
column partition of that other occurrence. If we have already identified
three component boundaries, it is safe to keep them; we only need to
choose one of the three columns to split into two columns. The general
case of inserting new boundaries into one base to match the width of
another one requires a nondeterministic choice similar to constructing
the initial generalized equation. The choice is how to interleave new
column boundaries among the column boundaries already present within
the narrower base. Since there is no possibility of coinciding old and new
boundaries, this corresponds to choosing from N-E lattice paths, which
are counted by combinations, rather than the N-E-NE paths.

We may encounter one further complication: The carrier and dual may
partially overlap in addition to having different widths. Then some of the
boundaries we introduce in order to accommodate boundaries between
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copied components might fall within the intersection of the carrier’s and
dual’s intervals. For example, a generalized equation with two x bases
arranged as below has two possible ways to map the carrier’s interval to
the dual’s interval.

0 1 2 3 4

x

x

One of those ways maps boundary 2, the carrier’s second intermediate
column boundary, to boundary 3, the only already existing intermediate
column boundary in the dual. Then boundary 1, the carrier’s other inter-
mediate boundary, must therefore be mapped to a new boundary created
by splitting the first column of the dual. Since the first column of the dual
is also the last column of the carrier, splitting that column widens the
dual from 2 to 3 columns but also widens the carrier from 3 to 4. Since
they still have different widths, we need to introduce one more column
boundary, this time in the last column of the dual. In the general case,
the number of extra boundaries we introduce must match the number
we initially put into the intersection, adding another choice with options
counted by combinations.

Pruning the search tree arising from the nondeterministic choice of
boundary alignments is done by considering the population of each
sequence element mentioned in the equation in each individual column
of the generalized equation. For each variable ei and column spanning the
interval rj, j`1s, we consider a natural-valued variable Ci,j to represent
how many times ei appears in column j.

A sequence variable with multiple occurrences identifies two or more
intervals which must agree as to the population of each element. If we
have bases px, r0,3sq and px, r2,4sq, the number of times e1 appears in
the interval r0,3s must be the same as the number of times it appears
in the interval r2,4s—that is, C1,0 ` C1,1 ` C1,2 “ C1,2 ` C1,3. The
same holds for e2, e3, etc.. (as many elements as appear as literals in the
original equation). For each single-element base pei , rj, j ` 1sq we can
also require that Ci,j “ 1 and for each i1 “ i, Ci1,j “ 0. We also require
the sum of all elements’ populations in a single column to be at least
one because the column must be occupied by something. For a sequence
equation using elements e0 through ek , we require in each column j that
řk
i“1Ci,j ě 1.
Since the above are all linear constraints on natural-valued variables,

the pruning check is an integer linear programming problem. Once we
have completed all transport steps, there is no need to introduce any
additional column boundaries. We can further restrict each column’s
total population to be exactly 1 by requiring

řk
i“1Ci,j “ 1. A satisfying
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assignment for this ILP instance must choose for each j exactly one i
so that Ci,j “ 1. The rightmost occurrence of each variable contains
all extra information discovered via transport, so those columns’ ILP
variables identify the elements that make up that sequence variable’s
assignment.

Revisiting the example equation (++ x x) � (++ [1] y [2]), the only
solvable alignment places the boundary between the two x occurrences
somewhere in the middle of y, producing this arrangement:

0 1 2 3 4

x x

1 y 2

Constructing the ILP instance for this generalized equation requires
the following variables:

• C1,0 through C1,3: occurrences of 1 in each column

• C2,0 through C2,3: occurrences of 2 in each column

• C1,x and C1,y: occurrences of 1 in x and y

• C2,x and C2,y: occurrences of 2 in x and y

We know that any column must be populated by either 1 or 2, but a single
column may turn out to represent multiple sequence elements in the
eventual solution. So we include equations

C1,0`C2,0 ě 1 “ C1,1`C2,1 ě 1

C1,2`C2,2 ě 1 “ C1,3`C2,3 ě 1

The fact that x spans the first two columns means the 1-population of
x must be the total 1-populations of the first two columns; the same
holds for 2. We also have analogous constraints arising from the second
occurrence of x, which spans the last two columns.

C1,0`C1,1 “ C1,2`C1,3 “ C1,x

C2,0`C2,1 “ C2,2`C2,3 “ C2,x

The element-population equations for y turn out not to constrain the
ILP solution because there is only one occurrence of y. Finally, the first
and last columns each contain a single-element base, constraining their
populations for all elements. Column 0 must contain exactly one 1 and
no 2, while column 3 must contain exactly one 2 and no 1.

C1,0 “ 1 C2,0 “ 0
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C1,3 “ 0 C2,3 “ 1

This check rules out obviously unsolvable situations such as two
different sequence element bases coinciding. It also rules out cases where
one occurrence of a variable completely engulfs another occurrence of
the same variable with room to spare. The extra columns spanned by the
wider base must contain some element, which will then have different
populations in the narrow and wide bases’ intervals.

This ILP instance is satisfiable, so Makanin’s algorithm considers this
alignment of variable boundaries to be acceptable. In fact it has multiple
solutions, although Makanin’s algorithm will not explore them all. After
a round of transport, the 1 base is copied from column 0 into column 2,
and the updated ILP instance fixes C1,2 and C2,2, leaving no room for
choice in C1,1 and C2,1.

7.2.3 Integrating a Dimension-Theory Solver

Although Makanin’s algorithm was originally meant for finitely gener-
ated semigroups, any single equation can only mention finitely many
generators. So it is not much trouble to use the algorithm with an infinite
generator set. The real snag in Remora’s use case is that array shapes
may perform arithmetic on individual dimensions. While the previous
example (++ x [3]) � (++ [3] x) can be solved with any x P 3˚, solv-
ing equations on shapes requires a way to recognize that an equation like
(++ x [(+ q 2)]) � (++ [(+ 1 r)] x) needs both x P r˚ and q`1 � r.
Furthermore, the shape constraints that arise in type inference have both
universal and existential variables. The above equation is unsolvable if
r is universally quantified (there is no suitable q in the case where r is
0). On the other hand, if x and r are existentially quantified while q is
universally quantified, the equation is solvable, and we would want the
solver to tell us that r can be instantiated with (+ 1 q).

Because Makanin’s algorithm selects an alignment of equation com-
ponents and then traces through the implications of that alignment, it
offers a convenient hook for integrating a separate decision procedure
for dealing with generator elements themselves. Keeping the generator
decision procedure separate from the sequence decision procedure relies
on strict stratification between sequences and sequence elements, like
constructing Shapes from Dims in Remora.

The result is Makanin(T ), a sequence-equation decision procedure
parameterized over a theory of equality for sequence elements, which can
more flexibly integrate with a DPLL(T ) solver or ILP modulo theories
solver [60, 71]. Although Remora chooses the theory T to be Presburger
arithmetic, the reasoning which identifies aliased columns in a general-
ized equation is agnostic to the particular choice of T . Similar to a lazy
DPLL(T ) solver querying a T -solver after constructing a plausible propo-
sitional model of an input formula, Makanin(T ) uses string-equation
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reasoning to construct a candidate model of a string equation over T
terms and then asks whether that model is T -consistent.

To generalize from Makanin’s algorithm to Makanin(T ), we augment
Makanin’s algorithm with a pass over the generalized equation which
looks for sequence-element bases occurring at equivalent locations within
different occurrences of the same sequence variable. For example, after
one round of transport, the shape equation (++ [x$d] x@x) � (++ x@x
[$e]) is updated to

0 1 2 3

x$d
x@x

x@x
$e

x$d

Rather than creating separate ILP variables for the populations of x$d
and p$e in various portions of the shape equation, we conclude that x$d and
p$e must themselves be equal. That is, the minimal equivalence relation
which agrees with the boundary alignment we have chosen includes
x$d � $e. When constructing an ILP instance to check viability, each
population variable is associated with an equivalence class of sequence
generators rather than an individual generator term.

Makanin’s transport procedure thus leads to a conjunction of equalities
on sequence generators which must be valid in order for the original
equation on sequences to be valid. For Remora’s type inference, this
equivalence relation is interpreted as a conjunction of linear equations on
Dims, but we still have a mix of universally and existentially quantified
Dim variables. Presburger’s procedure for eliminating the universal vari-
ables rewrites each existential in terms of the universals, effectively con-
structing the Skolem functions needed in order to elaborate the Remora
program.

After this rewriting, we have a strictly universal constraint which can
be handed off as a validity query to an integer linear programming solver.
This is actually encoded as an unsatisfiability query about the negation
of the quantifier-free portion of the constraint. If the ILP solver says the
constraint is valid (i.e., its negation is unsatisfiable), then the Skolem
functions derived from eliminating the existential Dim variables give their
proper instantiation in the elaborated Remora program. Otherwise, the
ILP solver returns a satisfying assignment for the negated constraint,
which corresponds to a counterexample to the original validity query and
thus to that particular alignment of the original sequence equation.
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Additional work is needed to handle Remora’s use case. Makanin’s
algorithm is meant for solving an equation with only existential quantifi-
cation, but a Remora function may be polymorphic in cell shape. When
synthesizing a type for the body of a cell-polymorphic function, we may
encounter shape constraints that mention the function’s shape arguments,
which are universal variables, and frame shapes, which are existential.
We must account for the possibility that an existential variable stands
for something built from a universal variable. Consider the following
function:

(� ((n [Int $d @s]))

(add1 (reverse n)))

Both function applications require resolving an existential shape vari-
able using the universal variable s. For reverse, which expects an argu-
ment of type [%t $l @r]—i.e., an array of %t with leading axis $l and
remaining axes @r—we will have to find how the argument type [Int

%d s] can match the desired type. First, an existential atom type p%t must
resolve to Int. We then ask the shape theory solver to solve:

@$d,@s.D p$l, p@r.{++ [ p$l] p@r} � {++ [$d] @s}

This formula is of course provable by the witness p$l ÞÑ $d and p@r ÞÑ @s,
but we will need to adapt Makanin’s algorithm so that it can work with
universal sequence variables like @s and also invoke a dimension theory
solver to discover the solution using $d. With the latter problem handled
by Subection 7.2.3, we focus now on the universal shape variables.

Accommodating the universal shape variables in a single equation is
straightforward if the quantifier prefix is limited to several universals
followed by several existentials. This works because the key decisions
made during Makanin’s search are about how to split variables’ meanings
into subsequences that are partially or fully covered by other variables.
If a candidate solution depends at all on the internal structure of the
sequence a universal variable happens to stand for then that candidate
is ruled out: the actual value given to a universal variable might not
have that required structure. The treatment we give to sequence element
bases upholds exactly that requirement. By never allowing a column
boundary to appear inside a certain base, we ensure that any variable
base which overlaps it must overlap it completely. Since Makanin’s
algorithm is agnostic as to the size of the alphabet from which sequences
are generated, we can freely add new element IDs to represent universal
sequence variables.

A similar principle applies in generalizing from the @˚D˚ fragment
to the p@Dq˚. We ignore the ordering of quantifiers during the Makanin
search and afterward filter out potential solutions based on the associated
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dimension equivalence relations. If an equation involving an existential
dimension variable makes it depend on a universal which came into
scope after that existential, then we cannot produce a valid solution for
that existential. The Skolem function for an existential cannot take as
input the values of universal variables bound farther down.

With this encoding, we do sacrifice some expressive power. In the
D˚ (existential-only) fragment of the theory of sequences, any boolean
combination of equations can be encoded as a single equation. This en-
coding does not work in the p@Dq˚ fragment. Although a single equation
is invalid if its truth depends on the internals of a universal, a disjunction
of several such equations may be valid. For example, in sequences over
the alphabet t0,1u, the formula

@$x. D$y. $x � {++ [0] $y} _ $x � {++ [1] $y} _ $x � []

is valid even though the individual equations are not. In order to avoid
the undecidability of the full mixed-prefix theory, we must limit shape
constraints to the p@Dq˚.

Ź

fragment.
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29 It should ideally have ℵ0 possible
types, according to the formal semantics,
but a realistic implementation of Remora
would likely have to limit the number of
possibilities to roughly the SIZE_MAX of
a reasonably modern C implementation.

E VA L U AT I O N

8.1 E L A B O R AT I O N S O U N D N E S S

Since there is no dynamic semantics for implicit Remora, and explicit
Remora’s type-driven semantics is not readily adapted to a language
without explicit types, the only behavior attributed to implicitly typed
code is the result of elaborating to explicitly typed code and then execut-
ing it. This does not offer a clear way to define correctness of elaboration:
rather than preserving the semantics of implicitly typed code, elaboration
is the semantics.

However, the important decisions elaboration makes are about the
types of functions’ input cells, the types of actual arguments, and how
cell-polymorphic functions are instantiated. Giving some function the
wrong cell type, whether by elaborating a cell-rank annotation incorrectly
or by choosing the wrong type or index arguments for instantiation,
produces a function with different lifting behavior than it ought to have.
Some combinations of arguments that ought to be acceptable will be
rejected as ill-typed. Many aggregation and reduction functions with
all-ranked input cells produce differently shaped (i.e., differently typed)
output if instantiated incorrectly.

Since the tricky bookkeeping handled by elaboration has observable
effects during type checking (according to the typing rules of Chapter 4)
and even during execution, we can feel confident that elaboration behaves
as desired based on the fact that an elaborated term generated for any
arbitrary well typed implicit Remora term not only is well typed but has
the same type ascribed to the original implicitly typed term. Establishing
that fact is the goal of this section.

One potential worry appears when we consider stray unsolved existen-
tial type and index variables appearing in elaborated code. They identify
situations in which multiple possible types could be given to some im-
plicit Remora program. Excepting terms with multiple possible types
from the above guarantee would make too few promises about useful
terms. Even (1 1)+ has as many types as there are vector lengths.29

That is too few promises, not just for user confidence but too few for
a useful induction hypothesis. A term which uses code with multiple
possible types might rely on it having some particular type. So the elab-
oration soundness claim in this section states that any interpretation of
existential variables which is consistent with the output environment and
constraint archive gives elaborated code whose type matches that of the
original implicit Remora code.

115
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In order to prove this, we need some lemmas ensuring good behavior in
managing the environment and constraint archive. It wouldn’t do to have
existential variables’ eventual chosen meanings or algebraic constraints
on those meanings being forgotten too soon. We would be unable to
guarantee that the value chosen as the solution for some dimension
variable satisfies all the requirements that the surrounding elaborated
code places on it. We also do not want any universal variables leaking into
the output environment in a way that allows explicit Remora’s kinding
and sorting rules to be subverted.

After we have established that the environment and archive are man-
aged properly, we move on to investigating the bidirectional rules’ elabo-
ration method itself. The coercing contexts generated by the subtyping
and instantiation judgments as witnesses to the conclusion that some
type is usable where some other is required must be proven to actually
witness that conclusion. Most of the decisions about instantiating cell-
polymorphic functions are found in the subtyping rules’ use of type and
index application as coercions.

Finally, with the generated coercions shown to be true witnesses of
subtyping, the final theorem of this section establishes that interpretation
of the existential variables remaining in an elaborated term that obeys
the output environment and constraint archive gives the original implicit
Remora term the same type as the elaborated explicit Remora term.

8.1.1 Environment bookkeeping

The “growth” relation for well-formed environments, written as Γ ĺ Γ
1
,

describes the idea of adding new information to the environment as it
is discovered during type inference, while preserving any discoveries
already made. This includes introducing new variables and adding solu-
tions to already existing variables. It can be generated as the reflexive,
transitive closure of the following rules:

Γ 1,Γ 2 ĺ Γ 1,X ,Γ 2
Γ 1,Γ 2 ĺ Γ 1,S ,Γ 2
Γ 1,Γ 2 ĺ Γ 1, pX ,Γ 2
Γ 1,Γ 2 ĺ Γ 1, pS ,Γ 2

Γ 1, pX ,Γ 2 ĺ Γ 1, pX ÞÑ τ ,Γ 2, where Γ 1 $ τ :: KindJX K

Γ 1, pS ,Γ 2 ĺ Γ 1, pS ÞÑ ι,Γ 2, where Γ 1 $ ι :: SortJSK

Further, we extend the growth relation to define a “completion” re-
lation, which specifies that the enlarged environment must be self-con-
tained in its solutions for existential type and index variables. In some
situations, we can allow pf ÞÑ (-> ( p@i) p@o) on its own, but in other situa-
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tions, we also require full solutions for p@i and p@o. We say Γ
1
completes Γ ,

written as Γ pĺΓ
1
, if Γ ĺ Γ

1
and Γ

1
contains a solution for every existential

variable appearing in it.
The above rules all preserve the order of environment entries. Since

variables are not reused, there can be no duplicate entries. An environ-
ment can therefore be “split” at a particular entry, with each growth
step belonging to one side of the split. Being able to reason about this
splitting of environments will be important for ensuring that dropping
environment entries in the course of a judgment derivation does not affect
earlier portions of the environment.

Lemma 8.1.1 (Environment splitting). If Γ l ,γ ,Γ r ĺ Γ
1

l ,γ ,Γ
1

r , then Γ l ĺ
Γ
1

l and Γ r ĺ Γ
1

r .

Proof. Because ĺ is the reflexive, transitive closure of the above rules,
for any two related environments Γ 1 ĺ Γ 2, it must be possible to convert
Γ 1 into Γ 2 by applying some number of transformation steps correspond-
ing to those rules. We can thus argue inductively on the sequence of
growth steps which would turn Γ l ,γ ,Γ r into Γ

1

l ,γ ,Γ
1

r .
For the base case, zero steps are needed, implying that Γ l ,γ ,Γ r “

Γ
1

l ,γ ,Γ
1

r . Since no variables are reused, γ can only appear once. There-
fore Γ l “ Γ

1

l , and Γ r “ Γ
1

r .
In the inductive case, each of the above rules modifies one entry or

adds one entry. For a modified entry, if the original appears in Γ l , then
the new version appears in Γ

1

l . Then Γ l ĺ Γ
1

l , and Γ r “ Γ
1

r . Similarly,
if the original entry appears in Γ r , then the new version appears in Γ

1

r ,
implying Γ l “ Γ

1

l , and Γ r ĺ Γ
1

r . For a newly added entry, it must either
appear in Γ

1

l while not appearing in Γ l , so Γ l ĺ Γ
1

l , and Γ r “ Γ
1

r , or appear
in Γ

1

r while not appearing in Γ r , so Γ l “ Γ
1

l , and Γ r ĺ Γ
1

r .

Lemma 8.1.2 (Environment monotonicity for instantiation). Let Γ ;Φ $
τ :: k. Given one of

• Γ ;Φ $ pX :ď τ % Γ
1
;Φ 1 ãÑ C

• Γ ;Φ $ τ ď: pX % Γ 1;Φ 1 ãÑ C

then Γ ĺ Γ
1
, and Φ Ď Φ 1.

Proof sketch. We use induction on the instantiation judgment derivation.

Lemma 8.1.3 (Environment monotonicity for subtyping). If Γ ;Φ $ τl ď
τh % Γ

1
;Φ 1 ãÑ C, then Γ ĺ Γ

1
, and Φ Ď Φ 1.

Proof sketch. We use induction on the subtyping judgment derivation.

Lemma 8.1.4 (Environment monotonicity for bidirectional judgments).
Given one of
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• Γ ;Φ $ tð τ % Γ
1
;Φ 1 ãÑ t

• Γ ;Φ $ tñ τ % Γ
1
;Φ 1 ãÑ t

• Γ ;Φ $ (tf : τf ) ‚ rta . . . s ññ τ % Γ
1
;Φ 1 ãÑ t,

where t“ (tf ta . . .)

then Γ ĺ Γ
1
, and Φ Ď Φ 1.

Proof sketch. We use induction on the bidirectional type derivation.

Showing the proper behavior of the generated coercion code will
require some more environment bookkeeping. In addition to the above
results showing that we can only gain—not lose—information about
existential variables, we need to guarantee good behavior regarding term
variables as well as universal type and index variables (i.e., those which
arise from � and � types in the program). Specifically, we need to ensure
that these variables do not leak into the output environment, which would
allow free term, type, and index variables to appear in generated code.
Since we have previously proven monotonic growth—i.e., no variables
are removed—we now only need to show that no non-existential variables
are added.

Lemma 8.1.5 (Variable scoping for instantiation). Given one of

• Γ ;Φ $ X :ď τ % Γ
1
;Φ 1 ãÑ C

• Γ ;Φ $ τ ď: X % Γ 1;Φ 1 ãÑ C

then all of the following hold:

• TB
r
Γ

z
“ TB

r
Γ
1
z

• KB
r
Γ

z
“ KB

r
Γ
1
z

• SB
r
Γ

z
“ SB

r
Γ
1
z

Proof sketch. We use induction on the instantiation judgment derivation.

Lemma 8.1.6 (Variable scoping for subtyping). If Γ ;Φ $ τl ď τh %
Γ
1
;Φ 1 ãÑ C, then all of the following hold:

• EVars
r
Γ

z
“ EVars

r
Γ
1
z

• TVars
r
Γ

z
“ TVars

r
Γ
1
z

• IVars
r
Γ

z
“ IVars

r
Γ
1
z

Proof sketch. We use induction on the subtyping judgment derivation.
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Lemma 8.1.7 (Variable scoping for bidirectional judgments). Given one
of

• Γ ;Φ $ tð τ % Γ
1
;Φ 1 ãÑ t

• Γ ;Φ $ tñ τ % Γ
1
;Φ 1 ãÑ t

• Γ ;Φ $ (tf : τf ) ‚ rta . . . s ññ τ % Γ
1
;Φ 1 ãÑ t

then all of the following hold:

• EVars
r
Γ

z
“ EVars

r
Γ
1
z

• TVars
r
Γ

z
“ TVars

r
Γ
1
z

• IVars
r
Γ

z
“ IVars

r
Γ
1
z

Proof sketch. We use induction on the bidirectional typing derivation.

8.1.2 Elaborated code

The phrasing of elaboration soundness includes some trickery related to
underdetermined type annotations. Consider applying a curried function
structured like λx.λy.x to a single argument. This is a polymorphic
function with two type arguments, but only one is actually used. The
elaborated code will thus have a stray existential type variable represent-
ing the underdetermined type argument. Any type works, but the stray
existential does not appear in the output environment. So we cannot just
promise that the output environment will suffice to type check elaborated
code—we know it won’t be enough in certain cases. Instead, the coercion
soundness theorems must only deal with environments which include so-
lutions for those stray existential variables. To do so, instead of claiming
that the output environment Γ

1
contains everything needed to type check

the elaborated term, the soundness theorem states that any completion of
Γ
1

will do so. Specifying that the environment must solve all existential
variables in the output code also ensures that only syntactically valid
explicit terms are claimed as acceptable final output (recall, existential
type and index variables are not part of explicitly typed Remora).

For elaboration soundness theorems, where the output is a term t
instead of a coercion C, we require that Γ

2
leave no existential variables

in t. Under that assumption, Γ
2

must also solve all existential variables
in any coercion used to build t. So we are free to invoke the coercion
soundness theorems in cases where a premise produces a coercion rather
than a full term.

Proving the desired soundness result calls for formally stating the
behavior of the coercion code generated by the metafunctions used in
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the instantiation and subtyping rules. We say that C coerces from type τl
to type τh under the environment Γ if for any explicit term t,

TB
r
Γ

z
;KB

r
Γ

z
;SB

r
Γ

z
$ Γ JtK : Γ JτlK

implies

TB
r
Γ

z
;KB

r
Γ

z
;SB

r
Γ

z
$ Γ JCrtsK : Γ JτhK

Lemma 8.1.8 (Lift coercion). If A coerces from Tl to Th under Γ , with
KB

r
Γ

z
;SB

r
Γ

z
$ Γ JTlK :: Atom and KB

r
Γ

z
;SB

r
Γ

z
$ Γ JThK :: Atom

then for any shape I which is well-formed under Γ , LiftCTl JAK coerces
from (A Tl I) to (A Th I).

Proof. T-LAM ascribes the type

Γ J(-> ((A Tl (shape))) (A Th (shape)))K

to the function constructed for the lift coercion. With T-ARRAY and
T-APP, applying such a function to an argument of type Γ J(A Tl I)K will
have frame shape I, producing a result of type Γ J(A Th I)K.

Lemma 8.1.9 (Each coercion). If E coerces from Tl “ (A Tl Il) to
Th “ (A Th Ih) under Γ , with KB

r
Γ

z
;SB

r
Γ

z
$ Γ JTlK :: Array and

KB
r
Γ

z
;SB

r
Γ

z
$ Γ JThK :: Array, then for any shape If which is well-

formed under Γ , EachCTl JEK coerces from type (A Tl (++ If Il)) to type
(A Th (++ If Ih)).

Proof. T-LAM ascribes the type Γ J(-> ((A Tl Il)) (A Th Ih))K to the
function constructed for the coercion. With T-ARRAY and T-APP, ap-
plying such a function to an argument of type Γ

q
(A Tl (++ If Il))

y
will

have frame shape If . So the result type is Γ
q
(A Th (++ If Ih))

y
.

Lemma 8.1.10 (Function coercion). If the contexts Ei . . . respectively
coerce from T1i . . . to Ti . . . under Γ and Eo from To to T1o, with all
of Ti . . . ,T1i . . . ,To,T

1
o kinded as Array under Γ , then for any shape If

which is well-formed under Γ , the coercion

FnC(-> (τi ...) τo)Ñ(-> (τ 1
i ...) τ

1
o)

JpEi . . .q;pEoqK

coerces from (A (-> (τi . . . ) τo) If ) to (A (-> (τ 1i . . . ) τ
1
o) If ).

Proof. The outer function in the generated code binds xf at the type
(A (-> (τi . . . ) τo) (shape)). Its result is a scalar containing a function
with input types τ 1i . . . . In order to show that the entire term has the
correct type, we must show that the body of this inner function has type
τo in the environment extended with xf ,xi . . . . Since the variables xi . . .
are bound at types τ 1i . . . , applying the input coercions Ei . . . to them
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produces results whose respective types are τi . . . . The application of xf
to these coerced inputs produces a result with type τo (n.b., the frame
shape here is scalar). Then coercing that application form’s output with
Eo produces a result with type τ 1o.

So the outer function has input type (A (-> (τi . . . ) τo) (shape))

and output type (A (-> (τ 1i . . . ) τ
1
o) (shape)). Filling the hole in the

context with a term typed as (A (-> (τi . . . ) τo) If ) produces an appli-
cation form whose principal frame shape is If and output cell type is
(A (-> (τ 1i . . . ) τ

1
o) (shape)). Therefore the entire term built by applying

the function coercion as type (A (-> (τ 1i . . . ) τ
1
o) If ).

Since limitations on atom-level computation often require subtyping
rules that match on arrays containing atoms of a particular form, we
occasionally need to chain multiple layers of context in order to get
the right coercion behavior. Intuitively, coercing contexts compose like
functions: as long as the output type of one matches the input type of the
next, combining them produces a coercion from the first input type to
the last output type.

Lemma 8.1.11 (Coercion composition). Under a given environment Γ ,
if C0 which coerces from τ0 to τ1 and C1 which coerces from τ1 to τ2,
then C1rC0s coerces from τ0 to τ2.

Proof. If TB
r
Γ

z
;KB

r
Γ

z
;SB

r
Γ

z
$ Γ JtK : Γ Jτ0K, then C0’s coercion

behavior means that TB
r
Γ

z
;KB

r
Γ

z
;SB

r
Γ

z
$ Γ JC0rtsK : Γ Jτ1K. So

C1’s coercion behavior then implies

TB
r
Γ

z
;KB

r
Γ

z
;SB

r
Γ

z
$ Γ JC1rC0rtssK : Γ Jτ2K

With utility lemmas in place, we now move on to the elaboration
rules themselves. We finally have a use for the index equality archive
Φ . Many branches of the upcoming case analysis rely on the solver to
produce an environment in which solutions of index variables entails the
equality of particular shapes. If the archive returned from the solver is
unsatisfiable, then there exists no assignment which satisfies all shape
equalities required for the type derivation we are constructing. Failing
to ensure shape equality means failing to ensure type equivalence. An
instantiation or subtype rule in question cannot guarantee that it produces
a coercion to the right type, and a bidirectional rule cannot guarantee
that it produces an explicit term of the right type.

Theorem 8.1.1 (Instantiation coercion). Given all of

• Γ ;Φ $ pX :ď τ % Γ
1
;Φ 1 ãÑ Ct

• KB
r
Γ

z
;SB

r
Γ

z
$ τ :: k
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• Γ
1
pĺΓ

2

• SAT JΦ 1K

then Ct coerces from Γ
2
r
pX
z

to Γ
2
JτK and given all of

• Γ ;Φ $ τ ď: pX % Γ 1;Φ 1 ãÑ Ct

• KB
r
Γ

z
;SB

r
Γ

z
$ τ :: k

• Γ
1
pĺΓ

2

• SAT JΦ 1K

then Ct coerces from Γ
2
JτK to Γ

2
r
pX
z

.

Proof sketch. We use induction on the instantiation derivation.

Theorem 8.1.2 (Subtyping coercion). Given all of

• KB
r
Γ

z
;SB

r
Γ

z
$ τl :: k

• KB
r
Γ

z
;SB

r
Γ

z
$ τh :: k

• Γ ;Φ $ τl ď τh % Γ
1
;Φ 1 ãÑ Ct

• Γ
1
ĺ Γ

2

• SAT JΦ 1K

then Ct coerces from Γ
2
JτlK to Γ

2
JτhK.

Proof sketch. We use induction on the subtyping derivation.

The final step in proving soundness is the proof for the bidirectional
judgments themselves.

The phrasing of the application judgment case is slightly odd. Rules
for handling a function application step through the arguments one at a
time, imagining that the function is curried. After each argument, the type
we pretend the function has gets its arity decreased by one and its shape
updated to the largest frame seen so far. This controlled self-deception in
the bidirectional typing rules is to be justified by counterfactual reasoning
in the upcoming proof: If the function application we are in the middle
of typing really did have the function partially applied to the already
handled arguments, then applying it to the remaining arguments would
introduce no new problems.

In the proof itself, this is phrased as taking the ef : τf from the
application judgment as a premise of the type derivation even though we
know that it may be impossible to derive τf as a type for ef . The only
time we do know this to be possible is when we have not yet considered
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any arguments. Then τf has the right input types for ef . This arrangement
gives the application judgment the stronger induction hypothesis it needs
while allowing SYN:APP, the synthesis rule which invokes that judgment,
to show that ef : τf is derivable and that the implication provided by that
induction hypothesis has a useful consequent.

Alternatively, this proof could be done by stating the application
judgment portion as ef : τf implying in this external logic that er : τr
Of course, no function in Remora can have multiple arities. We could
therefore throw out arity mismatch subcases by appealing to the meta-
level principle ex falso quodlibet, but that’s no fun.

Theorem 8.1.3 (Elaboration soundness). Given Γ
1
pĺΓ

2
with no existen-

tial variables appearing in Γ
2
JtK and SAT JΦ 1K, the following all hold:

• Γ ;Φ $ tð τ % Γ
1
;Φ 1 ãÑ t implies that

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
JtK : Γ

2
JτK

• Γ ;Φ $ tñ τ % Γ
1
;Φ 1 ãÑ t implies that

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
JtK : Γ

2
JτK

• Γ ;Φ $ (ef : τf ) ‚ rea . . . s ññ τr % Γ
1
;Φ 1 ãÑ er implies that

from TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2q
ef

y
: Γ
2q
τf

y
we can

derive TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
JerK : Γ

2
JτrK

Proof sketch. We use induction on the bidirectional typing derivation.

8.2 P R AC T I C A L U S E

The plan laid out in Chapter 6 for inferring types of Remora programs
calls for automatically generating the t-app and i-app forms needed
to instantiate cell-polymorphic functions and also converting argument
rank specifiers into cell types which reflect any aliasing of dimensions.
The soundness theorem establishes that Remora’s bidirectional typing
does not do anything ill-typed, but it does not establish that it does
anything at all. The following demonstration of type synthesis serves as
complementary evidence for the bidirectional rules’ effectiveness.

The corpus of code samples includes some synthetic examples—
contrived specifically to highlight either tricky reasoning paths type
synthesis must take or limitations of type synthesis requiring a type
annotation—and adaptations of typical APL or J code for tasks like
stencil computation or matrix multiplication.

Type inference’s fundamental purpose is for user-written code to be
more concise than the big, ugly terms demanded by explicit Remora. We
cannot expect a completely annotation-free language, but the annotation
burden turns out to be small in practice. In order to show the kind of code
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30 Recall, these are prefixed by a
percent sign, borrowing a convention for
marking symbols reserved for use by the
internals of a language implementation.

a human is meant to write, each implicit Remora code sample is also
presented alongside a version which uses the syntactic sugar for array
construction, array types, and reranking. After a sketch of the process
for synthesizing a type for the code sample, the fully elaborated version
is shown.

While Remora’s formal semantics uses atoms to represent primitive
operators,30 here we use term-level variables assumed to be bound in a
base environment to scalar arrays containing the corresponding primitive
operators. So the variable + stands for the value (array () %+). The
function types associated with these variables are given in Figure 8.1,
with implicit � and � quantification for type and index variables appearing
in the types.

8.2.1 Simple Application

(+ 1 2) (+ (array () 1)

(array () 2))

All inference has to do in this example is ensure that argument types
match up and identify the principal frame. We have an application form,
which fits the SYN:APP rule. The first premise synthesizes a type for the
function. Since + is bound in the base environment, SYN:VAR identifies
its type. The second premise of SYN:APP invokes the application judg-
ment, with + as the partly elaborated function—with the type discovered
by SYN:VAR—and scalars 1 and 2 as arguments.

We already have a monomorphic function, so we can use APP:FN*A.
The function’s first input type is a scalar integer, so we generate fresh
existential shape variables x@af and x@fe to represent the argument’s frame
and the frame extension the function will need in order to match the
argument’s frame. We must check the argument against the frame-aug-
mented version of the input type, (A Int x@af). CHK:ARRAY fits this
goal. We check that the atom within, 1, is an Int. Then we equate the
frame-augmented input shape (++ x@af (shape)) with the array form’s
shape (shape). In doing so, we discover that x@af must be (shape), so
we update its environment entry with that solution.

Having confirmed that the argument’s type is acceptable, we then find
the function’s frame extension by constructing the expanded function
array’s shape (++ x@fe (shape)) and equating it with the argument’s
frame x@af. which we just resolved as (shape). The equation (++ x@fe

(shape)) � (shape) can only be satisfied by resolving x@fe as (shape), so
we update the environment accordingly. So the first argument is accepted,
and its contribution to the application’s principal frame is known.

The final premise of APP:FN*A imagines that the function expects
one argument less—as though it were curried and partially applied—and
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+, -, * (-> ((A Int (shape))

(A Int (shape)))

(A Int (shape)))

+., *. (-> ((A Float (shape))

(A Float (shape)))

(A Float (shape)))

sqrt (-> ((A Float (shape)))

(A Float (shape)))

length (-> ((A &t (++ (shape $l) @c)))

(A Int (shape)))

fst (-> (*t *t) *t)

transpose (-> ((A &t (shape $a $b)))

(A &t (shape $b $a)))

iota/w (-> ((A &t @s))

(A Int @s))

iota0 (-> ((A Int (shape)))

(A (� ($l)

(A Int (shape $l))) (shape)))

rotate (-> ((A Int (shape))

(A &t (++ (shape $l @c))))

(A &t (++ (shape $l @c))))

reverse (-> ((A &t (++ (shape $l @c))))

(A &t (++ (shape $l @c))))

reduce/0 (-> ((A (-> ((A &t @c)

(A &t @c))

(A &t @c)) (shape))

(A &t @c)

(A &t (++ (shape $l) @c)))

(A &t @c))

reduce/L0 (-> ((A (-> ((A &t @c)

(A &t @c))

(A &t @c)) (shape))

(A &t @c)

(A &t (++ (shape $l) @f @c)))

(A &t @f @c))

Figure 8.1: Base environment entries used for type synthesis and elaboration of
sample code
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then proceeds with the rest of the argument list. It will proceed just like
analyzing the previous argument did, since we have the same expected
input type and actual argument type. After the second argument has been
handled, we are down to imagining + as a nullary function. APP:FN0
gives the result type for the application as the function’s stated output
type, augmented with the function’s own frame (which is still (shape)).
That output type is propagated back through the outputs of APP:FN*A

to give the result type (A Int (shape)) to the whole application term.

8.2.2 Vector-Scalar Addition

(+ [4 5 6] 2) (+ (array (3) 4 5 6)

(array () 2))

This proceeds like the simple application case until we reach the point
of checking the first argument’s type. We still have Int as the atom type,
but the shape equation to solve is now (++ x@af (shape)) � (shape 3),
which is satisfied by resolving x@af as (shape 3). Then the equation for
the function’s frame extension is (++ x@fe (shape)) � (shape 3), so we
must also resolve x@fe as (shape 3). The final premise of APP:FN*A,
invoking the application judgment again, now has a different type for the
partially applied function. Instead of a scalar frame around the function,
we give it the augmented frame (++ x@fe (shape)), which is equivalent
to (shape 3).

In handling the second argument, the application judgment now gets
the principal frame from the function position, so the derivation must
use APP:FN*F rather than APP:FN*A (APP:FN*A will fail to discover
a suitable function-frame extension because (shape 3) is not a prefix
of (shape)). The existential shape variables we generate now are x@af to
represent the argument frame and x@ae for the argument’s frame extension.
Checking the argument type will resolve x@af as (shape), and equating
the extended argument frame (++ x@ae (shape)) with the function frame
(shape 3) will resolve x@ae as (shape 3).

When we reach APP:FN0, we are treating the function-position ar-
ray as a 3-vector of functions, each producing a scalar integer as out-
put. So the result type is (A Int (++ (shape 3) (shape)))—a (A Int

(shape)) cell inside a (shape 3) frame—or equivalently (A Int (shape

3)). This result type is propagated back down the derivation tree to type
the full application term as (A Int (shape 3)).
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8.2.3 Vector-Matrix Addition

(+ [100 200 300]

[[1 2 3 4]

[5 6 7 8]

[9 10 11 12]])

(+ (array (3)

100 200 300)

(array (3 4)

1 2 3 4

5 6 7 8

9 10 11 12))

This derivation follows the same path as vector-scalar addition until
we get to handling the second argument. Recall that at that point, we
act as though the array in function position has type (A (-> ((A Int

(shape))) (A Int (shape))) (shape 3)), as though we had partially
applied + to produce a 3-vector of functions on integer scalars. Fresh
existential shape variables represent the matrix argument’s frame shape
and the function array’s frame extension. Solving the relevant shape
equations identifies the argument frame shape as (shape 3 4) and then
the function frame extension as (shape 4). When we derive the last
premise using APP:FN0, the function array is treated as having type (A

(-> () (A Int (shape))) (shape 3 4)), so the eventual result type is
(A Int (shape 3 4)).

8.2.4 Multiple Instruction, Single Data

([+ * -] 10 5) ((frame (3) + * -)

(array () 10)

(array () 5))

Type synthesis proceeds much like the previous application examples,
but we start with a function frame of (shape 3). Then we must solve for
a frame extension for each argument, both of which will also be (shape

3).

8.2.5 Mismatched Vector-Vector Addition

(+ [4 5 6]

[1 2 3 4])

(+ (array (3) 4 5 6)

(array (4) 1 2 3 4))

After tracing through some examples of successfully typing func-
tion application, here we try ill-typed code to demonstrate where the
bidirectional typing rules reject it. We again skip forward to after han-
dling the first argument. When we consider the function position to
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have type (A (-> ((A Int (shape))) (A Int (shape))) (shape 3)).
The first shape equation in APP:FN*A or APP:FN*F—finding the new
argument’s frame—succeeds with (shape 4) as the frame. However
the second equation fails. APP:FN*A cannot find x@fe which solves (++

(shape 3) x@fe) � (shape 4), and APP:FN*F cannot find x@ae which
solves (++ (shape 4) x@ae) � (shape 3).

8.2.6 Applying Scalar Identity Function

((� ((x 0)) x) [#t #f]) ((array ()

(� ((x 0)) x))

(array (2) #t #f))

As directed by SYN:APP, we must synthesize a type for a user-written
function and then ensure the argument is of an acceptable type. We still
uphold the principle that values which will be used polymorphically
must be explicitly marked. No such mark appears in the source program,
so the bidirectional rules will not generate a polymorphic type. This is
fine because the function is only used at one type.

SYN:FN begins by generating fresh existential variables for the input
element type and dimensions. Since this function is declared to operate
on scalar cells, we need only the element type. The environment is
extended with a fresh existential atom type variable p&x and the binding
for x at type (A p&x (shape)). Then the function body, just a reference to
x, has its type synthesized as (A p&x (shape)). So the type synthesized
for the function-position expression is (A (-> ((A p&x (shape))) (A p&x

(shape))) (shape)).
Proceeding with SYN:APP, we invoke the application judgment, and

APP:FN*A is the applicable rule. We must check the argument (array
() #t) against the input type (A p&x (shape)). The first premise for
CHK:ARRAY checks whether the number of atoms supplied matches the
amount required for the stated shape. In this case, we have a 2-vector
shape and the required two atoms. The second premise for CHK:ARRAY

requires atoms with the right type. So we check the boolean literals #t

and #f against the type p&x. The only applicable rule here is CHK:SUB,
which in turn requires Bool ď p&x. The subtyping judgment will confirm
this via SUB:INSTR and IHIGH:SOLVE, with p&x now resolved as Bool

in the resulting environment.
The third premise of CHK:ARRAY equates the array literal’s anno-

tated shape against the shape in the goal type, the unresolved argument
frame appended to the scalar cell shape. This succeeds by resolving the
argument frame as (shape 2). We thus have a scalar principal frame, so
the result type is (A Bool (shape 2)).

The elaborated version of the program gives the cell type instead of
cell rank:
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((array () (� ((x (A Bool (shape)))) x))

(array (2) #t #f))

8.2.7 Applying Cell-Rank Polymorphic Identity

((� ((x all)) x) [#t #f]) ((array ()

(� ((x all)) x))

(array (2) #t #f))

We make a slight change to the scalar identity function from the
previous example: the specified rank is now all. This means that SYN:FN

will use p*x, an existential array type variable, for x’s type. An array
type variable as the cell type indicates that the function is written to be
polymorphic in this argument’s cell rank, so the frame for this argument
is required to be scalar. When checking the argument against the input
type p*x, subtyping resolves p*x as (A Bool (shape 2))

The elaborated code is similar to the scalar case, but the argument’s
shape has propagated to the formal parameter’s type annotation:

((array () (� ((x (A Bool (shape 2)))) x))

(array (2) #t #f))

8.2.8 Type-Quantified Scalar Identity Function

(((� ((x 0)) x)

: (� (&t)

(-> (&t) &t)))

[#t #f])

(((array ()

(� ((x 0)) x))

: (A (� (&t)

(A (->

((A &t

(shape)))

(A &t (shape)))

(shape))) (shape)))

(array (2) #t #f))

In order to demonstrate instantiation of a polymorphic function, we
use a version of the identity function annotated with a polymorphic type.
When SYN:APP synthesizes a type for the function, the presence of an
annotation means that we use SYN:ANNOT to switch from synthesis to
checking. First, CHK:ALL removes the quantifier and adds the universal
type variable &t to the environment. An explicit type abstraction is
inserted into the elaborated code at this point. Despite having a prescribed
type for the function, we still must elaborate the rank specifier into a
type specifier. A subtype check compares the cell type derived from the
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0 rank specifier with the cell type given in the goal. Since 0 is turned
into (A p&x (shape)), subtyping just resolves the existential variable as
the universal variable &t. Checking the function body’s type must use
CHK:SUB and SYN:VAR, looking up the type for the bound variable x

and comparing it against the intended output type &t. Since x is bound at
that type, subtyping succeeds with no update to the environment.

The application judgment invoked by SYN:APP must begin by using
APP:ALL, which unwraps the universal type and converts its quantified
type variable into an unsolved existential type variable. The function is
then elaborated to a type application, instantiating the polymorphic func-
tion at the still unknown argument type: (t-app ... p&t). We continue
with the application derivation treating the function produced by t-app

as operating on p&t scalars. Checking the argument [#t #f] against an
unknown frame around that atom type resolves p&t as Bool. The whole
term’s synthesized type is (A Bool (shape 2)). The elaborated code is
explicit about quantification and instantiation:

(((t-app (array ()

(T� ((&t Atom))

(array ()

(� ((x (A &t (shape)))) x))))

Bool))

(array (2) #t #f))

8.2.9 Type-Quantified Cell-Rank Polymorphic Identity

(((� ((x all)) x)

: (� (*t)

(-> (*t) *t)))

[#t #f])

(((array ()

(� ((x all)) x))

: (A (� (*t)

(A (-> (*t) *t)

(shape)))

(shape)))

(array (2) #t #f))

Instead of quantifying over the input element type, we now quantify
over the entire input type—element and shape—at once by using an
array type variable. The generated type application must instantiate with
the argument’s full type rather than the type of its atoms, but this is still
determined by a straightforward subtype check. The elaborated code is
similar to the previous example:
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(((t-app

(array ()

(T� ((*t Array))

(array ()

(� ((x *t)) x))))

(A Bool (shape 2))))

(array (2) #t #f))

Note that the rank specifier all is required in order for the source pro-
gram to be well-typed. The annotated type promises to accept arguments
of any cell shape, whereas any other rank specifier would fix the cell
rank. Recall that subtyping will not relate functions with differing rank
specifiers because reranking can change a function’s behavior (although
this particular function happens to behave the same).

Although we are able to find (A Bool (shape 2)) as the result type,
we narrowly miss a pitfall: If we had some other argument provide a
non-scalar frame, the application judgment would be unable to construct
the result type. We would need a *t cell inside the appropriate frame, but
we have no way to state the result’s atom type and full shape. So although
quantifying over array types offers some notational convenience, it is
more robust to quantify separately over atom type and shape.

8.2.10 Type- and Cell-Shape Quantified Identity

(((� ((x all)) x)

: (� (&t)

(� (@s)

(-> ([&t @s])

[&t @s]))))

[#t #f])

(((array ()

(� ((x all)) x))

: (A (� (&t)

(A (� (@s)

(A (->

((A &t @s))

(A &t @s))

(shape)))

(shape)))

(shape)))

(array (2) #t #f))

Checking the function’s type, as called for by CHK:ANNOT, now has
two layers of polymorphism to unwrap. We add an element type variable
and a shape variable to the environment before we reach the � itself.
The eventual application judgment also must unwrap both layers, adding
unsolved existentials p&t and p@s to the environment. The shape equality
in the check that (A Bool (shape 2)) ď (A p&t p@s) will resolve p@s as
(shape), and the premise which handles the element type will resolve p&t

as Bool. The elaborated code includes both index and type application to
produce a result of type (A Bool (shape 2)).
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((i-app

(t-app

(array ()

(T� ((&t Atom))

(array ()

(I� ((@s Shape))

(array ()

(� ((x (A &t @s)))

x))))))

Bool)

(shape 2))

(array (2) #t #f))

8.2.11 Outer Product

(~(0 1)*

[10 20 30]

[5 6])

((array ()

(� ((x 0) (y 1))

(* x y)))

(array (3) 10 20 30)

(array (2) 5 6))

Much of the structure of this bidirectional type derivation is similar to
that for vector-scalar addition, but the η-expanded function introduces a
slight twist. SYN:APP calls for synthesizing the function array’s type, so
we must elaborate the rank specifiers 0 and 1 into types made from fresh
existential variables: (A p&x) and (A p&y (shape x$y0)). The application
of * in the function body checks whether x is a frame-extended integer
scalar, which resolves p&x as Int. Next, checking whether y is also a
frame-extended integer scalar updates the environment to show p&y as Int
as well. Although we do not know the value of x$y0, it must be true that
(shape) is a prefix of (shape x$y0). It is important that the solver is not
overeager about choosing values for dimensions here, or it might choose
one that conflicts with the value later passed in as y.

The function body thus has type (A p&y (shape x$y0)), i.e., a (shape
x$y0) frame around the (A Int (shape)) cells produced by *. When we
finish synthesizing the function’s type, the existential variables represent-
ing frame shapes for x and y are no longer needed and drop out of the
environment.

In the outer application form, the frame discovered by APP:FN*A

for the first argument is (shape 3). Like the vector-scalar addition case,
we continue to the next argument as though the function array itself
had shape (shape 3). Checking the second argument against the frame-
extended input type (A Int (++ x@af (shape x$y0))) finally forces x$y0

to resolve to a particular value: it must be 2. The argument frame x@af



8.2 P R AC T I C A L U S E 133

is found to be (shape), which is compatible with the function’s frame
(shape 3). Wrapping that frame around the function’s output type (A

Int (shape 2)) gives (A Int (shape 3 2)) as the result type.
Again, although the function ~(0 1)* appears to be polymorphic in the

second argument’s cell length, no generalization is asked for (or required).
So we have a monomorphic type for this function in the elaborated code:

((array ()

(� ((x (A Int (shape)))

(y (A Int (shape 2))))

(* x y)))

(array (3) 10 20 30)

(array (2) 5 6))

8.2.12 Major Axis Length

(length

[[[ 1 2 3] [ 4 5 6]]

[[ 7 8 9] [10 11 12]]

[[13 14 15] [16 17 18]]

[[19 20 21] [22 23 24]]])

(length

(array (4 2 3)

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24))

This example isolates type and index instantiation, but unlike the
cell-polymorphic identity function, this requires selecting a dimension
and a shape. The length function gives the size of an array’s major axis
as a term-level integer. This is only possible if the array has a major
axis. Matching an argument’s shape to that specified by length’s type
names that particular dimension $l and the entire sequence of remaining
dimensions @c.

The argument type includes a shape variable, so no frame lifting is
permitted—length is treated as an all-ranked function. After peeling
off the polymorphism layers via APP:ALL and APP:PI, we check the
argument array against the function input type (A p&t (++ (shape p$l)
p@c)). SUB:ARRAY’s premise for atom types leads to resolving p&t as Int,
and the shape equation (++ (shape p$l) p@c) � (shape 4 2 3) is solved
by p$l“ 4 and p@c“ (shape 2 3). When these are substituted in during
elaboration, the resulting code is:

((i-app (t-app length Int) 4 (shape 2 3))

(array (4 2 3)

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24))
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8.2.13 Vector Norm

(� ((v 1))

(sqrt

(reduce/0

+. 0 (*. v v))))

(� ((v 1))

(sqrt

(reduce/0

+. (array () 0)

(*. v v))))

Synthesizing a type for this function becomes interesting once we
get to the application of reduce/0. The APP:ALL and APP:PI rules put
p&t, p$l, and p@c into the environment. The cell type for the first argument
is now a scalar containing a binary function on (A p&t p@c). Matching
the frame-extended version of that with type of +. must go through the
subtype rules for functions. Since +. consumes floating-point scalars,
we need to ensure that the goal input type is a subtype of (A Float

(shape)). This is solved via SUB:ARRAY with p&t as Float and p@c as
(shape). Since the cell type for the next argument—the alternative zero
case—has its existentials resolved, nothing interesting happens there.

The final index argument p$l is only resolved once we check the third
argument. Lifting *. over two vectors gives a vector of the same length.
For the function’s argument v, the rank specifier of 1 would be elabo-
rated into a cell type (A p&v (shape x$v0)). Passing v to *. is enough
to determine that p&v is Float. The third argument to reduce/0 thus has
type (A Float (shape x$v0)), but x$v0 remains unresolved. Equating the
expected input shape (shape p$l) and the argument shape (shape x$v0)

still does not give a concrete value, it does require that p$l and x$v0 be
equal. So the solver updates the environment to give x$v0 as the solution
for p$l (and adds p$l � x$v0 to the constraint archive).

The output type of reduce/0 has solutions for all of its existentials, so
we know this application form will produce a float scalar. That scalar
is then passed to sqrt, with a scalar frame. The final synthesized type
is (A (-> ((A Float x$v0)) (A Float (shape))) (shape)), a function
from a float vector to a float scalar, but the vector length is still under-
determined. This is a monomorphic vector-norm function, but which of
the N-sized family of vector-norm functions won’t be decided until we
apply it. The code we have can be applied to a vector of any length, but it
must be explicitly generalized in order to be used on vectors of different
lengths. The elaborated code still contains the existential variable for the
argument’s unspecified length:

(� ((v (A Int (shape x$v0))))

(sqrt ((i-app (t-app reduce/0 Int) x$v0 (shape))

+ (array () 0) (* v v))))
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8.2.14 Vector Sum

~(1 1)+ (� ((x 1) (y 1)) (+ x y))

Synthesizing a type for this function relies on the ability to recognize
aliasing of argument dimensions. The function body is only safe to exe-
cute if both x and y have the same length. We get that ability from having
the shape theory solver identify an equivalence relation on dimensions.
Elaborating the rank specifiers into cell types gives (A p&x (shape x$x0))

and (A p&y (shape x$y0)). Each existential atom variable will be identi-
fied as Int when checking the respective term variable as an argument
for +.

Dimension aliasing is discovered by frame analysis. First, APP:FN*A

checks whether x’s type is a frame extension of an integer scalar, dis-
covering the frame shape (shape x$x0). Then we proceed to the second
argument with (shape x$x0) as the function array’s shape. When the next
use of APP:FN*A compares y’s frame against the function frame, it is
forced to equate (shape x$x0) and (shape x$y0). The minimal equiva-
lence relation under which that equation is satisfiable has x$x0 � x$y0, so
the solver will update the environment to reflect that x$y0 stands for x$x0.

Like the vector-norm function, the elaborated code for vector sum still
contains the unresolved length x$x0:

(� ((x (A Int (shape x$x0)))

(y (A Int (shape x$x0))))

(+ x y))

8.2.15 Transpose and Add

(� ((x 2))

(+ x (transpose x)))

(� ((x 2))

(+ x (transpose x)))

SYN:FN generates two separate existential dimension variables for x,
but adding a matrix to its own transpose only works if the matrix is square.
We have another case of dimension aliasing. This time, the aliasing is
discovered when matching argument frames for +. The application of
transpose must resolve its dimension arguments p$a and p$b. The frame-
matching shape equation is (++ pxf (shape p$a p$b))� (shape x$x0 x$x1).
Its solution must map pxf to (shape), p$a to x$x0, and p$b to x$x1. The result
type for transpose is then (A Int (shape x$x1 x$x0)).

When typing the application of +, APP:FN*A discovers that the first
argument has frame (shape x$x0 x$x1). Propagating that to the function
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array’s pretended shape, handling the second argument requires solving
(shape x$x1 x$x0) � (++ pte (shape x$x0 x$x1)). The second argument’s
frame need not expand, so pte is resolved to (shape). The remaining
dimensions align such that x$x0 � x$x1, so the environment returned by
the solver must have x$x0 as the solution for x$x1. The function’s input
and output types are thus found to be (A Int (shape x$x0 x$x0)), with
the elaborated code as follows:

(� ((x (A Int (shape x$x0 x$x0))))

(+ x ((i-app (t-app transpose Int) x$x0 x$x0) x)))

8.2.16 1D Stencil

(� ((w 1) (s 1))

(reduce/0

~(1 1)+

((� ((k 0)) 0.) s)

(* w (rotate

(iota/w w) s))))

(� ((w 1) (s 1))

(reduce/0

(array ()

(� ((x 1) (y 1))

(+ x y)))

((� ((k 0))

(array () 0.)) s)

(* w (rotate

(iota/w w) s))))

The earlier reduction in the vector-norm function was meant to add
up individual numbers in the vector, but here we add up all the vectors
in a matrix. This requires a vector-addition function, (typed in an earlier
example). The zero case also needs a vector instead of a scalar, which we
can construct by lifting the constant-zero function over the scalar cells of
s. Constructing the time-shifted versions of s lifts rotate over a vector
of rotation amounts. That vector is constructed by the “iota with shape
witness” function: iota/w takes an array of any shape and produces an
array of matching shape whose atoms are enough natural numbers to fill
out the array.

There are several instances of selecting type and index arguments
(for reduce/0, rotate, and iota/w), elaborating function’s input cell
dimensions (w, s, x, and y), and spotting how an iteration space is built
(by iota/w and rotate) and then collapsed (by reduce/0).

Through the entire type synthesis process, the lengths of w and s

remain undetermined, but they are used in the elaborated code to select
the lengths of x and y, the length of the rotation vector, and the lengths
of the reduced and preserved matrix axes.
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(� ((w (A Int (shape x$w0)))
(s (A Int (shape x$s0))))

((i-app (t-app reduce/0 Int) x$w0 (shape x$s0))
(array () (� ((x (A Int (shape x$s0)))

(y (A Int (shape x$s0))))
(+ x y)))

((array () (� ((k (A Int (shape))))

(array () 0)))

s)

(* w ((i-app (t-app rotate Int) x$s0 (shape))

((i-app (t-app iota/w Int) (shape x$w0)) w)

s))))

8.2.17 1D Stencil with Lifting Reduce

(� ((w 1) (s 1))

(reduce/L0

+ 0.

(* w (rotate

(iota/w w) s))))

(� ((w 1) (s 1))

(reduce/L0

+

(array () 0.)

(* w (rotate

(iota/w w) s))))

Having to manage the lifting of a reducing function is awkward for
the programmer. A more flexible “lifting reduce” function reduce/L0

can simplify the code. Instead of requiring the programmer to rerank the
reducing function and construct a full cell of zeroes, reduce/L0 expects
a function which can lift to operate along the array’s major axis. How
much it will lift is represented by an additional shape argument.

An input type with multiple shape variables may look risky due to the
potentially high cost of branching in the shape solver’s search. Having
multiple possible alignments for shape variables’ boundaries can lead
to bad decisions and backtracking within the solver or even multiple
distinct solutions to an equation (and backtracking in the subtyping or
even bidirectional rules). However, we expect that by the time we reach
the argument with multiple shape variables, one of those will already
have a solution.

For this particular code, checking + against the frame-extended version
of reduce/L0’s first input type resolves p@c as (shape). Then the third
argument’s shape equation is (++ (shape p$l) p@f) � (shape x$w0 x$s0),
forcing p$l � x$w0 and p@f � (shape x$w0). The elaborated code is smaller
as well for not needing the explicit lifting management.
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(� ((w (A Int (shape x$w0)))

(s (A Int (shape x$s0))))

((i-app (t-app reduce/L0 Int) x$w0 (shape x$s0) (shape))

+

(array () 0)

(* w ((i-app (t-app rotate Int) x$s0 (shape))

((i-app (t-app iota/w Int) (shape x$w0)) w)

s))))

8.2.18 Matrix Product

(� ((a 2) (b 2))

(~(0 0 2)reduce/L0

+ 0

(~(1 2)* a b)))

(� ((a 2) (b 2))

((array ()

(� ((f 0)

(z 0)

(x 2))

(reduce/L0 f z x)))

+ (array () 0)

((array ()

(� ((q 1) (r 2))

(* q r)))

a b)))

Matrix multiplication is another opportunity to use reduce/L0, and the
shape equations work out similar to the stencil computation example. It
also has dimension aliasing: The second dimension of a must match the
first dimension of b. Identifying this requirement starts from synthesizing
the type of the reranked * function. Frame matching demands that q and r

share the same first dimension. Then lifting the reranked * over arguments
a and b uses a’s minor axis as q’s sole axis. Thus x$r0 is resolved as x$q0,
which in turn is resolved as x$a1. At the same time, x$r0 and x$r1 are also
forced to be equal to x$b0 and x$b1 respectively. The elaborated code shows
x$a1 and x$b1 driving the dimension selection for reranked functions— x$a0

is the leading dimension of the three-dimensional intermediate structure,
so it is only used as part of a frame shape.
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(� ((a (A Int (shape x$a0 x$a1)))

(b (A Int (shape x$a1 x$b1))))

((array ()

(� ((f (A (-> ((A Int (shape))

(A Int (shape)))

(A Int (shape))) (shape)))

(z (A Int (shape)))

(x (A Int (shape x$a1 x$b1))))

((i-app (t-app reduce/L0 Int)
x$a1 (shape x$b1) (shape))

f z x)))

+

(array () 0)

((array ()

(� ((q (A Int (shape x$a1)))

(r (A Int (shape x$a1 x$b1))))

(* q r)))

a b)))

8.2.19 Monomorphic and Polymorphic Functions Coexisting

[+ fst]

[fst +]

[[+ fst]

[fst +]]

(frame (2) + fst)

(frame (2) fst +)

(frame (2)

(frame (2) + fst)

(frame (2) fst +))

Three closely related examples demonstrate a limitation of the bidi-
rectional rules. Type synthesis for an array or a frame form synthesizes
a type for the first atom or cell and uses that type to check the remain-
ing ones. This can lead to trouble with identifying how polymorphic a
function array is meant to be.

In the first case, synthesis checks fst against the monomorphic type of
+. This succeeds, with fst coerced from polymorphic to monomorphic
by type application:

(frame (2) + (t-app fst (A Int (shape))))

In the second case, synthesis tries to check + against the polymorphic
type of fst. Since + is only usable on integers, it is not general enough
to pass this check, and type synthesis fails. Developing more order-
robust versions of SYN:ARRAY and SYN:FRAME, such as by devising
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31 By both Remora and MLsub

a distributive lattice structure around higher-rank polymorphic types as
suggested by Dolan’s design of MLsub [19], is left to future work.31

We consider now an alternative possibility. Order dependence makes
it as easy to fall out of synthesizability holes as it is to fall in them. If the
unfortunately ordered [fst +] appears as a cell in a larger frame such as
the third case, where another cell identifies the monomorphic atom type,
synthesis succeeds. SYN:FRAME is able to synthesize a type for [+ fst]

and then uses that to check the type of [fst +]. Knowing that we want a
function on integer scalars prevents us from being led astray by starting
with fst’s polymorphic type, and we generate the proper instantiation in
elaborated code:

(frame (2) (frame (2) + (t-app fst (A Int (shape))))

(frame (2) (t-app fst (A Int (shape))) +))

8.2.20 Length of Boxed Vector

((� ((x (� ($d)

[Int $d])))

(unbox ($l v x)

(length v)))

(box 4 [1 2 3 4]))

((array ()

(� ((x (A (� ($d)

(A Int

(shape $d)))

(shape))))

(unbox ($l v x)

(length v))))

(box 4 (array (4)

1 2 3 4)))

A box’s type is polymorphic in that it abstracts over the shape of the
contents. Unboxing relies on that polymorphism, so a hint about the
intended abstraction is required. In this example, that hint is given as
a cell-type specification. Having the � type annotated clarifies how the
type of the contents—bound as v—relates to the abstracted dimension
$l. There is no need to produce boxed output because the result type
makes no mention of $l.

The argument is given as a box form with no annotation. Being passed
to a function known to expect a particular � type gives a specific enough
goal type that we check the argument’s type rather than synthesize it.
The elaborated code shows the instantiation of length and the generated
annotation on the box.
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((array ()

(� ((x (A (� (($d Dim))

(A Int (shape $d))) (shape))))

(unbox ($l v x)

((i-app (t-app length Int) $l (shape)) v))))

(array ()

(box 4 (array (4) (1 2 3 4))

(� (($d Dim)) (A Int (shape $d))))))

8.2.21 Misuse of Unboxing

((� ((x (� ($d)

[Int $d])))

(unbox ($l v x)

(reverse v)))

(box 4 [1 2 3 4]))

((array ()

(� ((x (A

(� ($d)

(A Int

(shape $d)))

(shape))))

(unbox ($l v x)

(reverse v))))

(box 4 (array (4)

1 2 3 4)))

The only change from the previous example is replacing length with
reverse. Now we have ill-typed code. The type synthesized for the
function body includes $l as its length, and that variable goes out of
scope as we exit the unbox.

8.2.22 Factorial

(� ((x 0))

(unbox ($l v (iota0 x))

(reduce/0

* 0 (+ 1 v))))

(� ((x 0))

(unbox ($l v (iota0 x))

(reduce/0

* (array () 0)

(+ (array () 1)

v))))

Instead of a manually constructed box form, we have a built-in func-
tion returning a boxed vector. Since the boxed array’s type is determined
from iota0’s output type, no annotation is needed. With the box’s hidden
dimension variable bound as $l, frame analysis identifies the applica-
tion of + as having (shape $l) as its principal frame. Then reduce/0’s
instantiation is inferred like in previous examples.
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(� ((x (A Int (shape))))

(unbox ($l v (iota0 x))

((i-app (t-app reduce/0 Int) $l (shape))

* (array () (0)) (+ (array () (1)) v))))

8.2.23 Review of Results

This section’s corpus of Remora code samples covers several cases of
rank-polymorphic lifting, with the principal frame provided by the func-
tion, an early argument, or a late argument. Instantiation of polymorphic
functions is used heavily, but never with a user-provided annotation
indicating the instantiation arguments or intended monomorphic type.
Reranking is also used in many code samples, highlighting the fact that
cell-polymorphic generalization is not necessary for common use of
reranking. Since reranking is used as a local, purpose-specific alteration
to some pre-existing function, type synthesis only requires choosing a
suitable monomorphic type for a reranked function. Even if the under-
lying function is polymorphic, reranking elaborates to a monomorphic
function with the appropriate instantiation of it.

The need for specifying cell types instead of ranks only arose when
dealing with cell-type polymorphism. Generalizing to polymorphic input
type requires that the programmer specify the intended type. Automatic
generalization conflicts with Remora’s lack of principal types (due to
both algebraic issues with dimension constraints and permitting higher-
rank polymorphism). Constructing boxed data also requires a type anno-
tation in order to specify what shape information is hidden and what is
exposed, analogous to a module signature in ML. The other awkward
point is packing monomorphic and polymorphic functions together in
the same array. Uncertainty about how polymorphic to make the func-
tion array can lead type synthesis to paint itself into a corner, although
if a goal type is specified to disambiguate, the checking mode in the
bidirectional rules reaches the right conclusion.
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B A C K G R O U N D

Silicon has limited flexibility to handle operands of varying size. While
rank-polymorphic code is written without loops, there must eventually
be a loop somewhere in order to run it. Past work on compiling APL, and
array-oriented code more generally, has focused heavily on emitting ap-
propriate loop code and been limited by the shape information available
to the compiler. The goal of Remora is not to invent new uses for shape
information but to make it more accessible. At this point, we have a core
semantics describing how code which is polymorphic over frame shape
ought to run, as well as a way of automatically instantiating code which
is polymorphic over cell shape. What remains is to show that execution
of Remora code does not rely on extensive run-time type information, as
was used in the formal semantics.

There is a fork in the road here in terms of compilation strategy:
We can start by paring down the type annotations or by making the
iteration structure explicit. Before taking that fork, this chapter gives an
overview of past work on translation techniques for array-oriented code
and associated translation target.

9.1 C O M P I L AT I O N TA R G E T S

Abrams defined an abstract machine for running APL programs [3]. The
program representation used by this machine is quite close to APL itself,
retaining implicit iteration of scalar operations over vector operands,
though it is extended with control instructions. A key contribution of this
machine is delaying execution of array-producing operations so that they
can be fused with later array-consuming operations. Abrams notes the ne-
cessity of shape information for guiding the machine’s execution. Elsman
and Dybdal designed Typed Array Intermediate Language [26] to keep
track of rank information while compiling APL code, but their compiler
does not keep full shape details. Follow-up work adds a translation from
this TAIL to Futhark [37].

SISAL [67], a language with explicit iteration, has been used as a com-
pilation target by the Apex compiler [6]. Apex uses data-flow analysis to
discern the shapes of array values, but APL’s hostility to static analysis
leads to computing on arrays of uncertain shape. Such operations must
have run-time shape checks.

Grelck and Scholz make a strong argument for SAC as a compilation
target for rank-polymorphic code [34, 89]. SAC’s with loops behave
more like comprehensions than traditional for loops, producing arrays as

145



146 B AC K G RO U N D

results. Although moving from APL’s implicit iteration to SAC’s explicit
comprehension is a significant leap, little else in a typical APL program
needs to be restructured in order to rewrite it as a SAC program. This
particular research effort was concerned primarily with performance im-
plications of writing SAC code in the APL style rather than the traditional
C style, so no mechanical translation process is presented. However, the
semantic leap from APL to SAC turns out to be quite small. When array
dimensions are statically unknown due to writing cell-shape indepen-
dent code, the proper iteration space can still be constructed in SAC
by querying arrays’ shapes. SAC code written to follow the APL style
far outperformed the original APL code (run through an off-the-shelf
interpreter). The improvement comes the caveat that SAC code is rank
monomorphic, so mechanical translation would require some analysis
to determine all arrays’ ranks. This presents more of a problem for APL
than it does for Remora.

Rink and Castrillon designed TeIL (“Tensor Intermediate Language”)
as a formally specified intermediate representation for aggregate oper-
ations. While it does not use an explicit keyword to indicate iteration,
index variables in a TeIL expression encode an iteration space whose
boundaries are based on the extents of the dimensions those variables are
used to index. TeIL is not meant to be attached to any particular compiler
infrastructure, but was motivated partly by unexpected behavior observed
in other array-program compilation systems. In TeIL, an array is typed
by a tuple of natural number literals representing the array’s shape—
TeIL code is not polymorphic in rank or individual dimensions. For
Remora’s purposes, targeting TeIL would require dynamic compilation,
static monomorphization, or substantial extension of TeIL itself.

Nova [13] was designed as a higher-level front-end to CUDA [70]
with several common parallel operations built in. Unlike rank-poly-
morphic languages, Nova uses an explicit map operator which oper-
ates only over vectors. Calls to map must be nested in order to operate
on higher-dimensional data. LambdaJIT [58] is a lower-level CUDA-
targeted system originally meant for retargeting C++ STL algorithms for
parallel execution on a GPU. Operating at run time allows LambdaJIT to
specialize its generated code for the concrete data type and input sizes
used in actual calls to STL algorithms. Since many operations provided
by the STL—such as transform, iota, reduce—are the bread and butter
of array-oriented programming, LambdaJIT has been explored as a com-
pilation target for array programs, specifically with a prototype back-end
for the Nova compiler.

The proliferation of custom operators not already provided by high-
performance tensor computation libraries motivated the development
of Tensor Comprehensions [96]. Such operators may involve memory
access patterns or combinations of primitive arithmetic operations which
are poorly supported by the underlying hardware. Graph-based systems
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(discussed further below) have fared poorly on such use cases. TC’s
source language is meant to be a more flexible foundation than a collec-
tion of array-manipulation primitives such as is provided by a traditional
rank-polymorphic language. Like many prior array languages, the pro-
gram code represents a loop body, with the iteration structure derived
by the compiler. However, in TC, that derivation is based partially on
the occurrences of array-element index variables in the source program,
using them as loop induction variables, as opposed to an APL-style
notation with no induction variables at all. The loop bounds for those
indices are inferred from the individual array dimensions they are used
to implicitly traverse. Indices on the left-hand side of an assignment
function somewhat like binding occurrences, and indices which appear
free on the right-hand side describe dimensions along which to reduce.
Although TC does not promise to always infer ranges correctly in espe-
cially tricky cases, particularly when there exist multiple valid choices
of loop bounds, Remora need not rely on it to do so.

9.2 DATA F L O W G R A P H S

Array-based programming systems targeted at machine learning appli-
cations, such as TensorFlow [1] and PyTorch [77], often use a dataflow
graph as the internal representation because a neural network is itself
organized as a dataflow graph. Such representation facilitates both loop
fusion and automatic differentiation by directly stating which inputs and
intermediate values influence other computed values. The traditional
method of executing a dataflow graph directly still carries significant
interpretive overhead, which ought to be compiled away. XLA [92] and
Glow [87] are compilers specifically designed towards that goal for
TensorFlow and PyTorch respectively.

Glow’s compilation pipeline is divided into high- and low-level sec-
tions with their own separate internal representations. Glow simplifies
compilation to heterogeneous hardware by translating the very large
arsenal of commonly used operations into a smaller set of primitives
so that low-level stages, which are meant to be written or extended by
hardware vendors, do not need to handle as wide a space of possible input
programs. The low-level stages can instead focus on target-specific opti-
mizations such as scheduling and memory reuse. Optimizations based
on domain knowledge, such as algebraic properties of operations used in
the source program, are performed instead on the high-level IR.

TVM [12] also performs substantial graph transformation but its pri-
mary contribution is to abstract away hardware-specific details such as
constraints on operand dimensions and layout, scheduling and latency
issues, and availability of specific instructions. TVM’s compilation frame-
work offers a way to declare new hardware-specific intrinsics, along with
the code transformations which should generate their use. This method



148 B AC K G RO U N D

of connecting higher-level array operations to the set of available hard-
ware operations can create a large search space for target code, and the
compiler cannot have extensive pre-formed knowledge of its structure.
Because program optimization in this context demands highly general
reasoning, i.e., target-specific reasoning is infeasible, TVM uses machine
learning to estimate the run-time cost of candidate output programs.

Glow and TVM’s motivation echoes that of TC, but focusing on new
target machine capabilities rather than new source language operations.
In the other direction, TC addresses the issue of dataflow graph IRs not
offering a rich enough set of primitives to keep up with a steady stream
of newly invented network architectures.

Remora’s higher-order features limit ease of statically constructing
a dataflow graph, so that is beyond the scope of this work. In future
work, dynamic compilation may give a sufficiently first-order view of a
Remora program to make graph-based execution viable.



10
T Y P E E R A S U R E

The dynamic semantics given in Chapter 4 relies on ubiquitous type
annotations in order to determine how function application will proceed
or how a frame of sub-arrays should collapse to a single array. While
the possible case of constructing a frame with no actual result cells
whose shape can be inspected can only be resolved by consulting a type
annotation, the types themselves contain more information than is strictly
needed. For example, it does not matter whether we are collapsing an
empty frame of functions, an empty frame of integers, or an empty frame
of boxes. The result shape is the same, regardless of the type of the
atoms contained within the cells. All we truly need is the resulting shape
(alternatively, the result cells’ shape). Similarly, evaluating a function
application requires knowing the expected cell shapes for the arguments,
but it could, in principle, be done without knowing anything about their
atoms. Function application is still tagged with a result shape, again to
head off issues arising from mapping over an empty frame.

10.1 E R A S E D R E M O R A

In a type-erased version of Remora, we only need the term and index
levels—the syntactic class of types is discarded. The syntax for erased
Remora is given in Figure 10.1. Note that the grammar of type indices
from Figure 4.1 is still in use here, although expressions, atoms, and
their corresponding function and value-form subsets are now replaced
with type-erased versions.

Evaluation in erased Remora proceeds similarly to explicit Remora. A
function-application form has a principal frame chosen to be the largest
of the function and argument frames, and a lift reduction replicates the
function and argument arrays’ atoms to bring all of the frames into
agreement. The argument frames themselves are identified based on the
individual argument positions’ cell-shape annotations, rather than by
inspecting a type annotation on the array in function position. A map
reduction turns an application form where all pieces have the same frame
into a frame form, where the end-result shape matches the result shape
tag on the original application. Index application also maps over an array
of index functions, producing a frame of substituted function bodies.
Since the type level has been eliminated, there are no T� and t-app forms
and no need for a tβ reduction rule.

149
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pe PzExpr ::= Type-erased expressions

x Variable reference

| (array (n . . . ) pa . . . ) Array, containing atoms

| (frame ιpe . . . ) Frame, containing sub-arrays

| (pef (pea ιa) . . . ιr) Term application

| (i-apppef ιa . . . ιr) Index application

| (unbox (xi . . . xe pes)peb ιb) Let-binding box contents
pa P zAtom ::= Type-erased atoms

b Base value

| pf Function

| (Iλ (x . . . )pe) Index abstraction

| (box ι . . . pe) Boxed array
pf PzFunc ::= Type-erased functions

| o Primitive operator

| (λ (x . . . )pe) Term abstraction

pv P xVal ::= Type-erased values

x

| (array (n . . . ) pv . . . )
pv P zAtval ::= Type-erased atomic values

b

| pf

| (Iλ (x . . . )pe)

| (box ι . . . pv)
pV P yCtxt ::= Type-erased evaluation contexts

˝

| (array (n . . .) pv . . .

(box ι . . . pV)

pa . . . )

| (frame ι pv . . . pVpe . . . )

| (pV (pea ιa) . . . ιr)

| (pef (pva ιa) . . . (pV ιa)

(pea ιa) . . . ιr)

| (i-app pV ιa . . . ιr)

| (unbox (xi . . . xe pV)peb ιb)

| (unbox (xi . . . xe pvs) pV ιb)

pt P zTerm ::= pe | pa Type-erased terms

Figure 10.1: Abstract syntax for type-erased Remora
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((array (nf . . .) pvf . . .)
((array (na . . . ni . . .) pva . . .) (shape ni . . . )) . . .
ιr)
ÞÑlift

((array (np . . .) Concat
r
Repnfe

q
Split1

q
pvf . . .

yyz
)

((array (np . . . ni . . .) Concat
r
Repnae

r
Splitnac Jpva . . .K

zz
)

(shape ni . . . )) . . .
ιr)

where
Not all of

`

nf . . .
˘

,pna . . .q . . . are equal

np . . . =
ğq`

nf . . .
˘

pna . . .q . . .
y

nfe =

ź

`

np . . .
˘

ź

`

nf . . .
˘

nae . . . =

ź

`

np . . .
˘

ź

pna . . .q
. . . nac . . . =

´

ź

pni . . .q
¯

. . .

((array (nf . . .) pvf . . .)
((array (nf . . . ni . . .) pva . . .) (shape ni . . . )) . . .
ιr)
ÞÑmap
(frame (nf . . .)
((array () pvf ) ((array (ni . . .) pvc . . .) (shape ni . . . )) ιc) . . .)

where
nc . . . = p

ś

ni . . .q . . .

ppvc . . .q . . .q . . . = Transpose
r
Splitnc Jva . . .K . . .

z

Length
q
nf . . .

y
> 0

ιc . . . =
`

ιr ´ (shape nf . . . )
˘

. . .

((array () (� (x . . .) pe)) ((array (ni . . .) pv) (shape ni . . . )) . . .
ιr)
ÞÑβ perx ÞÑ pv, . . . s

(i-app (array (nf . . .) (i� (x . . .) pe) . . .) ιa . . . ιr)
ÞÑiβ (frame ιr perx ÞÑ ιa, . . . s . . .)

(frame (shape n . . . ) (array (n1 . . .) v . . .) . . .)
ÞÑcollapse (array (n . . . n1 . . .) ConcatJpv . . .q . . .K)

(unbox (xi . . . xe (array (ns . . .) (box ι . . . pv))) pe ιb)
ÞÑunbox (frame (++ (shape ns . . .) ιb) erxi ÞÑ ι, . . . ,xe ÞÑ pvs)

Figure 10.2: Dynamic semantics for erased Remora
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The translation from explicit Remora to erased Remora consists of
three erasure functions: EJ¨K : ExprÑzExpr, AJ¨K : AtomÑ zAtom, and
T J¨K : TypeÑ Index. These functions are defined in Figure 10.3.

We also define CJ¨K : CtxtÑ yCtxt, given in Figure 10.4, which is not
needed for defining the erased form of an explicit Remora program but
is useful for demonstrating their equivalence.

Types in explicit Remora are turned into indices in erased Remora.
These indices are the dynamic residue of types, in the same sense that
term-level values are dynamic, though they are still subject to a static
discipline which governs their values and their relation to the array values
they describe. Array types become just the shapes used to construct them,
whereas functions, universals, dependent sums and products, and base
types become the “scalar” shape. Extracting the index components of
all types means that type variables can be turned into index variables,
which will stand for the index component of whatever type the variable
originally stood for. This translation captures exactly the information that
a frame form needs in the event that there are no cells. By extension, the
term and index application forms also get the bookkeeping information
needed by the frames they will eventually become.

For example, consider a function term whose type is (-> (s (Arr t

(shape))) (Arr t (shape k))), where s, t, and k are bound as Array,
Atom, and Dim respectively. This function produces a vector of some
statically uncertain length containing atoms of uncertain type. When
we apply this function, the explicitly typed application form describes
the resulting array’s type. If our arguments are a single s and a nˆ 4
matrix of numbers, with n also bound as a Dim, the principal frame shape
is (shape n 4). So we will have result type (Arr Num (shape n 4 k)).
Type-erasing the application form must still preserve enough information
to produce an array of the correct shape, even if n turns out to be 0,
leaving us with no result cells whose shape we can inspect. However,
the dynamic semantics does not rely on knowing that the result array
contains Nums. The binders for index variables n and k, which must be
either I� or unbox, are still present in the type-erased program, since the
indices they eventually bind to those variables will affect the program’s
semantics. The T�s which bind s and t turn into I�s, though the variable
t is never used in the type-erased program. If any type argument was
bound to s in the original program, we replace it with its shape. All
occurrences of s from the original program now stand for an array shape
rather than a full array type.

10.2 C O R R E C T N E S S O F T R A N S L AT I O N

We develop a bisimulation argument to show that the behavior of an
explicitly typed term matches the behavior of its erased form. We define
the space S of machine states to be the sum of the set of well-typed
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EJ(array (n . . . ) a . . . )τr K

“ (array (n . . . )AJaK . . . )

EJ(frame (n . . . ) e . . . )τr K

“ (frame (T JτrK) EJeK . . . )

E
r
(e

(A (-> (τi ...) τo) ιf )

f ea . . . )
τr

z

“ (E
q
ef

y
(EJeaK T JτiK) . . . T JτrK)

E
q
(t-app ef τa . . . )

τr
y

“ (i-app E
q
ef

y
T JτaK . . . T JτrK)

E
q
(i-app ef ιa . . . )

τr
y

“ (i-app E
q
ef

y
ιa . . . T JτrK)

E
q
(unbox (xi . . . xe es) e

τb
b )

y

“ (unbox (xi . . . xe EJesK) EJebK T JτbK)

AJoK“ o

AJbK“ b

AJ(� ((x τ) . . . ) e)K“ (� (x . . . ) EJeK)
AJ(T� ((x k) . . . ) v)K“ (I� (x . . . ) EJvK)
AJ(I� ((x γ) . . . ) v)K“ (I� (x . . . ) EJvK)

AJ(box ι . . . e τ)K“ (box ι . . . EJeK)

T JxK“ x

T J(A τ ι)K“ ι

T JτK“ (shape) otherwise

RJaK“AJaK RJeK“ EJeK

Figure 10.3: Type erasure for Remora
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CJ˝K“ ˝

CJ(array (n . . . ) v . . . (box ι . . . V τ) a . . . )K

“ (array (n . . . )AJvK . . . (box ι . . . CJVK)AJaK . . . )

CJ(frame (n . . . ) v . . . V e . . . )τr K

“ (frame (T JτrK) EJvK . . . CJVK EJeK . . . )

C
r
(V(A (-> (τi ...) τo) ιf ) ea . . . )

τr
z

“ (CJVK (EJeaK T JτiK) . . . T JτrK)

C
r
(e

(A (-> (τ1 ... τ2 τ3 ...) τo) ιf )

f v1 . . . V e3 . . . )
τr

z

“ (E
q
ef

y
(EJv1K T Jτ1K) . . .

(CJVK T Jτ2K)

(EJe3K T Jτ3K) . . . )

CJ(t-app V τa . . . )
τr K

“ (i-app CJVK T JτaK . . . T JτrK)

CJ(i-app V ιa . . . )
τr K

“ (i-app CJVK ιa . . . T JτrK)

CJ(unbox (xi . . . xe V) eb)K

“ (unbox (xi . . . xe CJVK) EJebK)

Figure 10.4: Type-erasing Remora evaluation contexts
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explicit Remora terms and the set of their type-erased forms. That is, S “

ExprT Z{ExprT , where ExprT “ te P Expr|¨; ¨; ¨ $ e : τu and {ExprT “
tEJeK |e P ExprT u. Transitions in the machine match the explicit and
erased languages’ respective ÞÑ relations. We also define the “erasure
equivalence” relation –E on machine states as the equivalence closure of
the relation imposed by EJ¨K. Before we show that –E is a bisimulation,
several intermediate results are needed.

First, the bisimulation proof will in one case need to reach deep into
an expression to find the next redex. A compositionality property of
the erasure rule will make it possible to reason about the redex and
its reduced form separately from the evaluation context in which it is
embedded.

Lemma 10.2.1 (Erasure in context). Given an evaluation context V and
expression e, where Vres is well-typed, EJVresK“ CJVKrEJeKs.

Proof sketch. This follows from straightforward induction on V.

We will also rely on a series of lemmas showing that substitution
commutes with erasure.

Lemma 10.2.2 (Substituting terms into terms commutes with erasure).
RJtrx ÞÑ EJexKsK“RJtKrx ÞÑ EJexKs

Proof sketch. This is straightforward induction on t.

Lemma 10.2.3 (Substituting types into types commutes with erasure).
T Jτrx ÞÑ τxsK“ T JτKrx ÞÑ T JτxKs

Proof sketch. This is straightforward induction on τ .

Lemma 10.2.4 (Substituting types into terms commutes with erasure).
RJtrx ÞÑ τxsK“RJtKrx ÞÑ T JτxKs

Proof sketch. This is straightforward induction on t.

Lemma 10.2.5 (Substituting indices into types commutes with erasure).
T Jτrx ÞÑ ιxsK“ T JτKrx ÞÑ ιxs

Proof sketch. This is straightforward induction on τ .

Lemma 10.2.6 (Substituting indices into terms commutes with erasure).
RJtrx ÞÑ ιxsK“RJtKrx ÞÑ ιxs

Proof sketch. This is straightforward induction on t.

Lemma 10.2.7 (Values erase to values). For any well-typed term t,

• If t has the form v, then RJtK has the form pv

• If t has the form v, then RJtK has the form pv
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Proof sketch. We use induction on t. The only nontrivial cases are box

and array forms, which may be values or may contain incomplete com-
putation. The contents of a box value must itself be a value, which the
induction hypothesis implies will erase to a value. Similarly, an array

value contains only atomic values, which erase to atomic values.

Lemma 10.2.8 (Lockstep). For any well-typed e, one of the following
holds:

• e has the form v, and EJeK has the form pv

• e ÞÑ e1, and EJeK ÞÑ EJe1K

• e ÞÑ, and EJeK ÞÑ

Proof sketch. We prove this by induction on e.
We rely on Lemma 10.2.1 (erasure in context) when e is a redex

er within an evaluation context V other than ˝. If er ÞÑ because we
have a mis-applied primitive operator, then the same is true for EJerK,
so EJeK is also an evaluation context around a mis-applied primitive
operator. Otherwise, er ÞÑ e1r , and the induction hypothesis implies that
EJerK ÞÑ EJe1rK. So EJeK ÞÑ EJe1K, the erased context filled with e1r .

Values are handled by Lemma 10.2.7. For the remaining cases—
redexes—straightforward symbol pushing shows that erased Remora’s
reduction rules follow those of Remora.

Since we have a deterministic operational semantics for both explicitly
typed Remora and type-erased Remora, the lockstep lemma also works
in reverse. If an erased term takes an evaluation step, its preimage cannot
be a value form or stuck state. The preimage must therefore step to some
result expression, which itself erases to the same result. Similarly, a value
form or stuck state in erased Remora cannot have a preimage which takes
an evaluation step.

Corollary 10.2.1 (Reverse lockstep). If EJeK ÞÑ EJe1K, then for any e2

such that e ÞÑ e2, we have e1 –E e2, and at least one such e2 exists. If
EJeK ÞÑ, then e ÞÑ.

Recall our relation –E on the set of machine states S “ ExprT Z
{ExprT , where ExprT “ te P Expr|¨; ¨; ¨ $ e : τu, i.e.the set of well-typed

explicitly-typed terms, and {ExprT is the image of ExprT under type
erasure.–E is the equivalence closure of the relation given by the erasure
function EJ¨K. That is, –E is the least relation which relates two states s
and w iff any of the following hold:

1. s P ExprT and EJsK“ w (erasure proper)

2. s “α w (reflexivity)

3. w –E s (symmetry)
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4. s –E s1 and s1 –E w (transitivity)

Expanding the erasure relation based on EJ¨K to include both symme-
try and transitivity relates any two explicitly typed expressions which
produce α-equivalent erased terms. A –E equivalence class consists of
a single erased Remora expression and all of its preimages. There can
be only one erased Remora expression because type erasure is a well-
defined function (i.e., no single explicitly typed expression can erase to
multiple different results). Formally, every –E equivalence class must
have the form

tpeuZ te P Expr |EJeK“peu

Theorem 10.2.1. –E is a bisimulation. That is, for any states s,w P S if
s –E w, either ps ÞÑ u^w ÞÑ v^u –E vq or ps ÞÑ ^w ÞÑq.

Proof. There are four cases to consider, depending on which of Expr or
zExpr each related term is drawn from, but we can merge the two cases
where s and w are drawn from different languages.

s PzExpr A N D w P Expr, O R V I C E V E R S A : Then s is the sole type-
erased expression in its equivalence class, and EJwK“ s (or vice versa).
Our proof obligation is exactly the lockstep lemma (Lemma 10.2.8).

s,w P zExpr: Since each equivalence class contains only one type-
erased expression, s “ w. They must therefore have the same reduction
behavior.

s,w P Expr: If s ÞÑ, then the lockstep lemma implies EJsK“ EJwK ÞÑ.
Then by reverse lockstep, w ÞÑ as well. On the other hand, if s ÞÑ
s1, then EJsK “ EJwK ÞÑ EJs1K. Lockstep implies EJwK ÞÑ EJw1K. Since
Erased Remora has deterministic operational semantics, EJs1K“ EJw1K
(they are both the result of taking an evaluation step from the same
expression). Therefore, all of their preimages, including s1 and w1 are
erasure-equivalent, i.e., s1 –E w1.
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32 How to do so will be discussed in the
next section.

E X P L I C I T I T E R AT I O N

Using the types as a guide, Remora’s implicit control structure can be
translated into a form with explicit control. Given a fully type-annotated
term, as required by the operational semantics in Chapter 4, all infor-
mation required for a compiler to emit explicit loop code is available.
The looping itself will be represented by adding new syntactic forms
map and rep, representing lifting a function over several arguments with
a uniform frame and replicating cells of an array to expand its frame.
These forms replace Remora’s rank-polymorphic function application.

This can be combined with the type erasure pass from Chapter 10.
Doing so requires a compiler to decorate abstract syntax tree nodes with
frame information.

The transformations described in this chapter might be performed
in different orders. While the presentation here has explicit iteration
precede conversion of indices to expressions, the prototype compiler
used for developing these transformations included merging the term and
index levels as part of type erasure. The hard constraint on pass ordering
is that type erasure should not precede frame and shape annotation—take
note of that information while it is readily available.

11.1 M A P P I N G A N D R E P L I C AT I O N

The internal representation for explicit iteration introduces two new
syntactic forms to describe term-level iteration, map and rep, described
in the grammar in Figure 11.1. The map form replaces implicitly iterative
function application, and it specifies the frame shape ιf . This one frame
is used for the function position and all argument positions. A type
annotation for the result cells is needed in case the frame itself is empty.
Since Remora does not require equal frames, the rep form is needed
to describe how individual arrays’ cells must be replicated in order to
match. Function application itself is now restricted to scalar frames using
the s-app form, which is equivalent to application in a conventional
functional language.

The explicit-iteration grammar can be tuned to account for prior com-
pilation passes. If types are erased before making iteration explicit, the
type in a map, empty array, or empty frame is replaced with an erased
type, i.e., a shape. If a prior pass has merged the term and index levels,32

the shapes in map and rep forms are vector terms rather than indices.
Depending on how thoroughly types have been erased in prior passes,
the internal representation may include analogues of map for type and

159
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e P Expr ::= Expressions

x Variable reference

| (array (n . . . ) a . . . ) Array, containing atoms

| (array (n . . . ) τ) Empty array and its atom type

| (frame (n . . . ) e . . . ) Frame, containing array cells

| (frame (n . . . ) τ) Empty frame and its cell type

| (rep If Ig T ea) Cell Replication

| (map If Tc ef ea . . . ) Function mapping

| (s-app af ea . . . ) Scalar-frame application

| (t-map If Tc e τ . . . ) Type mapping (optional)

| (t-app af τ . . . ) Type application (optional)

| (i-map If Tc e ιa . . . ) Index mapping (optional)

| (i-app af ι . . . ) Index application (optional)

| (unbox Is Tc (xi . . . xe es) eb) Let-binding box contents

Figure 11.1: Abstract syntax for an internal representation with explicit iteration

index arguments. A frame shape is still required to specify the iteration
space, but no argument replication is needed.

With new syntactic forms come new reduction rules, given in Figure
11.2. Where explicit Remora selects which reduction rule to use for a
function application form based on the types of the function and argument
arrays, the explicit-iteration representation removes this decision. A
map can only take a map-like step, and a rep can only take the single-
argument analogue of a lift step. However, since this form does not
include pervasive type annotations, we must treat empty-frame cases
differently. If the term and index level have merged, replacing shapes in
the reduction rules with vectors, for example replacing (shape nf . . . )
with (array (nf . . . ) nr).

Explicit Remora also has implicit iteration in its unbox form, looping
over each box in an array. So the explicit-iteration representation must
include a frame shape identifying the iteration space.

If prior translation passes have not eliminated type- and index-level
computation, the additional reduction rules in Figure 11.3 are needed.
Mapping and applying type and index abstractions behaves like functions;
as in explicit Remora, no lift analogue is needed.

Producing this internal representation from an explicit Remora pro-
gram can be done by inspecting the type annotations on each function
application and its function and argument arrays. The definitions of
the erasure metafunctions—ExplE J¨K for expressions and ExplA J¨K for
atoms—are given in Figure 11.4.
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(rep (shp nf . . .) (shp ng . . .) T
(array (nf . . . nc . . .) v . . .))
ÞÑrep

(array (nf . . . ng . . . nc . . .) Repśpng ...q
r
Splitśpnc ...q Jv . . .K

z
)

where 0 R ng . . .

(rep (shp nf . . .) (shp ng . . .) T
(array (nf . . . nc . . .) v . . .))
ÞÑrep0f (array (nf . . . ng . . . nc . . .) T)
where 0 P ng . . .

(rep (shp nf . . .) (shp ng . . .) T (array (nf . . . nc . . .) T))
ÞÑrep0c (array (nf . . . ng . . . nc . . .) T)

(map (shp nf . . .) Tc
(array (nf . . .) vf . . .) (array (nf . . . nc . . .) va . . .) . . .)
ÞÑmap
(frame (nf . . .) (s-app vf (array (nc . . .) vc . . .) . . .) . . .)

where
ppvc . . .q . . .q . . . = Transpose

r
Splitnc Jva . . .K . . .

z

0 R nf . . .

(map (shp nf . . .) Tc
(array (nf . . .) vf . . .) v . . .)
ÞÑmap0 (frame (nf . . .) Tc)
where 0 P nf . . .

(s-app (� ((x τ) . . .) e) v . . .)
ÞÑβ

erx ÞÑ v, . . . s

(unbox (shp nf . . .) Tc
(xi . . . xe (array (nf . . .) (box ιs . . . vs))) e)
ÞÑunbox (frame (nf . . .) erxi ÞÑ ιs, . . . ,xe ÞÑ vss)
where 0 R nf . . .

(unbox (shp nf . . .) Tc
(xi . . . xe (array (nf . . .) (box ιs . . . vs))) e)
ÞÑunbox0 (frame (nf . . .) Tc)
where 0 P nf . . .

Figure 11.2: Dynamic semantics for explicit iteration forms
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(t-map (shp nf . . .) Tc
(array (nf . . .) vf . . .) τa . . .)
ÞÑtmap (frame (nf . . .) (t-app vf τa . . .) . . .)
where 0 R nf . . .

(t-map (shp nf . . .) Tc
(array (nf . . .) vf . . .) τa . . .)
ÞÑtmap0 (frame (nf . . .) Tc)
where 0 P nf . . .

(t-app (T� ((x k) . . .) e) τ . . .)
ÞÑtβ erx ÞÑ τ , . . . s

(i-map (shp nf . . .) Tc
(array (nf . . .) vf . . .) ιa . . .)
ÞÑimap (frame (nf . . .) (i-app vf ιa . . .) . . .)
where 0 R nf . . .

(i-map (shp nf . . .) Tc
(array (nf . . .) vf . . .) τa . . .)
ÞÑimap0 (frame (nf . . .) Tc)
where 0 P nf . . .

(i-app (I� ((x γ) . . .) e) ι . . .)
ÞÑiβ erx ÞÑ ι, . . . s

Figure 11.3: Dynamic semantics for optional forms
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33 Depending on a target machine’s
calling convention and the number of
arguments used in a map, this may turn
out to behave much like assembling the
array of boxed vectors.

The translation rule for function application must identify the function
and argument arrays’ frame expansions by subtracting their frame shapes,
Shpf and Shpa . . . respectively, from the principal frame Shpp. The
“monus” (monoid minus) operator is used here as a meta-level operation,
not part of the index language itself. Recall that in the universal fragment
of the theory of shapes, the only way to ensure that one shape is a prefix
of another is if listing their dimension and sub-shape components shows
a prefix match. Then the remaining components of the longer shape are
what must be added to the shorter shape to make them match. After
the proper rep is performed, a map with the principal frame and the
function’s output cell type will lead to the same result as executing the
explicitly typed but implicitly iterative code. The reps and their resulting
reduction steps collectively encode explicit Remora’s lift step, producing
function and argument arrays with matching frames. Turning type and
index application into explicit mapping requires less new code because
the arguments are not arrays which must be replicated. We need only
the function array’s frame (which is always the principal frame in a t-

app or i-app) and the type or index abstraction’s result type. The unbox

translation also needs the shape of es, the array of boxes, as its iteration
space, but the result cell type is that of the body expression eb.

The remaining translation rules are simply pass-through cases, trans-
lating all expression or atom subterms. There is no work to do on types
or indices, though the pervasive type annotations which were needed to
guide explicit Remora’s reduction semantics can finally be pared down.

The above presentation of translating from Remora’s implicit itera-
tion to explicit iteration is designed for a compiler which retains static
information. Shape information flows through the code as types and
indices, rather than allowing arbitrary term-like computation in their
positions. Any information carried in types remains available to guide
static analysis.

A compiler which chooses instead to erase types eagerly, guided by
Chapter 10, loses some information but can still produce explicitly itera-
tive code, as described in Figure 11.5. However, it must make heavy use
of primitive operators for querying and manipulating shapes. The meta-
level ´ is not generally usable on terms. Working from the assumption
that the type-erased program was produced from well-typed code, we
can implement a runtime shape subtraction function %monus as

(� ((x 1) (y 1)) (drop (length x) y))

We also require a runtime function for selecting the longest of several
shapes. This can be implemented in Remora as a reduction over a vector
of boxed shape vectors, but there is no particular need to write the runtime
system in Remora itself. Instead of building a box for each frame shape,
we add a variable-arity %longest function to the runtime.33 For the sake
of brevity, the translation also uses a let* form with the conventional
semantics. It can be desugared into � and s-app. The long spine of
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ExplE
r
(e

(A (-> ((A Ti Ii) ...) (A To Io)) If )
f e(A Ti (++ ιa ιi))a . . . )

z

“ (map Ip (A To Io)
(rep If pIp´ If q ExplE

q
ef

y
)

(rep Ia pIp´ Iaq ExplE JeaK) . . .)
where Ip “

ğ

 

ιf , ιa . . .
(

ExplE
r
(t-app e

(A (� ((x k) ...) Tf ) If )
f τa . . . )

z

“ (t-map If Tf rx ÞÑ τa, . . . s ExplE
q
ef

y
τa . . .)

ExplE
r
(i-app e

(A (� ((x γ) ...) Tf ) If )
f ιa . . . )

z

“ (i-map If Tf rx ÞÑ ιa, . . . s ExplE
q
ef

y
ιa . . .)

ExplE
r
(unbox (xi . . . xe e

(A (� ((x γ) ...) τs) If )
e ) eTbb )

z

“ (unbox If Tb (xi . . . xe ExplE JeeK) ExplE JebK)

ExplE JxK“ x

ExplE J(array (n . . . ) a . . . )K“ (array (n . . .) ExplA JaK . . .)

ExplE J(array (n . . . ) T)K“ (array (n . . .) T)

ExplE J(frame (n . . . ) e . . . )K“ (frame (n . . .) ExplE JeK . . .)

ExplE J(frame (n . . . ) T)K“ (frame (n . . .) T)

ExplA JoK“ o

ExplA JbK“ b

ExplA J(� ((x τ) . . . ) e)K“ (� ((x τ) . . . ) ExplE JeK)

ExplA J(T� ((x k) . . . ) e)K“ (T� ((x k) . . . ) ExplE JeK)

ExplA J(I� ((x γ) . . . ) e)K“ (I� ((x γ) . . . ) ExplE JeK)

ExplA J(box ι . . . e τ)K“ (box ι . . . ExplE JeK τ)

Figure 11.4: Converting explicit Remora’s implicit iteration to explicit iteration
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runtime calls in the function application case offers an estimate of the
interpretive overhead that Remora’s type system allows to be compiled
away. Less is needed for index application and unboxing because there is
no frame matching involved in their computation. Index application still
requires a %monus to determine the proper output cell shape, whereas the
type-erased unbox form includes a result cell shape annotation to begin
with. The remaining expression and atom forms are pass-through cases,
requiring nothing more than translating subterms.

11.2 F U RT H E R S T E P S T O A L O W- L E V E L L A N G UAG E

With function application no longer carrying iterative control flow, there
is no longer any distinction between the mechanics of term-level and
index-level computation. Type indices describe data of the same variety
that might arise from expressions: natural numbers and vectors contain-
ing them. We can therefore merge the term and index levels. Then I�

and i-app become ordinary � and function application.
At this point, we have fulfilled the original promise of Remora’s type

system: enabling static compilation of rank polymorphism’s implicit
control flow. A compiler targeting an existing functional language could
stop here, by implementing map and rep as functions provided by its
runtime system. Standard functional compilation techniques, such as clo-
sure conversion and partial specialization of functions called on known
arguments, behave as in conventional languages.

For code which does not use functions like shape-of, which allow the
details of an array’s shape to leak into user-visible values, there is room
for another trick in the representation of arrays. Although up to this point,
the semantics of Remora has treated arrays as data which contains both a
sequence of atoms and shape (a sequence of axis lengths), Remora’s type
system makes shape information static. In order to break an array into
cells, it is only truly necessary to know the number of atoms in each cell
and the number of atoms in the entire array. Any further detail about the
shape of the individual cells will already be present in the code which
consumes it. The run-time representation of arrays can therefore be as
simple as a flat buffer of atoms, with cell-polymorphic functions taking
their shape arguments as products of dimensions. The exceptions are
when shape information is meant to move from the index level to the
term level and when data leaves the program.

An alternative array representation alleviates the cost of constructing
some intermediate values by taking advantage of the fact that many
primitive operations on arrays—such as transpose or rotate or even
the rep special form—only rearrange the contents in some way without
changing the individual elements themselves.

A low-level IR for dealing with arrays can represent an array value as
one of
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ExplE
q
(pef (pea ιa) . . . ιr)

y

“ (let* ((xf ExplE
q
pef

y
)

(xa ExplE JpeaK) . . .
(xffrm (s-app %shape-of xf ))
(xashp (s-app %shape-of xa)) . . .
(xafrm (s-app %monus xashp ιa)) . . .
(xpfrm (s-app %longest xffrm xafrm . . .)))

(map xpfrm (s-app %monus ιr xpfrm)
(rep xffrm xpfrm xf )
(rep xafrm xpfrm xa) . . .))

ExplE J(i-apppe ιa . . . ιr)K
“ (let* ((xe ExplE JpeK)

(xf (s-app %shape-of xe)))
(imap xf (s-app %monus ιr xf ) xe ιa . . .))

ExplE J(unbox (xi . . . xe pee)peb)K
“ (let ((xs ExplE JpeeK))

(unbox (s-app %shape-of xs) ιb
(xi . . . xe xs)
ExplE JpebK))

ExplE JxK“ x

ExplE J(array (n . . . ) pa . . . )K“ (array (n . . .) ExplA JpaK . . .)

ExplE J(frame (n . . . )pe . . . )K“ (frame (n . . .) ExplE JpeK . . .)

ExplA JoK“ o

ExplA JbK“ b

ExplA J(� ((x τ) . . . ) pe)K“ (� ((x τ) . . . ) ExplE JpeK)

ExplA J(I� ((x γ) . . . ) pe)K“ (I� ((x γ) . . . ) ExplE JpeK)

ExplA J(box ι . . . pe)K“ (box ι . . . ExplE JpeK)

Figure 11.5: Converting erased Remora’s implicit iteration to explicit iteration
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• pmanifest ptraq

• pview eidx earrayq

A manifest array carries the actual atoms, so they can be directly
accessed by pointer arithmetic. A view presents an underlying array
(computed by earray) as another array by having the index tuple trans-
formed by the index function (given by eidx). While composing a long
chain of index-transformation functions can be expensive to do at run
time, a compiler has the ability to compose functions statically via inlin-
ing.

Suppose we have the 2 ˆ 3 array rr123s r456ss. The underlying
data storage is a buffer at memory location p containing the numbers 1

through 6 in sequence. To extract an individual element from the matrix,
we need to compute which offset into the buffer locates the desired
element. Representing the element index as a tuple—row index and
column index—the proper indexing function is pλ xx0,x1y.3x0 ` x1q.
That is, we move 3 times the row number (each row is 3 elements long)
plus the column number.

This means we can represent our 2ˆ 3 matrix with:

e1 “ pview pλ xx0,x1y.3x0` x1q pmanifest pqq

Rotating it on its major axis effectively increments the row index and
leaves the column index untouched, which can be written as:

e2 “ pview pλ xx0,x1y.xpx0` 1qmod3,x1yq e1q

The rotated array could be reversed along its minor axis:

e3 “ pview pλ xx0,x1y.xx0,2´ x1yq e2q

Then we can replicate the 1-cells, to produce a 2 ˆ 4 ˆ 3 array, by
dropping the index element which selects which row in a plane to use:

e4 “ pview pλ xx0,x1,x2y.xx0,x2yq e3q

This three-dimensional array can be transposed on its outer two axes:

e5 “ pview pλ xx0,x1,x2y.xx1,x0,x2yq e4q

Nested views can be merged by composing their indexing functions. A
formal theory for such transformations on APL’s primitives was devel-
oped by Mullin [85]. Developing an optimizing compiler based on this
theory is left to future work.
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C O N C L U S I O N

We began with the following claim:

The implicit, data-driven control structure of higher-order
rank-polymorphic programs can be identified statically by a
type system suitable for the programming style common in
rank-polymorphic code.

In support of this thesis, this dissertation has presented the design of
Remora, a higher-order rank-polymorphic programming language whose
type system identifies the implicit iteration space associated with lifting
computation pointwise over large aggregate input.

By isolating rank polymorphism from the incidental warts of prior
languages such as APL and J, Remora can build on the better-developed
foundation of λ-calculus. In doing so, Remora gains the ability to support
higher-arity and first-class functions, which are held back (often by
syntactic limitations) in past work. The core language has formally stated
static and dynamic semantics. Typing rules identify how code written
to operate on arrays of one rank will automatically lift to higher-rank
input, and the dynamic semantics conforms to the predictions made by
the typing rules. Iverson’s full “prefix agreement” rule is supported for
arbitrary arity and extended to allow lifting higher-order functions by
permitting arrays to appear in function position for application.

In light of the core language’s excessive annotation burden—types
are often longer than the code they describe—this dissertation also gives
a local type inference algorithm. Similar to early work on local type
inference, the programmer is expected to identify intended types for
values which are meant to be used polymorphically. The silver lining
of this extra required work is a sort of enforced documentation, These
annotations turn out to be rare in a corpus of sample code because most
functions written in the middle of some larger function body are only
used monomorphically. The common pattern of η-expanding a function
with different input cell ranks in order to manipulate how it lifts over
some arguments creates a one-off function which only needs to accept
specific arguments.

Remora’s local type inference relies on Makanin modulo theories,
a new constraint-solving method for integrating equations on strings
with a nontrivial algebraic theory of string elements. In Remora, shapes
of arrays (i.e., iteration spaces) are represented as strings over terms
from Presburger arithmetic: appendable sequences of addable natural
numbers. Typical Remora code does not push the Makanin solver into
expensive nondeterministic branching or long search paths. In exchange
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for reasoning through string equalities over Presburger terms, a compiler
for a rank-polymorphic language is relieved of the task of array-index
bounds checking and the dependence analysis required to identify when
a serial loop is legal to reorder or parallelize.

To finish fulfilling the promise of the type system and escape from
the heavyweight run-time type information used by the core language’s
formal semantics, this dissertation presents type-directed translation
passes which eliminate the pervasive RTTI and convert from implicit to
explicit iteration.

12.1 F U T U R E D I R E C T I O N S

From the design for a programming language, there are many places to
go. For general-purpose programming, the most immediately obvious
direction is integrating Remora with a language suitable for the irregular
control flow common to “suburb code,” the link between a core com-
putation kernel and the user-facing application program which invokes
it. The Racket-based embedding of Remora offers some experience in
language interoperation, with code in #lang remora/dynamic able to not
only invoke and lift arbitrary Racket procedures but also be used from
general Racket programs via a library-like interface instead of Racket’s
#lang facility.

Dataframes, column-labeled tables commonly used for exploratory
data analysis in systems such as R [83] and Pandas [68], typically support
a suite of operations similar to those offered by array-oriented languages.
The key difference between arrays and dataframes is that dataframes are
heterogeneous along the row axis. Extending Remora to include hetero-
geneous data in the form of field-named records allows dataframes to be
built as vectors of records. If records are introduced and eliminated by
functions, Remora’s own rank-polymorphic lifting automatically turns
record construction and field projection into operations for construct-
ing dataframes from columns of data and extracting columns by name.
Conventional array operations such as filter and scan then cover the
typical dataframe-manipulation tasks.

As a proof of concept, #lang remora/dynamic includes records, with
constructor functions generated from field names. Elimination is per-
formed via lenses [31, 53], with projection and update functions also
generated from field names as needed. The key missing piece for integrat-
ing lens-based records into Remora is extending the type system. Row
polymorphism [100] is needed in order to decouple record operations
from the set of fields on which they do not operate. While integrating
row polymorphism into Remora’s type inference strategy will require
substantial new work, there has been some recent research interest in
row typing beyond ML, including some with an eye towards eventual
support for lenses [69].
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The Makanin modulo theories solver uses a particularly old algorithm
in a space which has received significant recent attention. Subsequent
string-equation solving algorithms, such as searching for a sequence
of equation rewrites [80, 81] or compression-based techniques [47, 48,
82] have tighter asymptotic cost bounds than Makanin. The major draw-
back for Remora’s purposes is that naïve use of them for handling rea-
soning about dimensions is having to nondeterministically choose the
equivalence relation on dimensions up front—i.e., before invoking string-
equation logic. Future work may identify a way to delay this decision, as
Makanin’s algorithm allows, making these newer, faster string decision
procedures usable for Remora’s type inference.

There is room for developing a calculus with a more flexible reduction
strategy than the formal semantics presented here. In particular, a more
general β-reduction rule could justify transformations on Remora code
that improve performance. While explicitly replicating argument cells
works for specifying the behavior of rank polymorphism, efficient execu-
tion should avoid materializing large intermediate arrays or repeatedly
gathering result cells from parallel execution units only to re-scatter them
immediately afterward. The use of a general calculus for array index-
ing within a parallelizing compiler brings up new research questions
because decisions about arrays’ memory layout create obligations for
communication.
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P R O O F S ( 4 . 2 : S TAT I C S E M A N T I C S )

Lemma 4.2.2 (Preservation of sorts under index substitution). If Θ,x ::
γx $ ι :: γ and Θ $ ιx :: γx then Θ $ ιrx ÞÑ ιxs :: γ .

Proof. We use induction on the sort derivation Θ,x :: γx $ ι :: γ .
Case NAT

n PN

Θ,x :: γ1 $ n :: Dim
S:NAT

Since ι0 “ n, ιrx ÞÑ ιxs “ ι0, so the original derivation is still valid.
Case VAR

`

x1 :: γ
˘

PΘ

Θ,x :: γx $ x1 :: γ
S:VAR

Then ι has the form x1. If x1 “ x, then ιrx ÞÑ ιxs “ ι1, and (by Lemma
4.2.1, uniqueness of sorting) γ “ γx. By assumption,Θ $ ιx :: γx, so the
equality of γ and γx implies Θ $ ιx :: γ . If x1 “ x, then ιrx ÞÑ ιxs “ x,
and we use the same S:VAR derivation we started with.

Case SHAPE

Θ,x :: γx $ ιd :: Dim . . .

Θ,x :: γx $ (shape ιd . . . ) :: Shape
S:SHAPE

Then the induction hypothesis implies that Θ $ ιdrx ÞÑ ιxs :: Dim for
each of the ιd . . . . So applying S:SHAPE derives

Θ $ ιdrx ÞÑ ιxs :: Dim . . .

Θ $ (shape ιdrx ÞÑ ιxs . . . ) :: Shape
S:SHAPE

Case PLUS

Θ,x :: γx $ ιd :: Dim . . .

Θ,x :: γx $ (+ ιd . . . ) :: Dim
S:PLUS

By the induction hypothesis, Θ $ ιdrx ÞÑ ιxs :: Dim for each of ιd . . . .
Then we use their derivations to construct

Θ $ ιdrx ÞÑ ιxs :: Dim . . .

Θ $ (+ ιdrx ÞÑ ιxs . . . ) :: Dim
S:PLUS

Case APPEND

Θ,x :: γx $ ιs :: Shape . . .

Θ,x :: γx $ (++ ιs . . . ) :: Shape
S:APPEND

187
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The induction hypothesis gives Θ $ ιsrx ÞÑ ιxs :: Shape for each of ιs . . . .
Then we derive

Θ $ ιsrx ÞÑ ιxs :: Shape . . .

Θ $ (++ ιsrx ÞÑ ιxs . . . ) :: Shape
S:APPEND

Lemma 4.2.4 (Preservation of kinds under index substitution). If Θ,x ::
γ ;∆$ τ :: k and Θ $ ιx :: γ then Θ;∆$ τrx ÞÑ ιxs :: k.

Proof. We use induction on the kind derivation Θ,x :: γ ;∆$ τ :: k.
Case VAR

x1 :: k P ∆

Θ,x :: γ ;∆$ x1 :: k
K:VAR

Since x cannot appear free in τ , x1rx ÞÑ ιxs “ x1, so the same kind is
derivable:

x1 :: k P ∆

Θ;∆$ x1 :: k
K:VAR

Case BASE

Θ,x :: γ ;∆$ B :: k
K:BASE

Again, x cannot appear free in τ , so we derive

Θ;∆$ B :: k
K:BASE

Case FN

Θ,x :: γ ;∆$ τi :: Array . . . Θ,x :: γ ;∆$ τo :: Array

Θ,x :: γ ;∆$ (-> (τi . . . ) τo) :: Array
K:FN

By the induction hypothesis, we have Θ;∆ $ τirx ÞÑ ιxs :: Array for
each of τi . . . , and Θ;∆$ τorx ÞÑ ιxs :: Array. Then we can derive

Θ;∆$ τirx ÞÑ ιxs :: Array . . . Θ;∆$ τorx ÞÑ ιxs :: Array

Θ;∆$ (-> (τirx ÞÑ ιxs . . . ) τorx ÞÑ ιxs) :: Array
K:FN

Case UNIV

Θ,x :: γ ;∆,xu :: ku . . . $ τu :: Array

Θ,x :: γ ;∆$ (� ((xu ku) . . . ) τu) :: Atom
K:UNIV
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The induction hypothesis implies

Θ;∆,xu :: ku . . . $ τurx ÞÑ ιxs :: Array

So we derive

Θ;∆,xu :: ku . . . $ τurx ÞÑ ιxs :: Array

Θ,x :: γ ;∆$ (� ((xu ku) . . . ) τurx ÞÑ ιxs) :: Atom
K:UNIV

Case PI

Θ,x :: γ ,xp :: γp . . . ;∆$ τp :: Array

Θ,x :: γ ;∆$ (� ((xp γp) . . . ) τp) :: Atom
K:PI

By the induction hypothesis, Θ,xp :: γp . . . ;∆ $ τprx ÞÑ ιxs :: Array.
Note that, following Barendregt’s convention, xp . . . are all unique and
distinct from x. Then we construct the derivation

Θ,xp :: γp . . . ;∆$ τprx ÞÑ ιxs :: Array

Θ;∆$ (� ((xp γp) . . . ) τprx ÞÑ ιxs) :: Atom
K:PI

Case SIGMA

Θ,x :: γ ,xs :: γs . . . ;∆$ τs :: Array

Θ,x :: γ ;∆$ (� ((xs γs) . . . ) τs) :: Atom
K:SIGMA

As in the K:PI case, the induction hypothesis gives Θ,xs :: γs . . . ;∆$
τsrx ÞÑ ιxs :: Array. Then we can derive

Θ,xs :: γs . . . ;∆$ τsrx ÞÑ ιxs :: Array

Θ,x :: γ ;∆$ (� ((xs γs) . . . ) τsrx ÞÑ ιxs) :: Atom
K:SIGMA

Case ARRAY

Θ,x :: γ ;∆$ τa :: Atom Θ,x :: γ $ ιa :: Shape

Θ,x :: γ ;∆$ (A τa ιa) :: Array
K:ARRAY

The induction hypothesis implies that Θ;∆ $ τarx ÞÑ ιxs :: Atom, and
Lemma 4.2.2 (substitution in an index) implies Θ $ ιarx ÞÑ ιxs :: Shape.
So we then have

Θ;∆$ τarx ÞÑ ιxs :: Atom Θ $ ιarx ÞÑ ιxs :: Shape

Θ,x :: γ ;∆$ (A τarx ÞÑ ιxs ιarx ÞÑ ιxs) :: Array
K:ARRAY

Lemma 4.2.5 (Preservation of kinds under type substitution). Given
Θ;∆,x :: kx $ τ :: k and Θ;∆$ τx :: kx then Θ;∆$ τrx ÞÑ τxs :: k.
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Proof. We use induction on the kind derivation Θ;∆,x :: kx $ τ :: k.
Case VAR, τ “ x

px :: kq P ∆,x :: kx
Θ;∆,x :: kx $ x :: k

K:VAR

Then τrx ÞÑ τxs “ τx, which has kind kx by assumption.
Case VAR, τ “ x1 “ x

`

x1 :: k
˘

P ∆,x :: kx
Θ;∆,x :: kx $ x1 :: k

K:VAR

Then τrx ÞÑ τxs “ x1, and x1 “ x implies x1 :: k P ∆. So we have
`

x1 :: k
˘

P ∆

Θ;∆$ x1 :: k
K:VAR

Case BASE

Θ;∆,x :: kx $ B :: Atom
K:BASE

Since x cannot appear free in τ , τrx ÞÑ τxs “ τ “ B. The kinding rule
K:BASE applies in any environment, so we have

Θ;∆$ B :: Atom
K:BASE

Case FN

Θ;∆,x :: kx $ τi :: Array . . . Θ;∆,x :: kx $ τo :: Array

Θ;∆,x :: kx $ (-> (τi . . . ) τo) :: Atom
K:FN

By the induction hypothesis, Θ;∆ $ τirx ÞÑ τxs :: Array for each of
τi . . . , and Θ;∆$ τorx ÞÑ τxs :: Array. Then we derive

Θ;∆$ τirx ÞÑ τxs :: Array . . . Θ;∆$ τorx ÞÑ τxs :: Array

Θ;∆$ (-> (τirx ÞÑ τxs . . . ) τorx ÞÑ τxs) :: Atom
K:FN

Case UNIV

Θ;∆,x :: kx,xu :: ku . . . $ τu :: Array

Θ;∆,x :: kx $ (� ((xu ku) . . . ) τu) :: Atom
K:UNIV

The induction hypothesis implies

Θ;∆,xu :: ku . . . $ τurx ÞÑ τxs :: Array
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(again, Barendregt’s convention promises that x R xu . . . ). This leads to
the derivation

Θ;∆,xu :: ku . . . $ τurx ÞÑ τxs :: Array

Θ;∆$ (� ((xu ku) . . . ) τurx ÞÑ τxs) :: Atom
K:UNIV

Case PI

Θ,xp :: γp . . . ;∆,x :: kx $ τp :: Array

Θ;∆,x :: kx $ (� ((xp γp) . . . ) τp) :: Atom
K:PI

By the induction hypothesis, Θ,xp :: γp . . . ;∆ $ τprx ÞÑ τxs :: Array.
Then applying K:PI derives

Θ,xp :: γp . . . ;∆$ τprx ÞÑ τxs :: Array

Θ;∆$ (� ((xp γp) . . . ) τprx ÞÑ τxs) :: Atom
K:PI

Case SIGMA

Θ,xp :: γp . . . ;∆,x :: kx $ τs :: Array

Θ;∆,x :: kx $ (� ((xs γs) . . . ) τs) :: Atom
K:SIGMA

The induction hypothesis gives Θ,xs :: γs . . . ;∆ $ τsrx ÞÑ τxs :: Array.
We then derive

Θ,xs :: γs . . . ;∆$ τsrx ÞÑ τxs :: Array

Θ;∆$ (� ((xs γs) . . . ) τsrx ÞÑ τxs) :: Atom
K:SIGMA

Case ARRAY

Θ;∆,x :: kx $ τa :: Atom Θ $ ιa :: Shape

Θ;∆,x :: kx $ (A τa ιa) :: Array
K:ARRAY

By the induction hypothesis, Θ;∆ $ τarx ÞÑ τxs :: Atom. Recycling the
sort derivation for ιa as is, we derive

Θ;∆$ τarx ÞÑ τxs :: Atom Θ $ ιa :: Shape

Θ;∆$ (A τarx ÞÑ τxs ιa) :: Array
K:ARRAY

Lemma 4.2.6 (Canonical forms for atomic values). Let v be a well-typed
atomic value, that is, ¨; ¨; ¨ $ v : τ .

1. If τ is of the form (-> (τi . . . ) τo),
then v is of the form
o or (� ((x τi) . . . ) e).

2. If τ is of the form (� ((x k) . . . ) τu),
then v is of the form
(T� ((xu k) . . . ) e).
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3. If τ is of the form (� ((x γ) . . . ) τp),
then v is of the form
(I� ((xp γ) . . . ) e).

4. If τ is of the form (� ((x γ) . . . ) τb),
then v is of the form
(box ι . . . vb (� ((xb γ) . . . ) τ 1b)),
with τ – (� ((xb γ) . . . ) τ 1b).

5. If τ is of the form B,
then v is of the form
b.

Proof. A type derivation may end with a chain of uses of the T:EQV

rule, but this chain must then be preceded by a use of some other rule.
We consider the last non-T:EQV rule used in the derivation; the type
ascribed by this rule must then be equivalent to the type ascribed by
the full derivation. Types of two different forms (e.g., a function and a
dependent sum) cannot be equivalent because no type equivalence rule
can relate them.

1. The only rules capable of ascribing a function type to an atom are
T:OP and T:LAM, which apply to atomic values of the form o and
(� ((x τi) . . . ) e) respectively.

2. Ascribing τ to an atom requires T:TLAM, which applies only to
an atomic value of the form (T� ((xu k) . . . ) e).

3. Ascribing τ to an atom requires T:ILAM, which applies only to
an atomic value of the form (I� ((xp γ) . . . ) e).

4. Ascribing τ to an atom requires T:BOX, which applies only to
an atomic value of the form (box ι . . . vb (� ((xb γ) . . . ) τ 1b)).
T:BOX ascribes the annotated type, but the full derivation may
produce any equivalent type.

5. Only T:BASE can ascribe base type to an atom, and it applies only
to literals of the appropriate type of base value.

Lemma 4.2.7 (Canonical forms for arrays). Let v be a well-typed value,
that is, ¨; ¨; ¨ $ v : τ ,

1. If τ is of the form (A (-> (τi . . . ) τo) ι),
then v is of the form
(array (n . . . ) f . . . ).

2. If τ is of the form (A (� ((x k) . . . ) τu) ι),
then v is of the form
(array (n . . . ) (T� ((xu k) . . . ) e) . . . ).
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3. If τ is of the form (A (� ((x γ) . . . ) τp) ι),
then v is of the form
(array (n . . . ) (I� ((xp γ) . . . ) e) . . . ).

4. If τ is of the form (A (� ((x γ) . . . ) τb) ι),
then v is of the form
(array (n . . . ) (box ι . . . vb (� ((xb γ) . . . ) τb)) . . . ),
with τ – (� ((xb γ) . . . ) τ 1b).

5. If τ is of the form (A B ι),
then v is of the form
(array (n . . . ) b . . . ),
with ¨; ¨; ¨ $ b : B for each of b . . . .

Proof. As for Lemma 4.2.6, the type derivation for v must at some point
use a rule other than T:EQV to ascribe a type to v, and any subsequent
use of T:EQV must preserve the form of that type. All of the types
considered here have the form (A τa ιa); array types must be ascribed by
T:ARRAY. So v must be an array literal—(array (n . . . ) v . . . )—and
we can shift to considering the forms of the atoms v . . . . Each case in
this lemma corresponds to a particular case in Lemma 4.2.6.

Lemma 4.2.8 (Symmetry of –). If τ – τ 1, then τ 1 – τ .

Proof. We use a straightforward inductive argument on the derivation of
τ – τ 1.

Case REFL:

τ – τ
TEQV:REFL

Since τ and τ 1 are equal, the obligation is to show τ – τ , which we
already have.

Case ARRAY:

τa – τ
1
a ( ιa ” ι

1
a

(A τa ιa)– (A τ 1a ι
1
a)

TEQV:ARRAY

Index equality is symmetric, so ( ι1a ” ιa. The induction hypothesis
gives τ 1a – τa. We then apply TEQV:ARRAY to construct

τ 1a – τa ( ι1a ” ιa

(A τ 1a ι
1
a)– (A τa ιa)

TEQV:ARRAY

Case FN:

τi – τ
1
i . . . τo – τ

1
o

(-> (τi . . . ) τo)– (-> (τ 1i . . . ) τ
1
o)

TEQV:FN
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The induction hypothesis gives τi – τ 1i , . . . ,τo – τ
1
o, so TEQV:FN pro-

duces

τ 1i – τi . . . τ 1o – τo

(-> (τ 1i . . . ) τ
1
o)– (-> (τi . . . ) τo)

TEQV:FN

Case UNIV:

τs
“

x ÞÑ xf , . . .
‰

– τ 1s
“

x1 ÞÑ xf , . . .
‰

with fresh xf . . .

(� ((x γ) . . . ) τu)– (� ((x1 γ) . . . ) τ 1u)
TEQV:UNIV

The induction hypothesis gives τ 1u
“

x1 ÞÑ xf , . . .
‰

– τu
“

x ÞÑ xf , . . .
‰

, so
we construct

τ 1s
“

x1 ÞÑ xf , . . .
‰

– τs
“

x ÞÑ xf , . . .
‰

with fresh xf . . .

(� ((x1 γ) . . . ) τ 1u)– (� ((x γ) . . . ) τu)
TEQV:UNIV

Case PI:

τs
“

x ÞÑ xf , . . .
‰

– τ 1s
“

x1 ÞÑ xf , . . .
‰

with fresh xf . . .

(� ((x γ) . . . ) τp)– (� ((x1 γ) . . . ) τ 1p)
TEQV:PI

The induction hypothesis gives τ 1s
“

x1 ÞÑ xf , . . .
‰

– τs
“

x ÞÑ xf , . . .
‰

. We
then derive

τ 1p
“

x1 ÞÑ xf , . . .
‰

– τp
“

x ÞÑ xf , . . .
‰

with fresh xf . . .

(� ((x1 γ) . . . ) τ 1p)– (� ((x γ) . . . ) τp)
TEQV:PI

Case SIGMA:

τs
“

x ÞÑ xf , . . .
‰

– τ 1s
“

x1 ÞÑ xf , . . .
‰

with fresh xf . . .

(� ((x γ) . . . ) τs)– (� ((x1 γ) . . . ) τ 1s)
TEQV:SIGMA

The induction hypothesis gives τ 1s
“

x1 ÞÑ xf , . . .
‰

– τs
“

x ÞÑ xf , . . .
‰

, so
we construct

τ 1s
“

x1 ÞÑ xf , . . .
‰

– τs
“

x ÞÑ xf , . . .
‰

with fresh xf . . .

(� ((x1 γ) . . . ) τ 1s)– (� ((x γ) . . . ) τs)
TEQV:SIGMA

Lemma 4.2.9 (Transitivity of –). If τ0 – τ1 and τ1 – τ2, then τ0 – τ2.

Proof. We use induction on the derivations of τ0 – τ1 and τ1 – τ2.
Since both derivations involve τ1, the structure of the equivalence rules
prohibits the derivations from ending with different rules, unless one is
TEQV:REFL. All non-reflexivity rules place incompatible restrictions
on the types they find equivalent. If either derivation is by TEQV:REFL,
then τ1 is either τ0 or τ2, so the conclusion τ0 – τ2 is the same as one
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of the assumptions. In the remaining cases, both derivations end with the
same rule.

Case ARRAY:

τ 10 – τ
1
1 ( ι0 ” ι1

(A τ 10 ι0)– (A τ 11 ι1)
TEQV:ARRAY

and

τ 11 – τ
1
2 ( ι1 ” ι2

(A τ 11 ι1)– (A τ 12 ι2)
TEQV:ARRAY

Since τ 10 – τ
1
1 and τ 11 – τ

1
2, the induction hypothesis implies τ 10 – τ

1
2.

Transitivity of equality (on indices) implies ( ι0 ” ι2. So we can derive

τ 10 – τ
1
2 ( ι0 ” ι2

(A τ 10 ι0)– (A τ 12 ι2)
TEQV:ARRAY

Case FN:

τi0 – τi1 . . . τo0 – τo1
(-> (τi0 . . . ) τo0)– (-> (τi1 . . . ) τo1)

TEQV:FN

and

τi1 – τi2 . . . τo1 – τo2
(-> (τi1 . . . ) τo1)– (-> (τi2 . . . ) τo2)

TEQV:FN

We have equivalent argument types, via the induction hypothesis—each
τi0 – τi1 . . . and τi1 – τi2 . . . implies τi0 – τi2 . . . . We also have equiva-
lent result types, τo0 – τo2 . . . . Then TEQV:FN gives

τi0 – τi2 . . . τo0 – τo2
(-> (τi0 . . . ) τo0)– (-> (τi2 . . . ) τo2)

TEQV:FN

Case UNIV:

τu0
“

x0 ÞÑ xf , . . .
‰

– τu1
“

x1 ÞÑ xf , . . .
‰

(� ((x0 k) . . . ) τu0)– (� ((x1 k) . . . ) τu1)
TEQV:UNIV

and

τu1
“

x1 ÞÑ xf , . . .
‰

– τu2
“

x2 ÞÑ xf , . . .
‰

(� ((x1 k) . . . ) τu1)– (� ((x2 k) . . . ) τu2)
TEQV:UNIV

The induction hypothesis relates τu0
“

x0 ÞÑ xf , . . .
‰

to τu2
“

x2 ÞÑ xf , . . .
‰

,
so we can construct the derivation

τu0
“

x0 ÞÑ xf , . . .
‰

– τu2
“

x2 ÞÑ xf , . . .
‰

(� ((x0 k) . . . ) τu0)– (� ((x2 k) . . . ) τu2)
TEQV:UNIV
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Case PI:

τp0
“

x0 ÞÑ xf , . . .
‰

– τp1
“

x1 ÞÑ xf , . . .
‰

(� ((x0 γ) . . . ) τp0)– (� ((x1 γ) . . . ) τp1)
TEQV:PI

and

τp1
“

x1 ÞÑ xf , . . .
‰

– τp2
“

x2 ÞÑ xf , . . .
‰

(� ((x1 k) . . . ) τu1)– (� ((x2 k) . . . ) τu2)
TEQV:PI

The induction hypothesis implies the equivalence of τu0
“

x0 ÞÑ xf , . . .
‰

and τu2
“

x2 ÞÑ xf , . . .
‰

, so we can apply TEQV:PI:

τu0
“

x0 ÞÑ xf , . . .
‰

– τu2
“

x2 ÞÑ xf , . . .
‰

(� ((x0 k) . . . ) τu0)– (� ((x2 k) . . . ) τu2)
TEQV:PI

Case SIGMA:

τs0
“

x0 ÞÑ xf , . . .
‰

– τs1
“

x1 ÞÑ xf , . . .
‰

(� ((x0 γ) . . . ) τs0)– (� ((x1 γ) . . . ) τs1)
TEQV:SIGMA

and

τs1
“

x1 ÞÑ xf , . . .
‰

– τs2
“

x2 ÞÑ xf , . . .
‰

(� ((x1 γ) . . . ) τs1)– (� ((x2 γ) . . . ) τs2)
TEQV:SIGMA

By the induction hypothesis, τs0
“

x0 ÞÑ xf , . . .
‰

– τs2
“

x2 ÞÑ xf , . . .
‰

, al-
lowing us to derive

τs0
“

x0 ÞÑ xf , . . .
‰

– τs2
“

x2 ÞÑ xf , . . .
‰

(� ((x0 γ) . . . ) τs0)– (� ((x2 γ) . . . ) τs2)
TEQV:SIGMA

Lemma 4.2.10. If Θ;∆$ τ :: k and τ – τ 1, then Θ;∆$ τ 1 :: k.

Proof. We use induction on the derivation of τ – τ 1.
Case REFL:

τ – τ
TEQV:REFL

Then τ “ τ 1, so the kind derivation for τ applies to τ 1 as well.
Case ARRAY:

τa – τ
1
a ( ιa ” ι

1
a

(A τa ιa)– (A τ 1a ι
1
a)

TEQV:ARRAY

The kind derivation for τ must have the form

Θ;∆$ τa :: Atom Θ $ ιa :: Shape

Θ;∆$ (A τa ιa) :: Array
K:ARRAY
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Similarly, equivalent indices must be of the same sort (dimensions and
shapes are distinct objects in our universe of type indices). Applying the
induction hypothesis to our kinding result for τ 1a gives Θ;∆$ τ 1a :: Atom.
Then we can derive for τ 1:

Θ;∆$ τ 1a :: Atom Θ $ ι1a :: Shape

Θ;∆$ (A τ 1a ι
1
a) :: Array

K:ARRAY

Case FN:

τi – τ
1
i . . . τo – τ

1
o

(-> (τi . . . ) τo)– (-> (τ 1i . . . ) τ
1
o)

TEQV:FN

The kinding derivation for τ has the form

Θ;∆$ τi :: Array . . . Θ;∆$ τo :: Array

Θ;∆$ (-> (τi . . . ) τo) :: Atom
K:FN

By the induction hypothesis, we have kind derivations ascribing Array

to each of the τi . . . and τo. So we can then derive

Θ;∆$ τ 1i :: Array . . . Θ;∆$ τ 1o :: Array

Θ;∆$ (-> (τ 1i . . . ) τ
1
o) :: Atom

K:FN

Case UNIV:

τu
“

x ÞÑ xf , . . .
‰

– τ 1u
“

x1 ÞÑ xf , . . .
‰

with fresh xf . . .

(� ((x k) . . . ) τu)– (� ((x1 k) . . . ) τ 1u)
TEQV:UNIV

The kind derivation for τ must have the form

Θ;∆,x :: k . . . $ τu :: Array

Θ;∆$ (� ((x k) . . . ) τu) :: Atom
K:UNIV

The premise implies in turn via α-conversion that

Θ;∆,xf :: k . . . $ τu
“

x ÞÑ xf , . . .
‰

:: Array

By the induction hypothesis, we have

Θ;∆,xf :: k . . . $ τ 1u
“

x1 ÞÑ xf , . . .
‰

:: Array

We use α-conversion again, to convert the derived type τ 1u
“

x1 ÞÑ xf , . . .
‰

into
`

τ 1u
“

x1 ÞÑ xf , . . .
‰ “̆

xf ÞÑ x1, . . .
‰

, which is τ 1u . This means that

Θ;∆,x1 :: k . . . $ τ 1u :: Array

Then we can derive

Θ;∆,x1 :: k . . . $ τ 1u :: Array

Θ;∆$ (� ((x1 k) . . . ) τ 1u) :: Atom
K:UNIV
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Case PI:

τp
“

x ÞÑ xf , . . .
‰

– τ 1p
“

x1 ÞÑ xf , . . .
‰

with fresh xf . . .

(� ((x k) . . . ) τp)– (� ((x1 k) . . . ) τ 1p)
TEQV:PI

Deriving a kind for τ must end with

Θ,x :: γ . . . ;∆$ τp :: Array

Θ;∆$ (� ((x k) . . . ) τp) :: Atom
K:PI

By α-converting x . . . to xf . . . , we get the judgment

Θ,xf :: γ . . . ;∆$ τp
“

x ÞÑ xf , . . .
‰

:: Array

This implies via the induction hypothesis that

Θ,xf :: γ . . . ;∆$ τ 1p
“

x1 ÞÑ xf , . . .
‰

:: Array

Further α-conversion gives

Θ,x1 :: γ . . . ;∆$ τ 1p :: Array

So we derive

Θ,x1 :: γ . . . ;∆$ τ 1p :: Array

Θ;∆$ (� ((x1 k) . . . ) τ 1p) :: Atom
K:PI

Case SIGMA:

τs
“

x ÞÑ xf , . . .
‰

– τ 1s
“

x1 ÞÑ xf , . . .
‰

with fresh xf . . .

(� ((x k) . . . ) τs)– (� ((x1 k) . . . ) τ 1s)
TEQV:SIGMA

We also have a kind derivation for τ

Θ,x :: γ . . . ;∆$ τs :: Array

Θ;∆$ (� ((x k) . . . ) τs) :: Atom
K:SIGMA

As in the previous two cases, applying the induction hypothesis under α-
conversion gives Θ,x1 :: γ . . . ;∆$ τ 1s :: Array, leading to the derivation

Θ,x1 :: γ . . . ;∆$ τ 1s :: Array

Θ;∆$ (� ((x1 k) . . . ) τ 1s) :: Atom
K:SIGMA

Lemma 4.2.11. If ( ι ” ι1, then for any index variable x, τrx ÞÑ ιs –
τrx ÞÑ ι1s.
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Proof. This is provable using induction on the structure of τ . Only
the case for arrays makes direct use of ι and ι1; the other cases simply
use the induction hypothesis to prove the premises of the derivation of
τrx ÞÑ ιs – τrx ÞÑ ι1s.

Case ARRAY:
τ “ (A τa ιa), so the induction hypothesis implies that τarx ÞÑ ιs –
τarx ÞÑ ι1s. The index equality ( ιarx ÞÑ ιs ” ιarx ÞÑ ι1s follows from the
substitution lemma of first-order logic. Then we can construct the type
equivalence derivation

τarx ÞÑ ιs – τa
“

x ÞÑ ι1
‰

( ιarx ÞÑ ιs ” ιa
“

x ÞÑ ι1
‰

(A τarx ÞÑ ιs ιarx ÞÑ ιs)
– (A τa

“

x ÞÑ ι1
‰

ιa
“

x ÞÑ ι1
‰

)

TEQV:ARRAY

Theorem 4.2.2. If τ – τ 1 and τx – τ 1x, then for any type variable x,
τrx ÞÑ τxs – τ

1rx ÞÑ τ 1xs.

Proof. We use induction on the derivation of τ – τ 1.
Case REFL:

τ “ τ 1. By Lemma 4.2.12, τrx ÞÑ τxs – τrx ÞÑ τ 1xs.
Case ARRAY:

τa – τ
1
a ( ιa ” ι

1
a

(A τa ιa)– (A τ 1a ι
1
a)

TEQV:ARRAY

The induction hypothesis gives τarx ÞÑ τxs – τ
1
arx ÞÑ τ 1xs, so we derive

τarx ÞÑ τxs – τ
1
a

“

x ÞÑ τ 1x
‰

( ιa ” ι
1
a

(A τarx ÞÑ τxs ιa)– (A τ 1a
“

x ÞÑ τ 1x
‰

ι1a)
TEQV:ARRAY

Case FN:

τi – τ
1
i . . . τo – τ

1
o

(-> (τi . . . ) τo)– (-> (τi . . . ) τo)
TEQV:FN

The induction hypothesis gives derivations for equivalence of correspond-
ing input types after substitution, τirx ÞÑ τxs – τ

1
irx ÞÑ τ 1xs . . . , as well as

equivalence for output types, τorx ÞÑ τxs – τ
1
orx ÞÑ τ 1xs. Then applying

TEQV:FN gives

τirx ÞÑ τxs – τ
1
i

“

x ÞÑ τ 1x
‰

. . . τorx ÞÑ τxs – τ
1
o

“

x ÞÑ τ 1x
‰

(-> (τirx ÞÑ τxs . . . ) τorx ÞÑ τxs)
– (-> (τ 1i

“

x ÞÑ τ 1x
‰

. . . ) τ 1o
“

x ÞÑ τ 1x
‰

)

TEQV:FN

Case UNIV:

τu
“

xu ÞÑ xf , . . .
‰

– τ 1u
“

x1u ÞÑ xf , . . .
‰

(� ((xu k) . . . ) τu)– (� ((x1u k) . . . ) τ
1
u)

TEQV:UNIV
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If x is shadowed by xu . . . but not by x1u . . . (or vice versa), then the
universal types τ and τ 1 will not be equivalent, as a type variable is
only equivalent to itself (via TEQV:REFL). If x does not appear at all
in both τu and τ 1u , then substitution leaves them unchanged, and our
required conclusion is an initial assumption. So we now assume that x is
free in both τu and τ 1u . When we substitute in τx and τ 1x, the induction
hypothesis implies

τu
“

xu ÞÑ xf , . . .
‰

rx ÞÑ τxs – τ
1
u

“

x1u ÞÑ xf , . . .
‰“

x ÞÑ τ 1x
‰

Lack of shadowing means the substitutions commute, i.e., these types
are equal to τurx ÞÑ τxs

“

xu ÞÑ xf , . . .
‰

and τ 1urx ÞÑ τ 1xs
“

x1u ÞÑ xf , . . .
‰

re-
spectively. So we then use TEQV:UNIV

τurx ÞÑ τxs
“

xu ÞÑ xf , . . .
‰

– τ 1u
“

x ÞÑ τ 1x
‰“

x1u ÞÑ xf , . . .
‰

(� ((xu k) . . . ) τurx ÞÑ τxs)
– (� ((x1u k) . . . ) τ

1
u

“

x ÞÑ τ 1x
‰

)

TEQV:UNIV

Case PI:

τp
“

xp ÞÑ xf , . . .
‰

– τ 1p

”

x1p ÞÑ xf , . . .
ı

(� ((xp γ)) τp)– (� ((x1p γ)) τ
1
p)

TEQV:PI

Shadowing x is no longer a concern because it is a type variable—
the dependent product only binds index variables. Substituting τx and
τ 1x into the α-converted body types produces τp

“

xp ÞÑ xf , . . .
‰

rx ÞÑ τxs

and τ 1p
”

x1p ÞÑ xf , . . .
ı

rx ÞÑ τ 1xs, which the induction hypothesis implies

are equivalent. They are in turn equal to τprx ÞÑ τxs
“

xp ÞÑ xf , . . .
‰

and

τ 1prx ÞÑ τ 1xs
”

x1p ÞÑ xf , . . .
ı

respectively. We then construct the derivation

τprx ÞÑ τxs
“

xp ÞÑ xf , . . .
‰

– τ 1p
“

x ÞÑ τ 1x
‰

”

x1p ÞÑ xf , . . .
ı

(� ((xp γ)) τprx ÞÑ τxs)– (� ((xp γ)) τ
1
p

“

x ÞÑ τ 1x
‰

)
TEQV:PI

Case SIGMA:
This case proceeds as the PI case.

Theorem 4.2.3 (Uniqueness of typing, up to equivalence). If Θ;∆;Γ $
t : τ and Θ;∆;Γ $ t : τ 1, then τ – τ 1.

Proof. Any derivation of Θ;∆;Γ $ t : τ can be followed with zero or
more additional uses of T:EQV or have any terminal uses of T:EQV

stripped off to derive another type. Since type equivalence is transitive,
any alternative type τ 1 derived in this way is equivalent to τ . It remains
to show, by induction on t, that all derivations for Θ;∆;Γ $ t : τ 1 ending
in a non-EQV rule ascribe a τ 1 equivalent to τ .
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VA R I A B L E : t “ x, so the only applicable rule is T:VAR, which
ascribes Γ pxq.

A R R AY: t“ (array (n . . . ) a . . . ). Only T:ARRAY can derive a type,
so the derivations for τ and τ 1 are

Θ;∆;Γ $ a : τa . . .
Θ;∆$ τa :: Atom LengthJa . . .K“

ź

n . . .

Θ;∆;Γ $ (array (n . . . ) a . . . ) : (A τa (shape n . . . ))
T:ARRAY

and

Θ;∆;Γ $ a : τ 1a . . .
Θ;∆$ τ 1a :: Atom LengthJa . . .K“

ź

n . . .

Θ;∆;Γ $ (array (n . . . ) a . . . ) : (A τ 1a (shape n . . . ))
T:ARRAY

By the induction hypothesis, the derivations for each a must produce
equivalent types, i.e., τa – τ 1a. Thus we can derive

τa – τ
1
a ( (shape n . . . )” (shape n . . . )

(A τa (shape n . . . ))– (A τ 1a (shape n . . . ))
TEQV:ARRAY

F R A M E : t“ (frame (n . . . ) e . . . ). Only T:FRAME is applicable, so
the derivations are

Θ;∆;Γ $ e : (A τa ιc) . . .
Θ;∆$ (A τa ιc) :: Array LengthJa . . .K“

ź

n . . .

Θ;∆;Γ $ (frame (n . . . ) e . . . )
: (A τa (++ (shape n . . . ) ιc))

T:FRAME

and

Θ;∆;Γ $ e : (A τ 1a ι
1
c) . . .

Θ;∆$ (A τ 1a ι
1
c) :: Array LengthJa . . .K“

ź

n . . .

Θ;∆;Γ $ (frame (n . . . ) e . . . )
: (A τ 1a (++ (shape n . . . ) ι

1
c))

T:FRAME

By the induction hypothesis, (A τa ιc) – (A τ 1a ι
1
c). The derivation for

this must either end with TEQV:ARRAY or be simply TEQV:REFL.
In either case, we have τa – τ 1a and ( ιc ” ι1c. The latter implies
( (++ (shape n . . . ) ιc) ” (++ (shape n . . . ) ι1c), which leads to the
derivation

τa – τ
1
a ( (shape n . . . ) ιc ” (shape n . . . ) ι1c

(A τa (++ (shape n . . . ) ιc))
– (A τ 1a (++ (shape n . . . ) ι

1
c))

TEQV:ARRAY
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E M P T Y A R R AY: t “ (array (n . . . ) τa). The only possible non-
EQV rule for ending a type derivation is

Θ;∆$ τa :: Atom 0 P n . . .

Θ;∆;Γ $ (array (n . . . ) τa) : (A τa (shape n . . . ))
T:EMPTYA

Note that there are no atoms for derivations to conclude have distinct (but
equivalent) types. Instead, the exact atom type is specified in the term
itself. Therefore all types derived for t by TEQV:EMPTYA are equal,
thus equivalent.

E M P T Y F R A M E : t“ (frame (n . . . ) (A τa ι)). Similar to the empty
array case, only one non-EQV end to the derivation is possible:

Θ;∆$ τa :: Atom Θ $ ι :: Shape 0 P n . . .

Θ;∆;Γ $ (frame (n . . . ) (A τa ι)) : (A τa (shape n . . . ))
T:EMPTYF

Again, only one unique type is derivable.

A P P L I C AT I O N : t“ (ef ea . . . ) The of a typing derivations for t end
with

Θ;∆;Γ $ ef : (A (-> ((A τi ιi) . . . ) (A τo ιo)) ιf )
Θ;∆;Γ $ ea : (A τi (++ ιa ιi)) . . .

ιp “Max
q
ιf ιa . . .

y

Θ;∆;Γ $ (ef ea . . . ) : (A τo (++ ιp ιo))

and

Θ;∆;Γ $ ef : (A (-> ((A τ 1i ι
1
i) . . . ) (A τ

1
o ι
1
o)) ι

1
f )

Θ;∆;Γ $ ea : (A τ 1i (++ ι
1
a ι
1
i)) . . .

ι1p “Max
r
ι1f ι

1
a . . .

z

Θ;∆;Γ $ (ef ea . . . ) : (A τ 1o (++ ι
1
p ι
1
o))

By the induction hypothesis, the types ascribed to ef are equivalent.
Since their equivalence can only be concluded using either TEQV:FN

or TEQV:REFL, we know that the corresponding input types—(A τi ιi)
and (A τ 1i ι

1
i)—are equivalent. This in turn implies the equivalence of

corresponding atom types τi and τ 1i and of corresponding argument cell
shapes ιi and ι1i (the array types could only be equivalent because of
TEQV:ARRAY or TEQV:REFL). For the same reason, we have equality
of the function frames and of corresponding argument shapes. What we
then need is equality of corresponding argument frames.

In the free monoid, a `̀ b ” a `̀ c implies b ” c, and b `̀ a” c `̀ a
implies b ” c (n.b., this does not hold in all monoids). In effect, if we
know that prefixes match on two equal shapes, we can conclude that
their suffixes match as well. Applied to our situation, this means that
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the equality of (++ ιa ιi) and (++ ι1a ι
1
i) with equal ιi and ι1i entails the

equality of ιa and ι1a. So any two frames derived for the same argument
are equal. Since all corresponding frames are equal, their respective
maxima ιp and ι1p must also be equal.

Returning to the derived function types, their equivalence also implies
the equivalence of their output types. Since teqv(A τo ιo)(A τ 1o ι

1
o), it

must be the case that τo – τ 1o and that ( ιo ” ι1o.
The equivalences τo – τ 1o, ( ιo ” ι

1
o, and ( ιp ” ι1p lead to

τo – τ
1
o ( (++ ιp ιo)” (++ ι1p ι

1
o)

(A τo (++ ιp ιo))– (A τ 1o (++ ι
1
p ι
1
o))

T Y P E A P P L I C AT I O N : t“ (t-app ef τa . . . ). The derivations must
have the form

Θ;∆;Γ $ ef : (A (� ((x k) . . . ) (A τu ιu)) ιf )
Θ;∆$ τa :: k . . .

Θ;∆;Γ $ (t-app ef τa . . . )
: (A τurx ÞÑ τa, . . . s (++ ιf ιu))

T:TAPP

and

Θ;∆;Γ $ ef : (A (� ((x1 k) . . . ) (A τ 1u ι
1
u)) ι

1
f )

Θ;∆$ τa :: k . . .

Θ;∆;Γ $ (t-app ef τa . . . )
: (A τ 1u

“

x1 ÞÑ τa, . . .
‰

(++ ι1f ι
1
u))

T:TAPP

From the induction hypothesis, we have

(A (� ((x k) . . . ) (A τu ιu)) ιf )

– (A (� ((x1 k) . . . ) (A τ 1u ι
1
u)) ι

1
f )

which then implies that τu
“

x ÞÑ xf , . . .
‰

– τ 1u
“

x1 ÞÑ xf , . . .
‰

. Because
substituting equal types into equivalent types produces equivalent types
(by Lemma 4.2.12), we have

`

τu
“

x ÞÑ xf , . . .
‰ “̆

xf ÞÑ τa, . . .
‰

–
`

τ 1u
“

x1 ÞÑ xf , . . .
‰ “̆

xf ÞÑ τa, . . .
‰

Applying both substitutions in order, we relate types τurx ÞÑ τa, . . . s
and τ 1urx

1 ÞÑ τa, . . . s. Equivalence of types derived for ef also implies
equivalence of the result cell shapes ιu and ι1u and of the frame shapes ιf
and ι1f . This means ( (++ ιf ιu)” (++ ι1f ι

1
u). So we can derive

τurx ÞÑ τa, . . . s – τ
1
u

“

x1 ÞÑ τa, . . .
‰

( (++ ιf ιu)” (++ ι1f ι
1
u)

(A τurx ÞÑ τa, . . . s (++ ιf ιu))
– (A τ 1u

“

x1 ÞÑ τa, . . .
‰

(++ ι1f ι
1
u))

TEQV:ARRAY
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I N D E X A P P L I C AT I O N : t“ (i-app ef ιa . . . ). Non-EQV endings of
the type derivations must have the form

Θ;∆;Γ $ e : (A (� ((x γ) . . . ) (A τp ιp)) ιf )
Θ $ ιa :: γ . . .

Θ;∆;Γ $ (i-app ef ιa . . . )
: (A τprx ÞÑ ι, . . . s (++ ιf ιprx ÞÑ ι, . . . s))

T:IAPP

Suppose that in two typing derivations, ef is ascribed types

(A (� ((x γ) . . . ) (A τp ιp)) ιf )

and

(A (� ((x1 γ) . . . ) (A τ 1p ι
1
p)) ι

1
f )

The induction hypothesis implies that these two types are equivalent.
Deriving this equivalence must use TEQV:ARRAY, relating ιf with ι1f
and (A τp ιp) with (A τ 1p ι

1
p). By similar substitution-tracing arguments

as in the type application case, we have

τprx ÞÑ ιa, . . . s – τ
1
p

“

x1 ÞÑ ιa, . . .
‰

and

VALIDJιprx ÞÑ ι, . . . s ” ι1prx ÞÑ ι, . . . sK

leading to

τprx ÞÑ ιa, . . . s – τ
1
p

“

x1 ÞÑ ιa, . . .
‰

( (++ ιf ιprx ÞÑ ι, . . . s)” (++ ι1f ι
1
prx ÞÑ ι, . . . s)

(A τprx ÞÑ ι, . . . s (++ ιf ιprx ÞÑ ι, . . . s))
– (A τ 1p

“

x1 ÞÑ ι, . . .
‰

(++ ι1f ι
1
prx ÞÑ ι, . . . s))

TEQV:PI

U N B OX I N G : t “ (unbox (xi . . . xe es) eb). The only non-T:EQV

rule which can type t is T:UNBOX, so type derivations must end with

Θ;∆;Γ $ es : (A (� ((x1i γ) . . . ) τs) ιs)
Θ,xi :: γ . . . ;∆;Γ ,xe : τs

“

x1i ÞÑ xi , . . .
‰

$ eb : (A τb ιb)
Θ;∆$ (A τb ιb) :: Array

Θ;∆;Γ $ (unbox (xi . . . xe es) eb) : (A τb (++ ιs ιb))

According to the induction hypothesis, any two types (A τb (++ ιs ιb))
and (A τ 1b (++ ι1s ι

1
b)) ascribed to eb using the extended environment

by the second premise must be equivalent—i.e., (A τb (++ ιs ιb)) –
(A τ 1b (++ ι

1
s ι
1
b)). This is exactly the proof obligation.
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A B S T R AC T I O N : t“ (� ((x τi) . . . ) e). Type derivations must end
with T:LAM:

Θ;∆;Γ ,x : τi . . . $ e : τo Θ;∆$ τi :: Array . . .

Θ;∆;Γ $ (� ((x τi) . . . ) e) : (-> (τi . . . ) τo)
T:LAM

For any two such derivations, the induction hypothesis implies that types
τo and τ 1o are equivalent, since they are both ascribed to e. Since the input
types τi . . . are given explicitly in the term, we can derive

τi – τi
TEQV:REFL

. . . τo – τ
1
o

(-> (τi . . . ) τo)– (-> (τi . . . ) τ
1
o)

T Y P E A B S T R AC T I O N : t “ (T� ((x k) . . . ) e). Non-EQV deriva-
tions must end with

Θ;∆,x :: k . . . ;Γ $ e : τu
Θ;∆;Γ $ (T� ((x k) . . . ) e) : (� ((x k) . . . ) τu)

T:TLAM

Any τu and τ 1u ascribed to e, the body of the abstraction, must be equiv-
alent, and substituting in the same fresh variables will preserve that
equivalence, by Lemma 4.2.12. So we can construct the derivation

τu
“

x ÞÑ xf , . . .
‰

– τ 1u
“

x ÞÑ xf , . . .
‰

(� ((x k) . . . ) τu)– (� ((x k) . . . ) τ 1u)
TEQV:UNIV

I N D E X A B S T R AC T I O N : t“ (I� ((x γ) . . . ) e).

Θ,x :: γ . . . ;∆;Γ $ e : τp
Θ;∆;Γ $ (I� ((x k) . . . ) e) : (� ((x k) . . . ) τp)

T:ILAM

Similar to the type abstraction case, any types ascribed to the abstraction
body must be equivalent, and α-conversion will preserve that equivalence,
leading to

τp
“

x ÞÑ xf , . . .
‰

– τ 1p
“

x ÞÑ xf , . . .
‰

(� ((x k) . . . ) τp)– (� ((x k) . . . ) τ 1p)
TEQV:PI

B OX C O N S T RU C T I O N : t “ (box ι . . . e τs). Only τs can be as-
cribed to t without ending the derivation with T:EQV.

B A S E VA L U E O R P R I M I T I V E O P E R AT O R : t“ b or t“ o. Each
base value and primitive operator has a single defined type.

Lemma 4.2.13 (Preservation of types under index substitution). Given
Θ,x :: γ ;∆;Γ $ t : τ and Θ $ ιx :: γ then Θ;∆;Γrx ÞÑ ιxs $ trx ÞÑ ιxs :
τrx ÞÑ ιxs.
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Proof. We use induction on the derivation of Θ,x :: γ ;∆;Γ $ t : τ .
Case EQV

Θ,x :: γ ;∆;Γ $ t : τ 1 τ – τ 1

Θ,x :: γ ;∆;Γ $ t : τ
T:EQV

By the induction hypothesis, Θ;∆;Γrx ÞÑ ιxs $ trx ÞÑ ιxs : τ 1rx ÞÑ ιxs,
and preservation of equivalence (Lemma 4.2.11) implies τrx ÞÑ ιxs –
τ 1rx ÞÑ ιxs. Thus we can build the derivation

Θ;∆;Γrx ÞÑ ιxs $ trx ÞÑ ιxs : τ 1rx ÞÑ ιxs
τrx ÞÑ ιxs – τ

1rx ÞÑ ιxs

Θ;∆;Γrx ÞÑ ιxs $ trx ÞÑ ιxs : τrx ÞÑ ιxs
T:EQV

Case OP, BASE

These cases are trivial, since primitive operators and base values are only
ascribed closed types.

Case VAR

`

x1 : τ
˘

P Γ

Θ,x :: γ ;∆;Γ $ x1 : τ
T:VAR

In this case, x cannot appear in t, so x1rx ÞÑ ιxs “ x1. Since x1 is bound
in Γ , we can construct a similar derivation with Γ px1q updated by substi-
tution:

`

x1 : τrx ÞÑ ιxs
˘

P Γrx ÞÑ ιxs

Θ;∆;Γrx ÞÑ ιxs $ x1 : τrx ÞÑ ιxs
T:VAR

Case ARRAY

Θ,x :: γ ;∆;Γ $ a : τa . . . Θ,x :: γ ;∆$ τa :: Atom
LengthJa . . .K“

ź

n . . .

Θ,x :: γ ;∆;Γ $ (array (n . . . ) a . . . ) : (A τa (shape n . . . ))
T:ARRAY

By the induction hypothesis, Θ;∆;Γrx ÞÑ ιxs $ arx ÞÑ ιxs : τarx ÞÑ ιxs
for each of a . . . . Preservation of kinds under substitution (Lemma 4.2.4)
implies Θ;∆$ τarx ÞÑ ιxs :: Atom. We use these results to construct the
derivation

Θ;∆;Γrx ÞÑ ιxs $ arx ÞÑ ιxs : τarx ÞÑ ιxs . . .
Θ;∆$ τarx ÞÑ ιxs :: Atom
LengthJa . . .K“

ź

n . . .

Θ;∆;Γ $
(array (n . . . ) arx ÞÑ ιxs . . . )
: (A τarx ÞÑ ιxs (shape n . . . ))

T:ARRAY
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Case FRAME

Θ,x :: γ ;∆;Γ $ ea : (A τa ιa) . . .
Θ,x :: γ ;∆$ (A τa ιa) :: Array

LengthJea . . .K“
ź

n . . .

Θ,x :: γ ;∆;Γ $
(frame (n . . . ) e . . . )

: (A τa (++ (shape n . . . ) ιa))

T:FRAME

The induction hypothesis implies for each of the e . . . that

Θ;∆;Γrx ÞÑ ιxs $ erx ÞÑ ιxs : (A τarx ÞÑ ιxs ιarx ÞÑ ιxs)

As in the T:ARRAY case, we use preservation of kinds to determine that
Θ;∆$ (A τarx ÞÑ ιxs ιarx ÞÑ ιxs) :: Array. Then we derive

Θ;∆;Γrx ÞÑ ιxs $ earx ÞÑ ιxs
: (A τarx ÞÑ ιxs ιarx ÞÑ ιxs) . . .

Θ;∆$ (A τarx ÞÑ ιxs ιarx ÞÑ ιxs) :: Array
LengthJea . . .K“

ź

n . . .

Θ;∆;Γrx ÞÑ ιxs $ (frame (n . . . ) erx ÞÑ ιxs . . . )
: (A τarx ÞÑ ιxs (++ (shape n . . . ) ιarx ÞÑ ιxs))

T:FRAME

Case EMPTYA

Θ,x :: γ ;∆$ τa :: Atom 0 P n . . .
Θ,x :: γ ;∆;Γ $

(array (n . . . ) τa)
: (A τa (shape n . . . ))

T:EMPTYA

By preservation of kinds, Θ;∆ $ τarx ÞÑ ιxs :: Atom. This leads to the
derivation

Θ;∆$ τarx ÞÑ ιxs :: Atom 0 P n . . .
Θ;∆;Γrx ÞÑ ιxs $

(array (n . . . ) τarx ÞÑ ιxs)
: (A τarx ÞÑ ιxs (shape n . . . ))

T:EMPTYA

Case EMPTYF

Θ,x :: γ ;∆$ τa :: Atom
Θ,x :: γ $ ιa :: Shape 0 P n . . .

Θ,x :: γ ;∆;Γ $
(frame (n . . . ) (A τa ιa))

: (A τa (++ (shape n . . . ) ιa))

T:EMPTYF
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As before, preservation of kinds implies Θ;∆$ τarx ÞÑ ιxs :: Atom. We
also have, by preservation of sorts under substitution (Lemma 4.2.2)
Θ $ ιarx ÞÑ ιxs :: Shape. So we can derive

Θ;∆$ τarx ÞÑ ιxs :: Atom
Θ $ ιarx ÞÑ ιxs :: Shape 0 P n . . .

Θ;∆;Γ $
(frame (n . . . ) (A τarx ÞÑ ιxs ιarx ÞÑ ιxs))

: (A τarx ÞÑ ιxs (++ (shape n . . . ) ιarx ÞÑ ιxs))

T:EMPTYF

Case LAM

Θ,x :: γ ;∆;Γ ,xi : τi . . . $ e : τo Θ,x :: γ ;∆$ τi :: Array

Θ,x :: γ ;∆;Γ $ (� ((xi τi) . . . ) e) : (-> (τi . . . ) τo)
T:LAM

The induction hypothesis gives us Θ;∆;Γrx ÞÑ ιxs ,xi : τirx ÞÑ ιxs . . . $
erx ÞÑ ιxs : τorx ÞÑ ιxs. By preservation of kinds, Θ;∆ $ Γrx ÞÑ ιxs ::
Array for each of τi . . . , which leads to the derivation

Θ;∆;Γrx ÞÑ ιxs ,xi : τirx ÞÑ ιxs . . . $ erx ÞÑ ιxs : τorx ÞÑ ιxs
Θ;∆$ τirx ÞÑ ιxs :: Array . . .

Θ;∆;Γrx ÞÑ ιxs $
(� (xi . . . τirx ÞÑ ιxs) erx ÞÑ ιxs)
: (-> (τirx ÞÑ ιxs . . . ) τorx ÞÑ ιxs)

T:LAM

Case TLAM

Θ,x :: γ ;∆,xu :: k . . . ;Γ $ e : τu
Θ,x :: γ ;∆;Γ $ (T� ((xu k) . . . ) e) : (� ((xu k) . . . ) τu)

T:TLAM

By the induction hypothesis, Θ;∆,xu :: k . . . ;Γrx ÞÑ ιxs $ erx ÞÑ ιxs :
τurx ÞÑ ιxs, so we derive

Θ;∆,xu :: k . . . ;Γrx ÞÑ ιxs $ erx ÞÑ ιxs : τurx ÞÑ ιxs

Θ;∆;Γrx ÞÑ ιxs $
(T� ((xu k) . . . ) erx ÞÑ ιxs)
: (� ((xu k) . . . ) τurx ÞÑ ιxs)

T:TLAM

Case ILAM

Θ,x :: γ ,xu :: γp . . . ;∆;Γ $ e : τp
Θ,x :: γ ;∆;Γ $ (I� ((xp γp) . . . ) e) : (� ((xp γp) . . . ) τp)

T:ILAM

Following Barendregt’s convention, we assume that x does not appear
in ιx. The induction hypothesis gives Θ,xp :: γp . . . ;∆;Γrx ÞÑ ιxs $
erx ÞÑ ιxs : τprx ÞÑ ιxs, leading to

Θ,xu :: γu . . . ;∆;Γrx ÞÑ ιxs $ erx ÞÑ ιxs : τurx ÞÑ ιxs

Θ;∆;Γrx ÞÑ ιxs $
(T� ((xu k) . . . ) erx ÞÑ ιxs)
: (� ((xu k) . . . ) τurx ÞÑ ιxs)

T:ILAM
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Case BOX

Θ,x :: γ $ ιs :: γs . . .
Θ,x :: γ ;∆$ (� ((xs γs) . . . ) τs) :: Atom

Θ,x :: γ ;∆;Γ $ e : τsrxs ÞÑ ιs, . . . s
Θ,x :: γ ;∆;Γ $ (box ιs . . . e (� ((xs γs) . . . ) τs))

: (� ((xs γs) . . . ) τs)

T:BOX

By the induction hypothesis,

Θ;∆;Γrx ÞÑ ιxs $ erx ÞÑ ιxs : τsrxs ÞÑ ιs, . . . srx ÞÑ ιxs

This ascribed type is equal to τsrx ÞÑ ιxsrxs ÞÑ ιs, . . . s. Preservation of
sorts implies Θ $ ιsrx ÞÑ ιxs :: γs for each of ιs . . . , while preservation
of kinds implies Θ;∆$ (� ((xs γs) . . . ) τsrx ÞÑ ιxs) :: Atom. Applying
T:BOX derives

Θ $ ιsrx ÞÑ ιxs :: γs . . .
Θ;∆$ (� ((xs γs) . . . ) τsrx ÞÑ ιxs) :: Atom

Θ;∆;Γrx ÞÑ ιxs $ erx ÞÑ ιxs : τsrx ÞÑ ιxsrxs ÞÑ ιs, . . . s

Θ;∆;Γrx ÞÑ ιxs $
(box ιsrx ÞÑ ιxs . . . erx ÞÑ ιxs

(� ((xs γs) . . .) τsrx ÞÑ ιxs))
: (� ((xs γs) . . . ) τsrx ÞÑ ιxs)

T:BOX

Case TAPP

Θ,x :: γ ;∆;Γ $ e : (A (� ((xu k) . . . ) (A τu ιu)) ιf )
Θ,x :: γ ;∆$ τa :: k . . .

Θ,x :: γ ;∆;Γ $ (t-app e τa . . . )
: (A τurxu ÞÑ τa, . . . s (++ ιf ιu))

T:TAPP

The induction hypothesis gives

Θ;∆;Γrx ÞÑ ιxs $ erx ÞÑ ιxs :

(A (� ((xu k) . . .)

(A τurx ÞÑ ιxs ιurx ÞÑ ιxs)) (ιf rx ÞÑ ιxs))

Preservation of kinds under index substitution (Lemma 4.2.4) implies
Θ;∆$ τarx ÞÑ ιxs :: k for each of τa . . . . So we derive

Θ;∆$ τarx ÞÑ ιxs :: k . . .
Θ;∆;Γrx ÞÑ ιxs $ erx ÞÑ ιxs :

(A (� ((xu k) . . .))
(A τurx ÞÑ ιxs ιurx ÞÑ ιxs)

ιf rx ÞÑ ιxs)

Θ;∆;Γrx ÞÑ ιxs $ (t-app e τarx ÞÑ ιxs . . . ) :
(A τurx ÞÑ ιxsrxu ÞÑ τa, . . . s

(++ ιf rx ÞÑ ιxs ιurx ÞÑ ιxs))

T:TAPP



210 P RO O F S ( 4 . 2 : S TAT I C S E M A N T I C S )

Case IAPP

Θ,x :: γ ;∆;Γ $ e : (A (� ((xp γp) . . . ) (A τp ιp)) ιf )
Θ,x :: γ $ ιa :: γp . . .

Θ,x :: γ ;∆;Γ $ (i-app e ιa . . . )
T:IAPP

The induction hypothesis implies

Θ;∆;Γrx ÞÑ ιxs $ erx ÞÑ ιxs :

(A (� ((xp γp) . . .)

(A τprx ÞÑ ιxs ιprx ÞÑ ιxs))

ιf rx ÞÑ ιxs)

Preservation of sorts under index substitution (Lemma 4.2.2) implies
Θ $ ιarx ÞÑ ιxs :: γa for each corresponding pair pιa,γaq . . . . So we
construct the derivation

Θ $ ιarx ÞÑ ιxs :: γp . . .
Θ;∆;Γrx ÞÑ ιxs $ erx ÞÑ ιxs
: (A (� ((xu k) . . .)

(A τprx ÞÑ ιxs ιprx ÞÑ ιxs))
(ιf rx ÞÑ ιxs))

Θ;∆;Γrx ÞÑ ιxs $
(i-app e ιarx ÞÑ ιxs . . . ) :

(A τprx ÞÑ ιxs
“

xp ÞÑ ιa, . . .
‰

(++ ιf rx ÞÑ ιxs ιprx ÞÑ ιxs
“

xp ÞÑ ιa, . . .
‰

))

T:IAPP

Case APP

Θ,x :: γ ;∆;Γ $ ef : (A (-> ((A τi ιi) . . . ) (A τo ιo)) ιf )
Θ,x :: γ ;∆;Γ $ ea : (A τi (++ ιa ιi)) . . .

ιp “Max
q
ιf ιa . . .

y

Θ,x :: γ ;∆;Γ $ (ef ea . . . ) : (A τo (++ ιp ιo))
T:APP

By the induction hypothesis,

Θ;∆;Γrx ÞÑ ιxs $ ef rx ÞÑ ιxs :

(A (-> ((A τirx ÞÑ ιxs ιirx ÞÑ ιxs) . . .)

(A τorx ÞÑ ιxs ιorx ÞÑ ιxs))

ιf rx ÞÑ ιxs)

and for each of ea . . . , we have

Θ;∆;Γrx ÞÑ ιxs $ earx ÞÑ ιxs :

(A τirx ÞÑ ιxs (++ ιarx ÞÑ ιxs ιirx ÞÑ ιxs))
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Since substituting into a shape is monotonic in the subbed-in index, i.e.,
prefix ordering commutes with substitution,

Max
q
ιf rx ÞÑ ιxs ιarx ÞÑ ιxs . . .

y

“Max
q
ιf ιa . . .

y
rx ÞÑ ιxs

“ ιprx ÞÑ ιxs

Then we build the derivation

Θ;∆;Γrx ÞÑ ιxs $ ef rx ÞÑ ιxs
: (A (-> ((A τirx ÞÑ ιxs ιirx ÞÑ ιxs)

. . .)
(A τorx ÞÑ ιxs ιorx ÞÑ ιxs))

ιf )

Θ;∆;Γrx ÞÑ ιxs $ earx ÞÑ ιxs
: (A τirx ÞÑ ιxs (++ ιarx ÞÑ ιxs ιirx ÞÑ ιxs))

. . .

ιprx ÞÑ ιxs “Max
q
ιf rx ÞÑ ιxs ιarx ÞÑ ιxs . . .

y

Θ;∆;Γrx ÞÑ ιxs $ (ef rx ÞÑ ιxs earx ÞÑ ιxs . . . )
: (A τorx ÞÑ ιxs (++ ιprx ÞÑ ιxs ιorx ÞÑ ιxs))

T:APP

Case UNBOX

Θ,x :: γ ;∆;Γ $ es : (A (� (x1i :: γi . . . ) τs) ιs)
Θ,x :: γ ,xi :: γi . . .∆Γ ,xe : τs

“

x1i ÞÑ xi , . . .
‰

$ eb : (A τb ιb)
Θ,x :: γ ;∆$ (A τb ιb) :: Array

Θ,x :: γ ;∆;Γ $ (unbox (xi . . . xe es) eb)
: (A τb (++ ιs ιb))

T:UNBOX

Per Barendregt’s convention, we stipulate that x R x1i . . . . Then the induc-
tion hypothesis gives both

Θ;∆;Γrx ÞÑ ιxs $ esrx ÞÑ ιxs :

(A (� (x1i . . . γi) τsrx ÞÑ ιxs) ιsrx ÞÑ ιxs)

and

Θ,xi :: γi . . .∆Γrx ÞÑ ιxs ,xe :
`

τs
“

x1i ÞÑ xi , . . .
‰˘

rx ÞÑ ιxs

$ ebrx ÞÑ ιxs : τbrx ÞÑ ιxs
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By preservation of kinds, Θ;∆$ (A τb ιb)rx ÞÑ ιxs :: Array. So we can
build the derivation

Θ,∆,Γrx ÞÑ ιxs $ esrx ÞÑ ιxs
: (A (� (x1i :: γi . . . ) τsrx ÞÑ ιxs) ιs)

Θ,xi :: γi . . . ;∆;
Γrx ÞÑ ιxs ,xe :

`

τs
“

x1i ÞÑ xi , . . .
‰˘

rx ÞÑ ιxs
$ ebrx ÞÑ ιxs : (A τb ιb)rx ÞÑ ιxs

Θ;∆$ (A τb ιb)rx ÞÑ ιxs :: Array
Θ;∆;Γrx ÞÑ ιxs $

(unbox (xi . . . xe esrx ÞÑ ιxs) ebrx ÞÑ ιxs)
: (A τb ιb)rx ÞÑ ιxs

T:UNBOX

Lemma 4.2.14 (Preservation of types under type substitution).
Given Θ;∆,x :: k;Γ $ t : τ and Θ;∆$ τx :: k,
then Θ;∆;Γrx ÞÑ τxs $ trx ÞÑ τxs : τrx ÞÑ τxs.

Proof. We use induction on the derivation of Θ;∆,x :: k;Γ $ t : τ .
Case EQV

Θ;∆,x :: k;Γ $ t : τ 1 τ – τ 1

Θ;∆,x :: k;Γ $ t : τ
T:EQV

The induction hypothesis implies

Θ;∆;Γrx ÞÑ τxs $ trx ÞÑ τxs : τ 1rx ÞÑ τxs

Preservation of equivalence (Lemma 4.2.12) implies

τrx ÞÑ τxs – τ
1rx ÞÑ τxs

So we derive

Θ;∆;Γrx ÞÑ τxs $ trx ÞÑ τxs : τ 1rx ÞÑ τxs
τrx ÞÑ τxs – τ

1rx ÞÑ τxs

Θ;∆;Γrx ÞÑ τxs $ trx ÞÑ τxs : τrx ÞÑ τxs
T:EQV

Case OP, BASE

Since x cannot appear free in t or τ , the goal, after substitution, is to
ascribe τ to t in the diminished environment, which can be done because
T:OP and T:BASE do not depend on the contents of the environment.

Case VAR

`

x1 : τ
˘

P Γ

Θ;∆,x :: k;Γ $ x1 : τ
T:VAR
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The type variable x cannot appear free in x1 (which is a term vari-
able), so x1rx ÞÑ τxs “ x1. Applying substitution to Γ maps Γ px1q into
Γ px1qrx ÞÑ τxs, so px1 : τrx ÞÑ τxsq P Γrx ÞÑ τxs. We then derive

`

x1 : τrx ÞÑ τxs
˘

P Γrx ÞÑ τxs

Θ;∆;Γrx ÞÑ τxs $ x1 : τrx ÞÑ τxs
T:VAR

Case ARRAY

Θ;∆,x :: k;Γ $ a : τa . . .
Θ;∆,x :: k$ τa :: Atom LengthJa . . .K“

ź

n . . .

Θ;∆,x :: k;Γ $ (array (n . . . ) a . . . ) : (A τa (shape n . . . ))
T:ARRAY

The induction hypothesis implies Θ;∆;Γrx ÞÑ τxs $ a : τarx ÞÑ τxs for
each of the a . . . . By preservation of kinds (Lemma 4.2.5), Θ;∆ $
τarx ÞÑ τxs :: Atom. This leads to the derivation

Θ;∆;Γrx ÞÑ τxs $ arx ÞÑ τxs : τarx ÞÑ τxs . . .

Θ;∆$ τarx ÞÑ τxs :: Atom LengthJa . . .K“
ź

n . . .

Θ;∆;Γrx ÞÑ τxs $
(array (n . . . ) arx ÞÑ τxs . . . )
: (A τarx ÞÑ τxs (shape n . . . ))

T:ARRAY

Case FRAME

Θ;∆,x :: k;Γ $ e : (A τa ιa) . . .
Θ;∆,x :: k$ (A τa ιa) :: Array

LengthJa . . .K“
ź

n . . .

Θ;∆,x :: k;Γ $ (frame (n . . . ) e . . . )
: (A τa (++ (shape n . . . ) ιa))

T:FRAME

By the induction hypothesis, for each of the e . . . we have

Θ;∆;Γrx ÞÑ τxs $ erx ÞÑ τxs : (A τarx ÞÑ τxs ιa)

Preservation of kinds gives

Θ;∆$ (A τarx ÞÑ τxs ιa) :: Array

So we derive

Θ;∆;Γrx ÞÑ τxs $ erx ÞÑ τxs : (A τarx ÞÑ τxs ιa) . . .
Θ;∆$ (A τarx ÞÑ τxs ιa) :: Array

LengthJa . . .K“
ź

n . . .

Θ;∆;Γrx ÞÑ τxs $
(frame (n . . . ) erx ÞÑ τxs . . . )

: (A τarx ÞÑ τxs (++ (shape n . . . ) ιa))

T:FRAME
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Case EMPTYA

Θ;∆,x :: k$ τa :: Atom 0 P n . . .

Θ;∆,x :: k;Γ $ (array (n . . . ) τa) : (A τa (shape n . . . ))
T:EMPTYA

Preservation of kinds implies Θ;∆ $ τarx ÞÑ τxs :: Atom, so we can
derive

Θ;∆$ τarx ÞÑ τxs :: Atom 0 P n . . .
Θ;∆;Γrx ÞÑ τxs $

(array (n . . . ) τarx ÞÑ τxs)
: (A τarx ÞÑ τxs (shape n . . . ))

T:EMPTYA

Case EMPTYF

Θ;∆,x :: k$ (A τa ιa) :: Array 0 P n . . .
Θ;∆,x :: k;Γ $ (frame (n . . . ) (A τa ιa))

: (A τa (++ ιa (shape n . . . )))

T:EMPTYF

Preservation of kinds implies Θ;∆$ (A τarx ÞÑ τxs ιa) :: Array. so we
can derive

Θ;∆$ (A τarx ÞÑ τxs ιa) :: Array 0 P n . . .
Θ;∆,x :: k;Γ $

(frame (n . . . ) (A τarx ÞÑ τxs ιa))
: (A τarx ÞÑ τxs (++ ιa (shape n . . . )))

T:EMPTYF

Case LAM

Θ;∆,x :: k;Γ ,xi : τi . . . $ e : τo
Θ;∆,x :: k;Γ $ (� ((xi τi) . . . ) e) : (-> (τi . . . ) τo)

T:LAM

The induction hypothesis implies Θ;∆;Γrx ÞÑ τxs ,xi : τirx ÞÑ τxs . . . $
erx ÞÑ τxs : τorx ÞÑ τxs (n.b., pΓ ,xi : τi . . .qrx ÞÑ τxs “ Γrx ÞÑ τxs ,xi :
τi . . . ). Then applying T:LAM derives

Θ;∆;Γrx ÞÑ τxs ,xi : τirx ÞÑ τxs . . . $ erx ÞÑ τxs : τorx ÞÑ τxs

Θ;∆;Γrx ÞÑ τxs $
(� ((xi τirx ÞÑ τxs) . . . ) erx ÞÑ τxs)
: (-> (τirx ÞÑ τxs . . . ) τorx ÞÑ τxs)

T:LAM

Case TLAM

Θ;∆,x :: k,xu :: ku . . . ;Γ $ e : τu
Θ;∆,x :: k;Γ $ (T� ((xu ku) . . . ) e) : (� ((xu ku) . . . ) τu)

T:TLAM

By the induction hypothesis, Θ;∆,xu :: ku . . . ;Γrx ÞÑ τxs $ erx ÞÑ τxs :
τurx ÞÑ τxs (per Barendregt’s convention, x R xu . . . ). We then derive

Θ;∆,xu :: ku . . . ;Γrx ÞÑ τxs $ erx ÞÑ τxs : τurx ÞÑ τxs

Θ;∆;Γrx ÞÑ τxs $
(T� ((xu ku) . . . ) erx ÞÑ τxs)
: (� ((xu ku) . . . ) τurx ÞÑ τxs)

T:TLAM
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Case ILAM

Θ,xp :: γp . . . ;∆,x :: k;Γ $ e : τp
Θ;∆,x :: k;Γ $ (I� ((xp γp) . . . ) e) : (� ((xp γp) . . . ) τp)

T:ILAM

The induction hypothesis implies

Θ,xp :: γp . . . ;∆;Γrx ÞÑ τxs $ erx ÞÑ τxs : τprx ÞÑ τxs

Then we can derive

Θ,xp :: γp . . . ;∆;Γrx ÞÑ τxs $ erx ÞÑ τxs : τprx ÞÑ τxs

Θ;∆;Γrx ÞÑ τxs $
(I� ((xp γp) . . . ) erx ÞÑ τxs)
: (� ((xp γp) . . . ) τprx ÞÑ τxs)

T:ILAM

Case BOX

Θ $ ιs :: γs . . . Θ;∆,x :: k$ (� ((xs γs) . . . ) τs) :: Atom
Θ;∆,x :: k;Γ $ e : τsrxs ÞÑ ιs, . . . s

Θ;∆,x :: k;Γ $ (box ιs . . . e (� ((xs γs) . . . ) τs))
: (� ((xs γs) . . . ) τs)

T:BOX

By the induction hypothesis,

Θ;∆;Γrx ÞÑ τxs $ e : τsrxs ÞÑ ιs, . . . srx ÞÑ τxs

Preservation of kinds under type substitution gives a derivation for

Θ;∆$ (� ((xs γs) . . . ) τsrx ÞÑ τxs) :: Atom

By merging substitutions, the ascribed type τsrxs ÞÑ ιs, . . . srx ÞÑ τxs is
equal to τsrxs ÞÑ ιs, . . . ,x ÞÑ τxs. We then derive

Θ $ ιs :: γs . . .
Θ;∆$ (� ((xs γs) . . . ) τsrx ÞÑ τxs) :: Atom
Θ;∆;Γrx ÞÑ τxs $ e : τsrxs ÞÑ ιs . . . ,x ÞÑ τxs

Θ;∆;Γrx ÞÑ τxs $
(box ιs . . . erx ÞÑ τxs (� ((xs γs) . . . ) τsrx ÞÑ τxs))

: (� ((xs γs) . . . ) τsrx ÞÑ τxs)

T:BOX

Case TAPP

Θ;∆,x :: k;Γ $ e : (A (� ((xu ku) . . . ) (A τu ιu)) ιf )
Θ;∆,x :: k$ τa :: ku . . .

Θ;∆,x :: k;Γ $ (t-app e τa . . . )
: (A τurxu ÞÑ τa, . . . s (++ ιf ιu))

T:TAPP

The induction hypothesis gives Θ;∆;Γrx ÞÑ τxs $ erx ÞÑ τxs : (A (�

((xu ku) . . .) (A τurx ÞÑ τxs ιu)) ιf ). Lemma 4.2.5 (preservation of
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kinds) implies for each of τa . . . that Θ;∆$ τarx ÞÑ τxs :: ku . Then we
can derive

Θ;∆;Γrx ÞÑ τxs $ erx ÞÑ τxs
: (A (� ((xu ku) . . . ) (A τurx ÞÑ τxs ιu)) ιf )

Θ;∆$ τarx ÞÑ τxs :: ku . . .
Θ;∆;Γrx ÞÑ τxs $

(t-app erx ÞÑ τxs τarx ÞÑ τxs . . . )
: (A τurx ÞÑ τxsrxu ÞÑ τa, . . . s (++ ιf ιu))

T:TAPP

Case IAPP

Θ;∆,x :: k;Γ $ e : (A (� ((xp γp) . . . ) (A τp ιp)) ιf )
Θ $ ιa :: γp . . .

Θ;∆,x :: k;Γ $ (i-app e ιa . . . )
: (A τp

“

xp ÞÑ ιa, . . .
‰

(++ ιf ιp
“

xp ÞÑ ιa, . . .
‰

))

T:IAPP

By the induction hypothesis, Θ;∆;Γrx ÞÑ τxs $ erx ÞÑ τxs : (A (� ((xp
γp) . . .) (A τprx ÞÑ τxs ιp)) ιf ). Applying T:IAPP produces the de-
rivation

Θ;∆;Γrx ÞÑ τxs $ erx ÞÑ τxs
: (A (� ((xp γp) . . . ) (A τprx ÞÑ τxs ιp)) ιf )

Θ $ ιa :: γp . . .

Θ;∆;Γrx ÞÑ τxs $ (i-app erx ÞÑ τxs ιa . . . )
: (A τp

“

xp ÞÑ ιa, . . .
‰

(++ ιf ιp
“

xp ÞÑ ιa, . . .
‰

))

T:IAPP

Case APP

Θ;∆,x :: k;Γ $ ef : (A (-> ((A τi ιi) . . . ) (A τo ιo)) ιf )
Θ;∆,x :: k;Γ $ ea : (A τi (++ ιa ιi)) . . .

ιp “Max
q
ιf ιa . . .

y

Θ;∆,x :: k;Γ $ (ef ea . . . ) : (A τo (++ ιp ιo))
T:APP

The induction hypothesis gives derivations for

Θ;∆,x :: k;Γrx ÞÑ τxs $ ef rx ÞÑ τxs :

(A (-> ((A τirx ÞÑ τxs ιi) . . .)

(A τorx ÞÑ τxs ιo)) ιf )

It also gives for each of the ea . . . a derivation for

Θ;∆,x :: k;Γrx ÞÑ τxs $ earx ÞÑ τxs : (A τirx ÞÑ τxs (++ ιa ιi))
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Note that the frames of the function and argument arrays are unchanged,
so the principal frame ιp is also unchanged. We then derive

Θ;∆;Γrx ÞÑ τxs $ ef rx ÞÑ τxs :
(A (-> ((A τirx ÞÑ τxs ιi) . . .)

(A τorx ÞÑ τxs ιo)))

Θ;∆;Γrx ÞÑ τxs $ earx ÞÑ τxs : (A τirx ÞÑ τxs (++ ιa ιi)) . . .

ιp “Max
q
ιf ιa . . .

y

Θ;∆;Γrx ÞÑ τxs $
(ef rx ÞÑ τxs earx ÞÑ τxs . . . )
: (A τorx ÞÑ τxs (++ ιp ιo))

T:APP

Case UNBOX

Θ;∆,x :: k;Γ $ es : (A (� ((x1i γi) . . . ) τs) ιs)
Θ,xi :: γi . . . ;∆,x :: k;Γ ,xe : τs

“

x1i ÞÑ xi , . . .
‰

$

eb : (A τb ιb)
Θ;∆,x :: k$ (A τb ιb) :: Array

Θ;∆,x :: k;Γ $ (unbox (xi . . . xe es) eb)
: (A τb (++ ιs ιb))

T:UNBOX

By the induction hypothesis,

Θ;∆;Γrx ÞÑ τxs $ esrx ÞÑ τxs :

(A (� ((x1i γi) . . .) τsrx ÞÑ τxs) ιs)

and

Θ,xi :: γi . . . ;∆;Γrx ÞÑ τxs ,xe :
`

τs
“

x1i ÞÑ xi , . . .
‰˘

rx ÞÑ τxs

$ ebrx ÞÑ τxs : (A τb ιb)rx ÞÑ τxs

Preservation of kinds implies Θ;∆ $ (A τb ιb)rx ÞÑ τxs :: Array. Then
we can derive

Θ;∆;Γrx ÞÑ τxs $ esrx ÞÑ τxs
: (A (� ((x1i γi) . . . ) τsrx ÞÑ τxs) ιs)

Θ,xi :: γi . . . ;∆;
Γrx ÞÑ τxs ,xe :

`

τs
“

x1i ÞÑ xi , . . .
‰˘

rx ÞÑ τxs
$ ebrx ÞÑ τxs : (A τb ιb)rx ÞÑ τxs

Θ;∆$ (A τb ιb)rx ÞÑ τxs :: Array
Θ;∆;Γrx ÞÑ τxs $

(unbox (xi . . . xe esrx ÞÑ τxs) ebrx ÞÑ τxs)
: (A τb (++ ιs ιb))rx ÞÑ τxs

T:UNBOX
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Lemma 4.2.15 (Preservation of types under term substitution). Given
Θ;∆;Γ ,x : τx $ t : τ and Θ;∆;Γ $ ex : τx then Θ;∆;Γ $ trx ÞÑ exs : τ .

Proof. We use induction on the derivation of Θ;∆;Γ ,x : τx $ t : τ .
Case EQV

Θ;∆;Γ ,x : τx $ t : τ 1 τ – τ 1

Θ;∆;Γ ,x : τx $ t : τ
T:EQV

By the induction hypothesis, Θ;∆;Γ $ trx ÞÑ exs : τ 1. So we can derive

Θ;∆;Γ $ trx ÞÑ exs : τ 1 τ – τ 1

Θ;∆;Γ ,x : τx $ trx ÞÑ exs : τ
T:EQV

Case VAR

`

x1 : τ
˘

P Γ

Θ;∆;Γ ,x : τx $ x1 : τ
T:VAR

Suppose x1 “ x. Then x1rx ÞÑ exs “ ex, and by assumption,Θ;∆;Γ $ ex :
τx. Since the type environment maps x to both τ and τx, we know that
τ “ τx. Therefore, Θ;∆;Γ $ ex : τ .

Otherwise, x1 “ x, and x1rx ÞÑ exs “ x1. The type environment still
contains px1 : τq, so we can still derive

`

x1 : τ
˘

P Γ

Θ;∆;Γ $ x1 : τ
T:VAR

Case OP, BASE

The variable x cannot appear free in t, so trx ÞÑ exs “ t. Neither T:OP nor
T:BASE depends on the environment, so the same rule which produced
the original derivation can also derive Θ;∆;Γ $ t : τ .

Case ARRAY

Θ;∆;Γ ,x : τx $ a : τa . . .
Θ;∆$ τa :: Atom LengthJa . . .K“

ź

n . . .

Θ;∆;Γ ,x : τx $ (array (n . . . ) a . . . ) : (A τa (shape n . . . ))
T:ARRAY

By the induction hypothesis, Θ;∆;Γ $ arx ÞÑ exs : τa for each of a . . . .
So we can derive

Θ;∆;Γ $ arx ÞÑ exs : τa . . .
Θ;∆$ τa :: Atom LengthJa . . .K“

ź

n . . .

Θ;∆;Γ $ (array (n . . . ) arx ÞÑ exs . . . )
: (A τa (shape n . . . ))

T:ARRAY
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Case FRAME

Θ;∆;Γ ,x : τx $ ea : (A τa ιa) . . .
Θ;∆$ (A τa ιa) :: Array LengthJa . . .K“

ź

n . . .

Θ;∆;Γ ,x : τx $ (frame (n . . . ) ea . . . )
: (A τa (++ (shape n . . . ) ιa))

T:FRAME

The induction hypothesis implies for each of ea . . . that Θ;∆;Γ $ ea :
(A τa ιa). This leads to

Θ;∆;Γ $ earx ÞÑ exs : (A τa ιa) . . .
Θ;∆$ (A τa ιa) :: Array LengthJa . . .K“

ź

n . . .

Θ;∆;Γ $ (frame (n . . . ) earx ÞÑ exs . . . )
: (A τa (++ (shape n . . . ) ιa))

T:FRAME

Case EMPTYA, EMPTYF
For each of these rules, the only premise is a kind check, which does not
mention the conclusion’s type environment. So Θ;∆;Γ $ trx ÞÑ exs : τ
can be derived from the same premise.

Case LAM

Θ;∆;Γ ,x : τx,xi : τi . . . $ e : τo
Θ;∆;Γ ,x : τx $ (� ((xi τi) . . . ) e) : (-> (τi . . . ) τo)

T:LAM

The induction hypothesis gives Θ;∆;Γ ,xi : τi . . . $ erx ÞÑ exs : τo, so
we derive

Θ;∆;Γ ,xi : τi . . . $ erx ÞÑ exs : τo
Θ;∆;Γ ,x : τx $ (� ((xi τi) . . . ) erx ÞÑ exs) : (-> (τi . . . ) τo)

T:LAM

Case TLAM

Θ;∆,xu :: ku . . . ;Γ ,x : τx $ e : τu
Θ;∆;Γ ,x : τx $ (T� ((xu ku) . . . ) e) : (� ((xu ku) . . . ) τu)

T:TLAM

By the induction hypothesis, Θ;∆,xu :: ku . . . ;Γ $ erx ÞÑ exs : τu . We
then derive

Θ;∆,xu :: ku . . . ;Γ $ erx ÞÑ exs : τu
Θ;∆;Γ $ (T� ((xu ku) . . . ) erx ÞÑ exs)

: (� ((xu ku) . . . ) τu)

T:TLAM

Case ILAM

Θ,xp :: γp . . . ;∆;Γ ,x : τx $ e : τp
Θ;∆;Γ ,x : τx $ (I� ((xp γp) . . . ) e) : (� ((xp γp) . . . ) τp)

T:ILAM
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The induction hypothesis implies Θ,xp :: γp . . . ;∆;Γ $ erx ÞÑ exs : τp,
which leads to the derivation

Θ,xp :: γp . . . ;∆;Γ $ erx ÞÑ exs : τp
Θ;∆;Γ $ (I� ((xp γp) . . . ) erx ÞÑ exs)

: (� ((xp γp) . . . ) τp)

T:ILAM

Case BOX

Θ $ ιs :: γs . . . Θ;∆$ (� ((xs γs) . . . ) τs) :: Atom
Θ;∆;Γ ,x : τx $ e : τsrxs ÞÑ ιs, . . . s

Θ;∆;Γ ,x : τx $
(box ιs . . . e (� ((xs γs) . . . ) τs))

: (� ((xs γs) . . . ) τs)

T:BOX

By the induction hypothesis, Θ;∆;Γ $ erx ÞÑ exs : τsrxs ÞÑ ιs, . . . s. We
then derive

Θ $ ιs :: γs . . . Θ;∆$ (� ((xs γs) . . . ) τs) :: Atom
Θ;∆;Γ $ erx ÞÑ exs : τsrxs ÞÑ ιs, . . . s

Θ;∆;Γ $
(box ιs . . . erx ÞÑ exs (� ((xs γs) . . . ) τs))

: (� ((xs γs) . . . ) τs)

T:BOX

Case TAPP

Θ;∆;Γ ,x : τx $ e : (A (� ((xu ku) . . . ) (A τu ιu)) ιf )
Θ;∆$ τa :: ku . . .

Θ;∆;Γ ,x : τx $ (t-app e τa . . . )
: (A τurxu ÞÑ τa, . . . s (++ ιf ιu))

T:TAPP

The induction hypothesis gives a derivation for Θ;∆;Γ $ erx ÞÑ exs : (A
(� ((xu ku) . . .) (A τu ιu)) ιf ). We can then construct the derivation

Θ;∆;Γ $ erx ÞÑ exs : (A (� ((xu ku) . . . ) (A τu ιu)) ιf )
Θ;∆$ τa :: ku . . .

Θ;∆;Γ $ (t-app erx ÞÑ exs τa . . . )
: (A τurxu ÞÑ τa, . . . s (++ ιf ιu))

T:TAPP

Case IAPP

Θ;∆;Γ ,x : τx $ e : (A (� ((xp γp) . . . ) (A τp ιp)) ιf )
Θ $ ιa :: γp . . .

Θ;∆;Γ ,x : τx $ (i-app e ιa . . . )
: (A τp

“

xp ÞÑ ιa, . . .
‰

(++ ιf ιp
“

xp ÞÑ ιa, . . .
‰

))

T:IAPP
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By the induction hypothesis, we have Θ;∆;Γ ,x : τx $ erx ÞÑ exs : (A (�

((xp γp) . . .) (A τp ιp)) ιf ). This leads to

Θ;∆;Γ $ erx ÞÑ exs : (A (� ((xp γp) . . . ) (A τp ιp)) ιf )
Θ $ ιa :: γp . . .

Θ;∆;Γ $ (i-app erx ÞÑ exs ιa . . . )
: (A τp

“

xp ÞÑ ιa, . . .
‰

(++ ιf ιp
“

xp ÞÑ ιa, . . .
‰

))

T:IAPP

Case APP

Θ;∆;Γ ,x : τx $ ef : (A (-> ((A τi ιi) . . . ) (A τo ιo)) ιf )
Θ;∆;Γ ,x : τx $ ea : (A τi (++ ιa ιi)) . . .

ιp “Max
q
ιf ιa . . .

y

Θ;∆;Γ ,x : τx $ (ef ea . . . ) : (A τo (++ ιp ιo))
T:APP

The induction hypothesis implies

Θ;∆;Γ $ ef rx ÞÑ exs :

(A (-> ((A τi ιi) . . .) (A τo ιo)) ιf )

and Θ;∆;Γ $ earx ÞÑ exs : (A τi (++ ιa ιi)) for each of ea . . . . Since the
individual frames ιf , ιa . . . are unchanged, so is the principal frame ιp.
Thus we derive

Θ;∆;Γ $ ef rx ÞÑ exs : (A (-> ((A τi ιi) . . . ) (A τo ιo)) ιf )
Θ;∆;Γ $ earx ÞÑ exs : (A τi (++ ιa ιi)) . . .

ιp “Max
q
ιf ιa . . .

y

Θ;∆;Γ $ (ef rx ÞÑ exs earx ÞÑ exs . . . ) : (A τo (++ ιp ιo))
T:APP

Case UNBOX

Θ;∆;Γ ,x : τx $ es : (A (� (x1i . . . γi) τs) ιs)
Θ,xi :: γi . . . ;∆;Γ ,xe : τs

“

x1i ÞÑ xi , . . .
‰

,x : τx $
eb : (A τb ιb)

Θ;∆,x :: k$ (A τb ιb) :: Array

Θ;∆;Γ ,x : τx $ (unbox (xi . . . xe es) eb)
: (A τb (++ ιs ιb))

T:UNBOX

The induction hypothesis gives

Θ;∆;Γ $ esrx ÞÑ exs : (A (� ((x1i γi) . . .) τs) ιs)

and

Θ,xi :: γi . . . ;∆;Γ ,xe : τs
“

x1i ÞÑ xi , . . .
‰

$

ebrx ÞÑ exs : (A τb ιb)
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We then derive

Θ;∆;Γ $ esrx ÞÑ exs : (A (� (x1i . . . γi) τs) ιs)
Θ,xi :: γi . . . ;∆;Γ ,xe : τs

“

x1i ÞÑ xi , . . .
‰

$

ebrx ÞÑ exs : (A τb ιb)
Θ;∆,x :: k$ τb :: Array

Θ;∆;Γ $
(unbox (xi . . . xe esrx ÞÑ exs) ebrx ÞÑ exs)

: (A τb (++ ιs ιb))

T:UNBOX

Theorem 4.2.4 (Ascription of well-kinded types). Given Θ;∆;Γ $ t : τ
where Θ;∆$ Γ :

• If t is an expression, then Θ;∆$ τ :: Array

• If t is an atom, then Θ;∆$ τ :: Atom

Proof. We use induction on the derivation of Θ;∆;Γ $ t : τ . First, we
prove the cases where t is an expression.

Case VAR:

px : τq P Γ

Θ;∆;Γ $ x : τ
T:ARRAY

Since x : τ P Γ , this follows directly from Θ;∆$ Γ .
Case ARRAY:

Θ;∆;Γ $ aj : τa . . .
Θ;∆$ τa :: Atom

LengthJa . . .K“
ź

n . . .

Θ;∆;Γ $ (array (n . . . ) a . . . ) : (A τa (shape n . . . ))
T:ARRAY

We can derive

Θ;∆$ τa :: Atom

Θ $ n :: Dim
S:NAT

. . .

Θ $ (shape n . . . ) :: Shape
S:SHAPE

Θ;∆$ (A τa (shape n . . . )) :: Array
K:ARRAY

Case FRAME:

Θ;∆;Γ $ e : (A τc ιc) . . .
Θ;∆$ (A τc ιc) :: Array LengthJe . . .K“

ź

pn . . .q

Θ;∆;Γ $ (frame (n . . . ) e . . . )
: (A τc (++ (shape n . . . ) ιc))

T:FRAME
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The second premise must be derived as

Θ $ ιc :: Shape Θ;∆$ τc :: Atom

Θ;∆$ (A τc ιc) :: Array
K:ARRAY

Using this knowledge about ιc, we can show the array type’s shape is
indeed a Shape:

Θ $ ιc :: Shape

Θ $ n :: Dim
S:NAT

. . .

Θ $ (shape n . . . ) :: Shape
S:SHAPE

Θ $ (++ (shape n . . . ) ιc) :: Shape
S:APPEND

Then we can derive

Θ;∆$ τc :: Atom Θ $ (++ (shape n . . . ) ιc) :: Shape

Θ;∆$ (A τc (++ (shape n . . . ) ιc)) :: Array
K:ARRAY

Case EMPTYA:

Θ;∆$ τa :: Atom 0 P n . . .

Θ;∆;Γ $ (array (n . . . ) τa) : (A τa (shape n . . . ))
T:EMPTYA

We derive

Θ;∆$ τa :: Atom

Θ $ n :: Dim
S:NAT

. . .

Θ $ (shape n . . . ) :: Shape
S:SHAPE

Θ;∆$ (A τa (shape n . . . )) :: Array
K:ARRAY

Case EMPTYF:

Θ;∆$ τa :: Atom Θ $ ι :: Shape 0 P n . . .

Θ;∆;Γ $ (frame (n . . . ) (A τa ιc))
: (A τa (++ (shape n . . . ) ιc))

T:EMPTYF

First, we show that the array type’s shape has sort Shape:

Θ $ ιc :: Shape

Θ $ n :: Dim
S:NAT

. . .

Θ $ (shape n . . . ) :: Shape
S:SHAPE

Θ $ (++ (shape n . . . ) ιc) :: Shape
S:APPEND

Then we derive

Θ;∆$ τa :: Atom Θ $ (++ (shape n . . . ) ιc) :: Shape

Θ;∆$ (A τa (++ (shape n . . . ) ιc)) :: Array
K:ARRAY
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Case TAPP:

Θ;∆;Γ $ ef : (A (� ((x k) . . . ) (A τu ιu)) ιf )
Θ;∆$ τa :: k . . .

Θ;∆;Γ $ (t-app ef τa . . . ) : (A τurx ÞÑ τa, . . . s (++ ιf ιu))
T:TAPP

The induction hypothesis gives a kind derivation for the type of ef :

Θ $ ιf :: Shape
Θ;∆$ (� ((x k) . . . ) (A τu ιu)) :: Atom

Θ;∆$ (A (� ((x k) . . . ) (A τu ιu)) ιf ) :: Array
K:ARRAY

The derivation for the second premise must have the following structure:

Θ $ ιu :: Shape Θ;∆,x :: k . . . $ τu :: Atom

Θ;∆,x :: k . . . $ (A τu ιu) :: Array
K:ARRAY

Θ;∆$ (� ((x k) . . . ) (A τu ιu)) :: Atom
K:UNIV

Using the kind derivation for τu in the extended environment, we apply
Lemma 4.2.5 (type substitution preserves kinds) to get

Θ;∆$ τurx ÞÑ τa, . . . s :: Atom

Then we can derive

Θ $ ιf :: Shape
Θ $ ιu :: Shape

Θ $ (++ ιf ιu) :: Shape
S-APPEND

Θ;∆$ τurx ÞÑ τa, . . . s :: Atom

Θ;∆$ (A τurx ÞÑ τa, . . . s (++ ιf ιu)) :: Array
K:ARRAY

Case IAPP:

Θ;∆;Γ $ ef : (A (� ((x γ) . . . ) (A τp ιp)) ιf )
Θ $ ιa :: γ . . .

Θ;∆;Γ $ (i-app ef ιa . . . )
: (A τprx ÞÑ ιa, . . . s (++ ιf ιprx ÞÑ ιa, . . . s))

T:IAPP

The induction hypothesis implies that the type of ef has kind Array,
giving us a derivation which ends as follows:

Θ $ ιf :: Shape
Θ;∆$ (� ((x γ) . . . ) (A τp ιp)) :: Atom

Θ;∆$ (A (� ((x γ) . . . ) (A τp ιp)) ιf ) :: Array
K:ARRAY

The derivation of the second premise must itself have this form:

Θ,x :: γ . . . $ ιp :: Shape
Θ,x :: γ . . . ;∆$ τp :: Atom

Θ,x :: γ . . . ;∆$ (A τp ιp) :: Array
K:ARRAY

Θ;∆$ (� ((x γ) . . . ) (A τp ιp)) :: Atom
K:PI
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Using Lemma 4.2.2 (index substitution preserves sorts) implies Θ $
ιprx ÞÑ ιa, . . . s :: Shape. So we derive

Θ $ ιf :: Shape Θ $ ιprx ÞÑ ιa, . . . s :: Shape

Θ $ (++ ιf ιprx ÞÑ ιa, . . . s) :: Shape
S:APPEND

Next, Lemma 4.2.4 (index substitution preserves kinds) gives us Θ;∆$
τprx ÞÑ ιa, . . . s :: Atom. We now have the pieces for the derivation

Θ;∆$ τprx ÞÑ ιa, . . . s :: Atom
Θ $ (++ ιf ιprx ÞÑ ιa, . . . s) :: Shape

Θ;∆$ (A τprx ÞÑ ιa, . . . s (++ ιf ιprx ÞÑ ιa, . . . s)) :: Array
K:ARRAY

Case UNBOX:

Θ;∆;Γ $ es : (A (� ((x1i γ) . . . ) τs) ιs)
Θ,xi :: γ . . . ;∆;Γ ,xe : τs

“

x1i ÞÑ xi , . . .
‰

$ eb : (A τb ιb)
Θ;∆$ (A τb ιb) :: Array

Θ;∆;Γ $ (unbox (xi . . . xe es) eb) : (A τb (++ ιs ιb))
T:UNBOX

The third premise must be derived by

Θ;∆$ τb :: Atom Θ $ ιb :: Shape

Θ;∆$ (A τb ιb) :: Array
K:ARRAY

The induction hypothesis gives us a kinding derivation for the box array
type

Θ,(x1i γ) . . . ;∆$ τs :: Array Θ $ ιs :: Shape

Θ;∆$ (A (� ((x1i γ) . . . ) τs) ιs) :: Array
K:ARRAY

From these derivations, we have the pieces needed to construct the kind
derivation for the result type:

Θ;∆$ τb :: Atom

Θ $ ιs :: Shape Θ $ ιb :: Shape

Θ $ (++ ιs ιb) :: Shape
S-APPEND

Θ;∆$ (A τb (++ ιs ιb)) :: Array
K:ARRAY

Case APP:

Θ;∆;Γ $ ef : (A (-> ((A τi ιi) . . . ) (A τo ιo)) ιf )
Θ;∆;Γ $ ea : (A τi (++ ιa ιi)) . . . ιp “

ğ

`

ιf , ιa . . .
˘

Θ;∆;Γ $ (ef ea . . . ) : (A τo (++ ιp ιo))
T:APP

Since ef is well-typed, the induction hypothesis implies that its type has
kind Array. This derivation must have the form

Θ $ ιf :: Shape
Θ;∆$ (-> ((A τi ιi) . . . ) (A τo ιo)) :: Atom

Θ;∆$ (A (-> ((A τi ιi) . . . ) (A τo ιo)) ιf ) :: Array
K:ARRAY
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The second premise must be derived via

Θ;∆$ (A τi ιi) :: Array . . . Θ;∆$ (A τo ιo) :: Array

Θ;∆$ (-> ((A τi ιi) . . . ) (A τo ιo)) :: Atom
K:FN

Then the kinding derivation for each argument type (A τi ιi) must include
ascription of Atom to τi and Shape to ιi (and similar for the result type
(A τo ιo)). Any index variables which appear in ιp must also appear in at
least one of ιf , ιa . . . , so ιp must be well-formed (i.e., Θ $ ιp :: Shape).
We can then derive

Θ;∆;τo $ Atom :

Θ $ ιp :: Shape Θ $ ιo :: Shape

Θ $ (++ ιp ιo) :: Shape
S-APPEND
. . .

Θ;∆$ (A τo (++ ιp ιo)) :: Array
K:ARRAY

Now, we describe the atom cases.
Case TLAM:

Θ;∆,x :: k . . . ;Γ $ eu : τu
Θ;∆;Γ $ (T� ((x k) . . . ) eu) : (� ((x k) . . . ) τu)

T:TLAM

By the induction hypothesis, Θ;∆,x :: k . . . $ τu :: Array, so we can
derive

Θ;∆,x :: k . . . $ τu :: Array

Θ;∆$ (� ((x k) . . . ) τu) :: Atom
K:UNIV

Case ILAM:

Θ,x :: γ . . . ;∆;Γ $ ep : τp
Θ;∆;Γ $ (I� ((x γ) . . . ) ep) : (� ((x γ) . . . ) τp)

T:ILAM

The induction hypothesis implies Θ,x :: γ . . . ;∆$ τp :: Array. We then
derive

Θ,x :: γ . . . ;∆$ τp :: Array

Θ;∆$ (� ((x γ) . . . ) ep) :: Atom
K:PI

Case BOX:

Θ $ ι :: γ . . . Θ;∆$ (� ((x γ) . . . ) τs) :: Atom
Θ;∆;Γ $ es : τsrx ÞÑ ι, . . . s

Θ;∆;Γ $ (box ι . . . es (� ((x γ) . . . ) τs)) : (� ((x γ) . . . ) τs)
T:BOX

The required result is a premise in the original derivation.
Case LAM:

Θ;∆;Γ $ ef : τo Θ;∆$ τi :: Array . . .

Θ;∆;Γ $ (� ((x τi) . . . ) ef ) : (-> (τi . . . ) τo)
T:LAM
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The induction hypothesis implies that Θ;∆ $ τo :: Array, so we can
derive

Θ;∆$ τi :: Array . . . Θ;∆$ τo :: Array

Θ;∆$ (-> (τi . . . ) τo) :: Atom
K:FN

In this final case, t may be an expression or an atom.
Case EQV:

Θ;∆;Γ $ t : τ 1 τ 1 – τ

Θ;∆;Γ $ t : τ
T:EQV

The induction hypothesis gives Θ;∆$ τ 1 :: k, where k“ Atom if t is an
atom and k“ Array if t is an expression. The required result ascribing
the same kind to τ , that is Θ;∆$ τ :: k, follows directly from Lemma
4.2.10.
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Lemma 4.4.1 (Progress). Given an expression e such that ¨; ¨; ¨ $ e : τ ,
one of the following holds:

• e is a value v

• There exists e1 such that e ÞÑ e1

• e is V r((array () o) v . . . )s where o is a partial function applied
to appropriately typed values outside its domain.

Proof. We use induction on the derivation of ¨; ¨; ¨ $ e : τ . We consider
only cases for typing rules which apply to expressions (as opposed to
atoms). Note that a T:VAR derivation is impossible with an empty type
environment.

Case ARRAY

¨; ¨; ¨ $ a : τa . . .
¨; ¨ $ τa :: Atom LengthJa . . .K“

ź

n . . .

¨; ¨; ¨ $ (array (n . . . ) a . . . ) : (A τa (shape n . . . ))
T:ARRAY

We have two possibilities. One is that all of a . . . are atomic values,
v . . . , in which case e “ (array (n . . . ) v . . . ) is a value. Otherwise,
at least one a is not an atomic value. The non-value must be of the
form as “ (box (x γ) . . . es τa), with non-value es. The derivation of
¨; ¨; ¨ $ a : τa implies via the induction hypothesis that either there exists
some e1s such that es ÞÑ e1s or es has the form Vs r((array () o) v . . . )s
with misapplied partial function o. We build the evaluation context V“

(array (n . . . ) a0 . . . (box (x γ) . . . Vs τa) a1 . . . ) where a0 . . . and
a1 . . . are the atoms appearing respectively before and after as in e. If
es ÞÑ e1s, then V ress ÞÑV re1ss. Otherwise, e“V r((array () o) v . . . )s.

Case FRAME

¨; ¨; ¨ $ ea : (A τa ιa) . . .
¨; ¨ $ (A τa ιa) :: Array LengthJe . . .K“

ź

n . . .

¨; ¨; ¨ $ (frame (n . . . ) ea . . . ) : (A τa (++ (shape n . . . ) ιa))
T:FRAME

By the induction hypothesis, each of ea . . . is value, is reducible, or is a
primitive operator misapplication of the form Va r((array () o) v . . . )s.
If they are all values, then each has the form (array (n1 . . . ) v . . . ), so
e ÞÑ (array (n . . . n1 . . .) ConcatJpv . . .q . . . K). Note that all of the
array literals serving as cells in the frame must have the same shape, or
their types would differ, making e ill-typed.

229
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If some ee P ea . . . is not a value, then the induction hypothesis implies
that it is reducible to e1e or it has the form Ve r((array () o) v . . . )s.
We construct the evaluation context V“ (frame (n . . .) e0 . . . ee e1
. . .), where pea . . .q “ pe0 . . . ee e1 . . .q. If ee ÞÑ e1e, then V rees ÞÑV re1es.
Otherwise, e“V r((array () o) v . . . )s.

Case TAPP

¨; ¨; ¨ $ ef : (A (� ((x k) . . . ) (A τu ιu)) ιf )
¨; ¨ $ τa :: k . . .

¨; ¨; ¨ $ (t-app ef τa . . . ) : (A τurx ÞÑ τa, . . . s (++ ιf ιu))
T:TAPP

By the induction hypothesis, ef is a value, is reducible, or misapplies a
partial function. If ef is a value of type

(A (� ((x k) . . . ) (A τu ιu)) ιf )

then Lemma 4.2.7 (canonical forms) implies that it is an array literal
containing type abstractions—i.e.,

ef “ (array (n . . . ) (T� ((xu k) . . . ) eu) . . . )

This means we have a tβ redex.If ef is itself reducible to e1f , then
for some context Vf and redex er , ef “ Vf rers, and er ÞÑ e1r . Alter-
natively, ef “ Vf r((array () o) v . . . )s. Either way, construct V “

(t-app Vf τa . . . ). In the first case, e“V rers ÞÑV re1rs. In the second,
e“V r((array () o) v . . . )s.

Case IAPP

¨; ¨; ¨ $ ef : (A (� ((x γ) . . . ) (A τp ιp)) ιf ) ¨ $ ιa :: γ . . .

¨; ¨; ¨ $ (i-app ef ιa . . . )
: (A τprx ÞÑ ιa, . . . s (++ ιf ιprx ÞÑ ιa, . . . s))

T:IAPP

As in the previous case, ef is a value, is reducible, or misapplies a partial
function. If ef is a value, the canonical forms lemma implies that it has
the form (array (n . . .) (I� ((xp γ) . . .) ep) . . .), which makes e
an iβ redex.

Otherwise ef itself is reducible, i.e., of the form Vf rers for some
rede er reducing to e1r , or it is of the form Vf r((array () o) v . . . )s. Let
the context V“ (i-app Vf ιa . . . ). Then we have either e“V rers ÞÑ
V re1rs or e“V r((array () o) v . . . )s.

Case UNBOX

¨; ¨; ¨ $ es : (A (� ((x1i γ) . . . ) τs) ιs)
xi :: γ . . . ; ¨;xe : τs

“

x1i ÞÑ xi , . . .
‰

$ eb : (A τb ιb)
¨; ¨ $ (A τb ιb) :: Array

¨; ¨; ¨ $ (unbox (xi . . . xe es) eb) : (A τb (++ ιs ιb))
T:UNBOX

By the induction hypothesis, es is a value, reducible, or a misapplica-
tion of a partial function. If es is a value, the canonical forms lemma
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implies es “ (array () (box ιs . . . v τ)), so e is an unbox redex. If
es is reducible, i.e., it is Vs rers where the redex er ÞÑ e1r , then let
V “ (unbox (xi . . . xe Vs) eb). Thus e “ V rers ÞÑ V re1rs. Otherwise,
es “Vsr ((array () o) v . . .) s, so the same construction of V gives
e“V r((array () o) v . . . )s.

Case APP

¨; ¨; ¨ $ ef : (A (-> ((A τi ιi) . . . ) (A τo ιo)) ιf )
¨; ¨; ¨ $ ea : (A τi (++ ιa ιi)) . . . ιp “Max

q
ιf ιa . . .

y

¨; ¨; ¨ $ (ef ea . . . ) : (A τo (++ ιp ιo))
T:APP

Suppose ef is not a value. Then the induction hypothesis implies that
either ef ÞÑ e1f , meaning ef “ Vf rers for some redex er ÞÑ e1r or
ef “ Vf r((array () o) v . . . )s with incompatible but properly-typed
arguments. Let V “ (Vf ea . . . ). If ef ÞÑ e1f , with ef “ Vf rers, then
e“V rers ÞÑV re1rs. Otherwise, e“V r((array () o) v . . . )s.

We assume from now that ef is a value. If any of ea . . . is not a value,
then a similar argument applies. Choose ec as the leftmost non-value
argument, so that pea . . .q “ pva . . . ec e1c . . .q. Then induction hypothe-
sis implies that ec is a context Vc filled by either the redex er or the
misapplication ((array () o) v . . . ). Then the context V “ (ef va
. . . Vc e1c . . .). If ec “ Vx rers ÞÑ Vx re1rs, then V rers ÞÑ V re1rs. If
ec “Vx r((array () o) v . . . )s, then e“V r((array () o) v . . . )s.

Having addressed the cases where not all of ef ,ea . . . are values, we
now consider e “ (vf va . . . ). By canonical forms, vf has the form
(array (nf . . . ) f . . . ). Then uniqueness of typing implies

( ιf ” (shape nf . . . )

We proceed by case analysis on ιf , ιa . . . (n.b., per the typing derivation,
they are all prefix-orderable). With one exception—where e itself is
misapplication of a partial function—each line of argument leads to a
particular applicable reduction rule.

S U B C A S E 1 : ιf “ (shape), and each ιa “ (shape). Then nf . . .
must be the empty sequence, and vf must contain only a single atom, f.
So vf “ (array () f), and the respective types of the arguments va . . .
are (A τi (++ ιa ιi)) . . . , or equivalently (A τi ιi) . . . . If f “ o, then we
have the (partially annotated) expression

e“ ((array () o(-> ((A τi ιi) ...) (A τo ιo))) v(A τi ιi)a . . .)

If o is a partial function with va . . . as out-of-domain inputs, such as
division by zero, then the third condition of the progress lemma holds.
Otherwise, we have a δ redex.



232 P RO O F S ( 4 . 4 : T Y P E S O U N D N E S S )

On the other hand, if f “ (� ((x (A τi ιi)) . . . ) eb), the annotated
expression is

((array ()

(� ((x (A τi ιi)) . . .) eb)
(-> ((A τi ιi) . . .) (A τo ιo)))

v(A τi ιi)a . . .)

This is a β redex.

S U B C A S E 2 : ιf “ (shape nf . . . ), and each ιa “ (shape nf . . . ) for
nonempty sequence nf . . . . Then vf is

(array (nf . . . ) f . . . )
(A (-> ((A τi (shape ni ...)) ...) (A τo ιo)) (shape nf ...))

and it is applied to arguments

va . . . “ (array (nf . . . ni . . . ) v . . . )
(A τi (shape nf ... ni ...)) . . .

This is a map redex.

S U B C A S E 3 : ιf , ιa . . . are not all equal but still prefix orderable. The
form of e is similar to the previous subcase, except that each argument
array va replaces nf . . . with its own particular frame shape. We then
have a lift redex.

Lemma 4.4.2 (Preservation). Let Θ,∆,Γ be a well-formed environment,
i.e., Θ;∆$ Γ . If Θ;∆;Γ $ e : τ and e ÞÑ e1 then Θ;∆;Γ $ e1 : τ .

Proof. We use induction on the derivation of ¨; ¨; ¨ $ e : τ . As with
Lemma 4.4.1 (progress), we only consider typing rules that can apply to
an expression. We elide T:VAR because a variable does not reduce any
further.

Case EQV

Θ;∆;Γ $ e : τ 1 τ – τ 1

Θ;∆;Γ $ e : τ
T:EQV

By the induction hypothesis, Θ;∆;Γ $ e1 : τ 1. Then applying T:EQV to
that derivation produces

Θ;∆;Γ $ e1 : τ 1 τ – τ 1

Θ;∆;Γ $ e1 : τ
T:EQV

Case ARRAY

Θ;∆;Γ $ a : τa . . . Θ;∆$ τa :: Atom
LengthJa . . .K“

ź

n . . .

Θ;∆;Γ $ (array (n . . . ) a . . . ) : (A τa (shape n . . . ))
T:ARRAY
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An array literal is not itself a redex, so the only way for e to reduce to
e1 is if some atom ar in the array is reducible. Let pa0 . . . ar a1 . . .q “
pa . . .q. The only atom form which may contain an expression that takes
a reduction step is a box. So ar must have the form

(box ι . . . es (� ((x γ) . . . ) τs))

where es ÞÑ e1s and (� ((x γ) . . . ) τs)– τa. The typing derivation for ar
must, except perhaps for use of T:EQV, end with

Θ $ ι :: γ . . . Θ;∆$ (� ((x γ) . . . ) τs) :: Atom
Θ;∆;Γ $ es : τsrx ÞÑ ι, . . . s

Θ;∆;Γ $ (box ι . . . es (� ((x γ) . . . ) τs)) : (� ((x γ) . . . ) τs)
T:BOX

The induction hypothesis implies that Θ;∆;Γ $ e1s : τsrx ÞÑ ι, . . . s, so ar
can be ascribed the same type (� ((x γ) . . . ) τs), which is equivalent to
τa. Since ar ÞÑ a1r , which still has type τa, we derive

Θ;∆;Γ $ a0 : τa . . . Θ;∆;Γ $ a1r : τa
Θ;∆;Γ $ a1 : τa . . . Θ;∆$ τa :: Atom

LengthJa . . .K“
ź

n . . .

Θ;∆;Γ $ (array (n . . . ) a . . . ) : (A τa (shape n . . . ))
T:ARRAY

Case FRAME

Θ;∆;Γ $ ea : (A τa ιa) . . .
Θ;∆$ (A τa ιa) :: Array LengthJe . . .K“

ź

nf . . .

Θ;∆;Γ $ (frame (nf . . . ) ea . . . )
: (A τa (++ (shape nf . . . ) ιa))

T:FRAME

As in the T:ARRAY case, if e itself is not a redex, then in order for it
to reduce to e1, it must contain some reducible cell, i.e., there is some
er P ea . . . such that er ÞÑ e1r .

Since the type derivation for (frame (nf . . . ) ea . . . ) must ascribe the
type (A τa ιa) to each ea, including er , the induction hypothesis gives
Θ;∆;Γ $ e1r : (A τa ιa). We then patch that result into the type derivation
we had. With ea . . . “ pe0 . . . er e1 . . .q, we derive

Θ;∆;Γ $ e0 : (A τa ιa) . . .
Θ;∆;Γ $ er : (A τa ιa) Θ;∆;Γ $ e1 : (A τa ιa) . . .
Θ;∆$ (A τa ιa) :: Array LengthJe . . .K“

ź

nf . . .

Θ;∆;Γ $ (frame (nf . . . ) ea)
: (A τa (++ (shape nf . . . ) ιa))

T:FRAME

If e is a redex, it must be a collapse redex. Then e is a frame of array liter-
als, i.e., (frame (nf . . .) (array (nc . . .) v . . .) . . .), and it must step
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to e1 “ (array (nf . . . nc . . .) ConcatJpv . . .q . . .K). Each of e’s cells is
a well-typed array literal, with type derivation:

Θ;∆;Γ $ v : τa . . . Θ;∆$ τa :: Atom
LengthJv . . .K“

ź

nc . . .

Θ;∆;Γ $ (array (nc . . . ) v . . . ) : (A τa (shape nc . . . ))
T:ARRAY

The type derivation for each cell in the frame requires that LengthJv . . .K
“

ś

nc . . . . Concatenating
ś

nf . . . sequences of atomic values each
of which contains

ś

nc . . . elements gives a sequence whose length is
ś

`

nf . . . nc . . .
˘

. So we derive a similar type for the collapsed array:

Θ;∆;Γ $ v : τa . . . Θ;∆$ τa :: Atom
LengthJConcatJpv . . .q . . .KK“

ź

`

nf . . . nc . . .
˘

Θ;∆;Γ $
(array (nf . . . nc . . . ) ConcatJpv . . .q . . .K)

: (A τa (shape nf . . . nc . . . ))

T:ARRAY

Strictly speaking, our goal is to ascribe the type (A τa (++ (shape

nf . . .) ιa))“ (A τa (++ (shape nf . . .) (shape nc . . .))) rather than
the type we have just derived, but they are equivalent via TEQV:ARRAY

because (++ (shape nf . . .) (shape nc . . .)) ” (shape nf . . . nc . . .).
T:EQV completes the derivation for

Θ;∆;Γ $ e1 : (A τa (++ (shape nf . . .) ιa))

Case TAPP

Θ;∆;Γ $ ef : (A (� ((x k) . . . ) (A τu ιu)) ιf )
Θ;∆$ τa :: k . . .

Θ;∆;Γ $ (t-app ef τa . . . )
: (A τurx ÞÑ τa, . . . s (++ ιf ιu))

T:TAPP

As in previous cases, if ef ÞÑ e1f , the induction hypothesis gives us a
derivation

Θ;∆;Γ $ e1f : (A (� ((x k) . . . ) (A τu ιu)) ιf )

which we can then use for (t-app e1f τa . . .).
Otherwise, e ÞÑ e1 is only possible if we have a tβ redex, that is

ef “ (array (nf . . .) (Tλ ((xu k) . . . ) eu) . . .)

and

ιf “ (shape nf . . . )

Following the tβ reduction, e1 “ (frame (nf . . .) eurxu ÞÑ τa, . . . s . . .).
Since ef is a well-typed array of type abstractions, it must be the case that
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Θ;∆,xu :: k . . . ;Γ $ eu : (A τu ιu) for each of the abstraction bodies,
eu . . . . Lemma 4.2.14 (preservation of types under type substitution)
implies that we can give eurxu ÞÑ τa, . . . s the “same” type as eu :

Θ;∆;Γrxu ÞÑ τa, . . . s $ eurxu ÞÑ τa, . . . s : (A τurxu ÞÑ τa, . . . s ιu)

The type derivation for ef requires that the individual type abstrac-
tions’ types all be equivalent to (� ((x k) . . . ) τf ) despite possibly
being written to bind different type names, so each result cell type
(A τurxu ÞÑ τa, . . . s ιu) is equivalent to τf rx ÞÑ τa, . . . s. Per Barendregt’s
convention, an abstraction’s type variables xu . . . are not used in the
range of Γ , the type environment used in checking that abstraction
(otherwise, the environment structure Θ;∆;Γ would be ill-formed), so
Γrxu ÞÑ τa, . . . s “ Γ . Theorem 4.2.4 (ascription of well-kinded types)
implies that the pieces used to form the result type, τurx ÞÑ τa, . . . s and
ιu , are well-formed at kind Atom and sort Shape respectively, so the cell
type (A τurx ÞÑ τa, . . . s ιu) has kind Array. Finally, the number of result
cells matches the number of atoms in ef , which is the product of ef ’s
dimensions nf . . . . Thus we can derive

Θ;∆;Γ $ eurxu ÞÑ τa, . . . s : (A τurx ÞÑ τa, . . . s ιu) . . .
Θ;∆$ (A τurx ÞÑ τa, . . . s ιu) :: Array

LengthJeu . . .K“
ź

n . . .

Θ;∆;Γ $
(frame (nf . . . ) eurxu ÞÑ τa, . . . s . . . )

: (A τurx ÞÑ τa, . . . s (++ (shape n . . . ) ιu))

T:FRAME

Case IAPP

Θ;∆;Γ $ ef : (A (� ((x γ) . . . ) (A τp ιp)) ιf )

Θ;∆;Γ $ (i-app ef ιa)
: (A τprx ÞÑ ιa, . . . s (++ ιf ιprx ÞÑ ιa, . . . s))

T:IAPP

If ef ÞÑ e1f , then the induction hypothesis implies that Θ;∆;Γ $ e1f (A

(� ((x γ) . . .) (A τp ιp)) ιf ). Then the type derivation for e1f can be
substituted into the original derivation for e, ascribing the same type to
the reduced term (i-app e1f ιa . . . ).

Otherwise, e must be an iβ redex, with ef “ (array (nf . . . ) v . . . ),
each v of the form (I� ((x1 γ) . . . ) eu), and ( ιf ” (shape nf . . . ).
We must also be able to derive, for each v

Θ;∆;Γ $ v : (� ((x γ) . . . ) (A τp ιp))

Note that x1 . . . might not be the same variables as x . . . . If not, then the
type derivation for v must end with T:EQV relating the required array
type (A τp ιp) and an actually derived array type (A τ 1p ι

1
p). That is, use

of T:EQV requires deriving both

Θ,x1 :: γ . . . ;∆;Γ $ eu : (A τ 1p ι
1
p)

Θ;∆;Γ $ (I� ((x1 γ) . . . ) eu) : (� ((x1 γ) . . . ) (A τ 1p ι
1
p))

T:ILAM
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and, with free variables xf . . . ,

τp
“

x ÞÑ xf , . . .
‰

– τ 1p
“

x1 ÞÑ xf , . . .
‰

( ιp
“

x ÞÑ xf , . . .
‰

” ι1p
“

x1 ÞÑ xf , . . .
‰

(A τp ιp)
“

x ÞÑ xf , . . .
‰

– (A τ 1p ι
1
p)
“

x1 ÞÑ xf , . . .
‰ TEQV-ARRAY

(� ((x γ) . . . ) (A τp ιp))– (� ((x1 γ) . . . ) (A τ 1p ι
1
p))

TEQV:PI

We now ascribe a type to eurx1 ÞÑ ιa, . . . s. Previously, eu was given
the type (A τ 1p ι

1
p), so Lemma 4.2.13 (preservation of types under index

substitution) implies

Θ;∆;Γ
“

x1 ÞÑ ιa, . . .
‰

$ eu
“

x1 ÞÑ ιa, . . .
‰

: (A τ 1p ι
1
p)
“

x1 ÞÑ ιa, . . .
‰

Well-formedness of the environment means that no free index variables
are used in the range of Γ , so Γrx1 ÞÑ ιa, . . . s “ Γ . This simplifies our
typing result to Θ;∆;Γ $ eurx1 ÞÑ ιa, . . . s : (A τ 1p ι1p)rx1 ÞÑ ιa, . . . s. The
ascribed type is equal to (A τ 1prx

1 ÞÑ ιa, . . . s ι1prx
1 ÞÑ ιa, . . . s). We must

show that it is equivalent to (A τprx ÞÑ ιa, . . . s ιprx ÞÑ ιa, . . . s).
We consider first the element types τp

“

x ÞÑ xf , . . .
‰“

xf ÞÑ ιa, . . .
‰

and
τ 1p
“

x1 ÞÑ xf , . . .
‰“

xf ÞÑ ιa, . . .
‰

, which can be simplified respectively to
τprx ÞÑ ιa, . . . s and τ 1prx

1 ÞÑ ιa, . . . s. Since index substitution preserves
type equivalence (per Lemma 4.2.11), our earlier τp

“

x ÞÑ xf , . . .
‰

–

τ 1p
“

x1 ÞÑ xf , . . .
‰

implies that τprx ÞÑ ιa, . . . s – τ 1prx
1 ÞÑ ιa, . . . s.

Similarly, preservation of index equality under substitution implies that
( ιprx ÞÑ ιa, . . . s ” ι1prx

1 ÞÑ ιa, . . . s. So we derive the type equivalence

τprx ÞÑ ιa, . . . s – τ
1
p

“

x1 ÞÑ ιa, . . .
‰

( ιprx ÞÑ ιa, . . . s ” ι
1
p

“

x1 ÞÑ ιa, . . .
‰

(A τp ιp)rx ÞÑ ιa, . . . s – (A τ 1p ι
1
p)
“

x1 ÞÑ ιa, . . .
‰ TEQV:ARRAY

which then allows us to derive for each of eu . . .

Θ;∆;Γ $ eu
“

x1 ÞÑ ιa, . . .
‰

: (A τ 1p ι
1
p)rx ÞÑ ιa, . . . s

(A τ 1p ι
1
p)
“

x1 ÞÑ ιa, . . .
‰

– (A τp ιp)rx ÞÑ ιa, . . . s

Θ;∆;Γ $ eu
“

x1 ÞÑ ιa, . . .
‰

: (A τp ιp)rx ÞÑ ιa, . . . s
T:EQV

This enables a type derivation for the reduction result e1, which according
to iβ is (frame (nf . . . ) eurx1 ÞÑ ιa, . . . s . . . ):

Θ;∆;Γ $ eu
“

x1 ÞÑ ιa, . . .
‰

: (A τp ιp)rx ÞÑ ιa, . . . s . . .
LengthJeu . . .K“

ź

`

nf . . .
˘

Θ;∆;Γ $ e1

: (A τprx ÞÑ ιa, . . . s (++ (shape nf . . . ) ιprx ÞÑ ιa, . . . s))

T:FRAME

Case UNBOX

Θ;∆;Γ $ es : (A (� ((x1i γ) . . . ) τs) ιs)
Θ,xi :: γ . . . ;∆;Γ ,xe : τs

“

x1i ÞÑ xi , . . .
‰

$ eb : (A τb ιb)
Θ;∆$ (A τb ιb) :: Array

Θ;∆;Γ $ (unbox (xi . . . xe es) eb) : (A τb (++ ιs ιb))
T:UNBOX
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If e is reducible because es ÞÑ e1s, then the induction hypothesis implies
Θ;∆;Γ $ e1s : (A (� ((x1i γ) . . . ) τs) ιs). This can be used to adapt the
original type derivation for e to fit e1 “ (unbox (xi . . . xe e1s) eb):

Θ;∆;Γ $ e1s : (A (� ((x1i γ) . . . ) τs) ιs)
Θ,xi :: γ . . . ;∆;Γ ,xe : τs

“

x1i ÞÑ xi , . . .
‰

$ eb : (A τb ιb)
Θ;∆$ (A τb ιb) :: Array

Θ;∆;Γ $ (unbox (xi . . . xe e
1
s) eb) : (A τb (++ ιs ιb))

T:UNBOX

Otherwise, e must be an unbox redex, where all of the following hold:

1. es is of the form (array (ns . . . ) (box ιs . . . vs τσ) . . . )

2. τσ “ (� ((x2i γ) . . . ) τ
1
s)– (� ((x1i γ) . . . ) τs)

3. ιs “ (shape ns . . . )

4. LengthJ(box ιs . . . vs τσ) . . .K“
ś

ns . . .

The type derivation for es must include ascription of τσ to each box
within the array:

Θ $ ισ :: γ . . . Θ;∆$ τσ :: Atom
Θ;∆;Γ $ vσ : τ 1s

“

x2i ÞÑ ισ , . . .
‰

Θ;∆;Γ $ (box ισ . . . vσ τσ) : τσ
T:BOX

Equivalence of τσ and (� ((x1i γ) . . . ) τs) means that each box’s vσ
can also be typed as τs

“

x1i ÞÑ ισ , . . .
‰

.
The resulting term e1 is ebrxi ÞÑ ισ . . . ,xe ÞÑ vσ s, which is equal to

ebrxi ÞÑ ισ , . . . srxe ÞÑ vσ s. Since we have a type derivation for eb in an
extended environment, we will apply Lemmas 4.2.13 and 4.2.15 (preser-
vation of types under index and expression substitution) to produce a
type derivation in the original environment.

Using the fact that each of ισ . . . has its required sort (necessary for
the previous derivation), Lemma 4.2.13 gives us

Θ;∆;
`

Γ ,xe : τs
“

x1i ÞÑ xi , . . .
‰˘

rxi ÞÑ ισ , . . . s $

ebrxi ÞÑ ισ , . . . s :
`

τb
“

xi ÞÑ x1i , . . .
‰˘

rxi ÞÑ ισ , . . . s

Well-formedness of the original environment means Γ does not refer to
the new index variables xi . . . , which are instead bound by the unbox

expression. So the substituted environment
`

Γ ,xe : τs
“

x1i ÞÑ xi , . . .
‰˘

rxi ÞÑ ισ , . . . s

is equal to Γ ,xe : τs
“

x1i ÞÑ ισ , . . .
‰

, turning the type derivation into

Θ;∆;Γ ,xe : τs
“

x1i ÞÑ ισ , . . .
‰

$ ebrxi ÞÑ ισ , . . . s : τb
“

xi ÞÑ x1i , . . .
‰
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The index variables xi . . . are not bound in Θ, but we still have Θ;∆$
(A τb ιb) :: Array. This means τb and ιb must be well-formed with-
out those bindings, i.e., none of xi . . . appear free in τb or ιb. Thus
(A τb ιb)rxi ÞÑ ιs, . . . s is simply (A τb ιb). Our derivation now concludes
Θ;∆;Γ ,xe : τs

“

x1i ÞÑ ισ , . . .
‰

$ ebrxi ÞÑ ισ , . . . s : (A τb ιb).
SinceΘ;∆;Γ $ vs : τs

“

x1i ÞÑ ισ , . . .
‰

, Lemma 4.2.15 gives a derivation
of Θ;∆;Γ $ ebrxi ÞÑ ισ , . . . srxe ÞÑ vσ s : (A τb ιb) for each box’s index
contents ισ . . . and term contents vσ . We can therefore type the frame

result of the unbox reduction step as follows:

Θ;∆;Γ $ ebrxi ÞÑ ισ , . . . srxe ÞÑ vσ s : (A τb ιb) . . .
Θ;∆$ (A τb ιb) :: Array

LengthJebrxi ÞÑ ισ , . . . srxe ÞÑ vσ sK“
ź

ns . . .

Θ;∆;Γ $
(frame (ns . . . ) ebrxi ÞÑ ισ , . . . srxe ÞÑ vσ s)

: (A τb (++ ιs)ιb)

T:FRAME

Case APP

Θ;∆;Γ $ ef : (A (-> ((A τi ιi) . . . ) (A τo ιo)) ιf )
Θ;∆;Γ $ ea : (A τi (++ ιa ιi)) . . . ιp “Max

q
ιf ιa . . .

y

Θ;∆;Γ $ (ef ea . . . ) : (A τo (++ ιp ιo))
T:APP

If either ef ÞÑ e1f or there is some argument eA P ea . . . such that eA ÞÑ e1A,
then the induction hypothesis implies that the result e1f or e1A retains the
same type as ef or eA. The type derivation for e can be updated with the
new sub-derivation for ef or eA to derive the same type for e1.

Otherwise, e must itself be a redex. The possible reductions for an
application form are lift, map, β, and δ.

S U B C A S E 1 : If e is a lift redex, then it has the form ((array (nf
. . .) vf . . .) (array (na . . . ni . . .) va . . .) . . .). In order to match
the left hand side of the lift rule, we must have ( ιf ” (shape nf . . . )
and that for each argument’s own type derivation, ( ιa ” (shape na . . . ).
The frame portion of each array’s shape (i.e., nf . . . for function position
and na . . . for argument position) is replaced with the principal frame,
np . . . . The individual atoms used in the new function and argument
arrays all come from their corresponding original arrays and therefore
retain the same types. That is, the atoms v1f . . . in the new function array
e1f , that is

(array (np . . . ) Concat
r
Repnfe

q
Split1

q
vf . . .

yyz
)

all have type (-> ((A τi ιi) . . . ) (A τo ιo)), and the atoms v1a . . . in any
new argument array e1a, which is

(array (np . . . ni . . . ) Concat
r
Repnae

r
Splitnac Jva . . .K

zz
)
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are all typed as the corresponding τi . While Split breaks a sequence
into subsequences (preserving the total number of elements) and Concat
merges a sequence-of-sequences into a single sequence (also preserving
the total number of elements), Repn produces n copies of each element.
The factor used by lift reduction for replication of each array’s cells is
the quotient of the number of cells in the principal frame and the number
of cells in the original array. Since the original frame shape is a prefix of
the principal frame, divisibility is guaranteed. This also ensures that the
number of atoms in each new argument array is

nae ˚
´

ź

na . . .
¯

˚

´

ź

ni . . .
¯

“

´

ź

np . . .
¯

˚

´

ź

ni . . .
¯

“
ź

`

np . . . ni . . .
˘

Similarly, the number of atoms in the new function array is

nf e ˚
´

ź

nf . . .
¯

“
ź

np . . .

Based on the types and quantity of the function and argument arrays’
atoms, we can derive

Θ;∆;Γ $ e1f
: (A (-> ((A τi ιi) . . . ) (A τo ιo)) (shape np . . . ))
Θ;∆;Γ $ e1a : (A τi (++ (shape np . . . ) ιi)) . . .

ιp “Max
q
ιp ιp . . .

y

Θ;∆;Γ $ e1 : (A τo (++ ιp ιo))
T:APP

S U B C A S E 2 : If e is a map redex, then it has the form

((array (nf . . .) af . . .) (array (nf . . . na . . .) aa . . .) . . .)

Matching the left-hand side of the map reduction rule requires that( ιi ”
(shape ni . . . ). Each argument ea “ (array (nf . . . na . . . ) aa . . . ) has
its sequence of atoms split into segments whose length is the product of
ni . . . , the corresponding input type’s dimensions. Transposition groups
the first segment from each argument, then the second segment from
each argument, and so on. So the nested sequence ppvc . . .q . . .q . . . has
for each j th ppvc . . .q . . .q a sequence of atoms corresponding to each of
the function input types: the pj,kqth atom sequence contains the atoms
which make up the j th cell of the kth argument. Since the length of this
single vc . . . is the product of the corresponding input type’s dimensions
and they all have the same type as the atoms in the corresponding input
type, the array literal built from them, (array (ni . . . ) vc . . . ) has type
(A τi (shape ni . . . )). Each function array (array () vf ) contains a
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single atom taken from the original ef , implying that it must have type
(-> ((A τi ιi) . . . ) (A τo ιo)), which is equivalent to (-> ((A τi (shape

ni . . .)) . . .) (A τo ιo)). Since the single-cell argument arrays’ types
all match the singleton function array’s input types with principal frame
of (shape), each application form itself has type (A τo ιo). That is,
each result-cell application form ec “ ((array () vf ) (array (ni . . .)
vc . . .) . . .) in the resulting frame form can be typed as:

Θ;∆;Γ $ (array () vf )

: (A (-> ((A τi ιi) . . . ) (A τo ιo)) (shape))

Θ;∆;Γ $ (array (ni . . . ) vc . . . ) : (A τi ιi) . . .

ιp “ (shape)

Θ;∆;Γ $ ec : (A τo ιo)
T:APP

Recall that our goal type in this case is τ “ (A τo (++ ιp ιo)), where
ιp “ (shape nf . . . ). That is, τ is (A τo (++ (shape nf . . . ) ιo)). Using
the above derivations for the result cells ec . . . , we then derive

Θ;∆;Γ $ ec : (A τo ιo) . . . Θ;∆$ τ :: Array

Θ;∆;Γ $ (frame (nf . . . ) ec . . . )
: (A τo (++ (shape nf . . . ) ιo))

T:FRAME

S U B C A S E 3 : If e is a β redex, then ef must have the form (array

() (� ((x (A τi ιi)) . . .) e0)). Then e ÞÑβ e1 “ eorx ÞÑ ea, . . . s. We
also know for each of ea . . . that Θ;∆;Γ $ ea : (A τi ιi). In the type
derivation for e itself, we must have ιf and every ιa equal to (shape), so
ιp “ (shape). Thus (A τo (++ ιp ιo))– (A τo ιo) The type of the function
atom in ef is derived either by T:LAM, in which case, the derivation
must ascribe (A τo ιo) to eo, or by T:EQV, in which case there must be
some earlier use of T:LAM which ascribes some type equivalent type
to eo. Either way, we have Θ;∆;Γ ,x : (A τi ιi) . . . $ eo : (A τo ιo). The
substitution lemma (Lemma 4.2.15) then gives Θ;∆;Γ $ e1 : (A τo ιo).

S U B C A S E 4 : If e is a δ redex, then the required result follows from
the requirements for primitive operators and their types.
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Lemma 8.1.2 (Environment monotonicity for instantiation). Let Γ ;Φ $
τ :: k. Given one of

• Γ ;Φ $ pX :ď τ % Γ
1
;Φ 1 ãÑ C

• Γ ;Φ $ τ ď: pX % Γ 1;Φ 1 ãÑ C

then Γ ĺ Γ
1
, and Φ Ď Φ 1.

Proof. We use induction on the instantiation judgment derivation. In
most cases, pairs of corresponding subtype and supertype instantiation
rules carry equivalent proof obligations and induction hypotheses. The
exception is instantiation of polymorphic types.

Case ILOW:SOLVE, IHIGH:SOLVE, ILOW:REACH, IHIGH:REACH

These cases are direct applications of the variable-solution rule from the
definition of the ĺ relation. There is no change to Φ , so Φ “ Φ 1.

Case ILOW:ARRAY, IHIGH:ARRAY

By the induction hypothesis, we have Γ “ Γ l , pα, pσ , pX ÞÑ (A pα pσ),Γ r ĺ
Γ 1 andΦ “ Φ0 Ď Φ1. The solver specification ensures that Γ 1 ĺ Γ 2 “ Γ

1

and Φ1 Ď Φ2 “ Φ
1. Then transitivity gives Γ ĺ Γ

1
and Φ Ď Φ 1.

Case ILOW:FN*, IHIGH:FN*
Let Γ IH “ Γ l ,xXi . . . ,xXo, pσ , pX ÞÑ (A (-> (xXi . . . ) xXo) pσ),Γ r . By apply-
ing the ĺ rules for adding existential variables and solving an existing
existential, Γ ĺ Γ IH. The induction hypothesis gives Γ IH ĺ Γ 1 ĺ . . . ĺ
Γ n`1 and Φ “ Φ0 Ď Φ1 Ď ¨¨ ¨ Ď Φn`1. The solver specification gives
Γ n`1 ĺ Γ n`2 “ Γ

1
and Φn`1 Ď Φn`2 “ Φ 1. Then transitivity gives

Γ ĺ Γ
1

and Φ Ď Φ 1.
Case ILOW:ALL*, ILOW:PI*

By the induction hypothesis, we have Φ0 Ď Φ1 and Γ l , pX ,Γ r ,xa . . . ĺ
Γ 1,xa . . . ,Γ 2. Splitting the environments at the universal variables xa . . .
gives Γ l , pX ,Γ r ĺ Γ 1.

Case IHIGH:ALL*, IHIGH:PI*
Let Γ IH “ Γ l , pX ,Γ r ,§xa , pxa . . . . The induction hypothesis gives Γ IH ĺ

Γ 1,§xa ,Γ 2 and Φ0 Ď Φ1. Splitting the environments at the scope marker

§xa , we have Γ “ Γ l , pX ,Γ r ĺ Γ 1 “ Γ
1
.

Case ILOW:SIGMA*
Let Γ IH “ Γ l , pX ,Γ r ,§xf ,xSa . . . . By the induction hypothesis, we have

Γ IH ĺ Γ 1,§xf ,Γ 2 and Φ0 Ď Φ1. Splitting environments at §xf gives

Γ “ Γ l , pX ,Γ r ĺ Γ 1 “ Γ
1
.

Case IHIGH:SIGMA*
Let Γ IH “ Γ l , pX ,Γ r ,Sa . . . . The induction hypothesis implies that Γ IH ĺ

241
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Γ 1,Sa . . . ,Γ 2 and Φ0 Ď Φ1. By splitting environments at Sa . . . , we
conclude Γ “ Γ l , pX ,Γ r ĺ Γ 1 “ Γ

1
.

Lemma 8.1.3 (Environment monotonicity for subtyping). If Γ ;Φ $ τl ď
τh % Γ

1
;Φ 1 ãÑ C, then Γ ĺ Γ

1
, and Φ Ď Φ 1.

Proof. We use induction on the subtyping judgment derivation.
Case SUB:BASE, SUB:VAR, SUB:EVVAR

These cases are trivial. Γ “ Γ
1

and Φ “ Φ 1.
Case SUB:INSTL, SUB:INSTR

Monotonicity for instantiation implies Γ 0 ĺ Γ 1 and Φ0 Ď Φ1, which is
exactly the goal.

Case SUB:ARRAY

By the induction hypothesis, Γ “ Γ 0 ĺ Γ 1 and Φ “ Φ0 Ď Φ1. The solver
specification implies Γ 1 ĺ Γ 2 “ Γ

1
and Φ1 Ď Φ2 “ Φ

1. Transitivity then
implies Γ ĺ Γ

1
and Φ Ď Φ 1.

Case SUB:FN*
By the solver specification, Γ “ Γ 0 ĺ Γ 1 and Φ “ Φ0 Ď Φ1. The induc-
tion hypothesis gives Γ 1 ĺ Γ 2 ĺ . . .ĺ Γ n`1 “ Γ

1
and Φ1 Ď Φ2 Ď ¨¨ ¨ Ď

Φn`1 “ Φ
1. Transitivity implies Γ ĺ Γ

1
and Φ Ď Φ 1.

Case SUB:@*L, SUB:Π*L
By the induction hypothesis, Φ “ Φ0 Ď Φ1 “ Φ

1 and Γ 0,§xf ,
pX . . . ĺ

Γ 1,§xf ,Γ 2. Splitting this result at §xf , we conclude Γ “ Γ 0 ĺ Γ 1 “ Γ
1
.

Case SUB:@*R, SUB:Π*R
This case is similar to that for SUB:@*L: the archive portion of the
environment hypothesis is our obligation Φ Ď Φ 1, and we split the
environment portion of the induction hypothesis at the universal variables
X . . . or S . . . to conclude Γ “ Γ 0 ĺ Γ 1 “ Γ

1
.

Case SUB:SIGMA*L
Γ “ Γ 0 ĺ Γ 0, pσh ĺ Γ 1 (by the solver specification). The induction
hypothesis implies Γ 1,S . . . ĺ Γ 2,S . . . ,Γ 3. Splitting at S . . . gives
Γ 1 ĺ Γ 2 “ Γ

1
. We also have Φ “ Φ0 Ď Φ1 (again, by the solver specifi-

cation) and Φ1 Ď Φ2 “ Φ
1 (by the induction hypothesis). So Γ ĺ Γ

1
, and

Φ Ď Φ 1.
Case SUB:SIGMA*R

Γ “ Γ 0 ĺ Γ 0,§xs ,
pS . . . ĺ Γ 1,§xs ,Γ 2, by the induction hypothesis. Split-

ting at §xs implies Γ 0 ĺ Γ 1. The induction hypothesis also implies
Φ0 Ď Φ1.

Case SUB:INSTÑL, SUB:INSTÑR
Let Γ IH “ Γ l , pαi . . . , pσi . . . ,xαo, pσo, pX ÞÑ τf ,Γ r . This only adds new en-
tries pαi . . . , pσi . . . ,xαo, pσo and solves the existing entry for pX , so Γ “
Γ l , pX ,Γ r ĺ Γ IH. By the induction hypothesis, Γ IH ĺ Γ 1 “ Γ

1
, so transi-

tivity gives Γ ĺ Γ
1
. The induction hypothesis also implies Φ “ Φ0 Ď

Φ1 “ Φ
1.
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Lemma 8.1.4 (Environment monotonicity for bidirectional judgments).
Given one of

• Γ ;Φ $ tð τ % Γ
1
;Φ 1 ãÑ t

• Γ ;Φ $ tñ τ % Γ
1
;Φ 1 ãÑ t

• Γ ;Φ $ (tf : τf ) ‚ rta . . . s ññ τ % Γ
1
;Φ 1 ãÑ t,

where t“ (tf ta . . .)

then Γ ĺ Γ
1
, and Φ Ď Φ 1.

Proof. We use induction on the bidirectional type derivation.
Case SYN:ANNOT, CHK:SIGMA

The induction hypothesis is exactly the goal.
Case SYN:VAR, APP:FN0

This case is trivial: Γ “ Γ
1

and Φ “ Φ 1.
Case SYN:UNBOX

By the induction hypothesis, Φ “ Φ0 Ď Φ1 Ď Φ2 and Γ “ Γ 0 ĺ Γ 1,
Γ 1,xαb, pσb,xi . . . ,xe : τs

“

x1i ÞÑ xi , . . .
‰

ĺ Γ 2,xi . . . ,Γ 3. Splitting the sec-

ond ĺ at xi . . . , we have Γ 1,xαb, pσb ĺ Γ 2 “ Γ
1
. The definition of ĺ gives

Γ 1 ĺ Γ 1,xαb, pσb, since we only add two existential variables. By transi-
tivity, Γ ĺ Γ

1
.

Case SYN:APP

Using transitivity and the induction hypothesis, Γ “ Γ 0 ĺ Γ 1 ĺ Γ 2 “ Γ
1

and Φ “ Φ0 Ď Φ1 Ď Φ2 “ Φ
1.

Case SYN:FN

Let Γ IH “ Γ 0,§xf ,NewVarsJx,ςK . . . ,x : ElabTypeJx,ςK . . . . By the in-

duction hypothesis, Γ IH ĺ Γ 1,§xf ,Γ 2. Splitting at §xf gives Γ “ Γ 0 ĺ

Γ 1 “ Γ
1
. The induction hypothesis also guarantees Φ “ Φ0 Ď Φ1 “ Φ

1.
Case SYN:ARRAY, SYN:FRAME

By transitivity and the induction hypothesis, Γ “ Γ 0 ĺ Γ 1 ĺ . . .ĺ Γm “

Γ
1

and Φ “ Φ0 Ď Φ1 Ď ¨¨ ¨ Ď Φm “ Φ
1.

Case CHK:SUB

By transitivity, environment monotonicity for subtyping, and the induc-
tion hypothesis, Γ “ Γ 0 ĺ Γ 1 ĺ Γ 2 “ Γ

1
and Φ “ Φ0 Ď Φ1 Ď Φ2 “ Φ

1.
Case CHK:FN

Let Γ IH “ Γ 0,§xf ,NewVarsJx,ςK . . . ,x : ElabTypeJx,ςK . . . . Transitiv-

ity and environment monotonicity for subtyping imply Γ IH ĺ Γ 1 ĺ

. . . ĺ Γ n and Φ “ Φ0 Ď Φ1 Ď ¨¨ ¨ Ď Φn. By the induction hypothesis,
Φn Ď Φn`1 “ Φ 1 and Γ n ĺ Γ n`1,§xf ,Γ n`2. Transitivity then implies

Φ Ď Φ 1 and Γ IH ĺ Γ n`1,§xf ,Γ n`2. By splitting at §xf , we conclude

Γ “ Γ 0 ĺ Γ n`1 “ Γ
1
.

Case CHK:PI, CHK:ALL

The induction hypothesis gives Φ “ Φ0 Ď Φ1 “ Φ 1 and Γ 0,x . . . ĺ
Γ 1x . . . ,Γ 2. Splitting at x . . . implies Γ “ Γ 0 ĺ Γ 1 “ Γ

1
.
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Case CHK:ARRAY, CHK:FRAME

Transitivity, the solver specification, and the induction hypothesis imply
Γ “ Γ 0 ĺ Γ 1 ĺ . . . ĺ Γ n ĺ Γ n`1 “ Γ

1
and Φ “ Φ0 Ď Φ1 Ď ¨¨ ¨ Ď Φn Ď

Φn`1 “ Φ
1.

Case APP:ALL, APP:PI

By the induction hypothesis, Γ a,px . . . ĺ Γ 1 “ Γ
1

and Φ “ Φ0 Ď Φ1 “

Φ 1. From the definition of ĺ, introducing the new existentials means
Γ “ Γ 0 ĺ Γ a,px . . . . Then transitivity implies Γ ĺ Γ

1
.

Case APP:FN*F, APP:FN*A

Transitivity, the solver specification, and the induction hypothesis imply
Γ 0,xσF ,xσE ĺ Γ 1 ĺ Γ 2 ĺ Γ 3 “ Γ

1
and Φ “ Φ0 Ď Φ1 Ď Φ2 Ď Φ3 “

Φ 1. The definition of ĺ gives Γ “ Γ 0 ĺ Γ 0,xσF ,xσE . Finally, transitivity
implies Γ ĺ Γ

1
.

Case APP:FN*C

By transitivity and the induction hypothesis, Γ “ Γ 0 ĺ Γ 1 ĺ Γ 2 “

Γ
1
.

Lemma 8.1.5 (Variable scoping for instantiation). Given one of

• Γ ;Φ $ X :ď τ % Γ
1
;Φ 1 ãÑ C

• Γ ;Φ $ τ ď: X % Γ 1;Φ 1 ãÑ C

then all of the following hold:

• TB
r
Γ

z
“ TB

r
Γ
1
z

• KB
r
Γ

z
“ KB

r
Γ
1
z

• SB
r
Γ

z
“ SB

r
Γ
1
z

Proof. We use induction on the instantiation judgment derivation.
Case ILOW:SOLVE, IHIGH:SOLVE

The only altered entry is that for pX . No new variables are introduced.
Case ILOW:SOLVE, IHIGH:SOLVE

The only altered entry is that for xX1. No new variables are introduced.
Case ILOW:ARRAY, IHIGH:ARRAY

The induction hypothesis implies that all term and universal variables
in Γ 1 also appear in Γ l , pα, pσ , pX ÞÑ (A pα pσ),Γ r . Those entries can only
be in Γ l or Γ r , so they must appear in Γ “ Γ l , pX ,Γ r . Since the solver,
according to specification, does not introduce new variables, nothing is
added from Γ 1 to Γ 2 “ Γ

1
. So the set of variables appearing in Γ is the

same as the set appearing in Γ
1
.

Case ILOW:FN*, IHIGH:FN*
Similar to the previous case, the induction hypothesis, along with transi-
tivity, implies that Γ l ,xXi . . . ,xXo, pσ , pX ÞÑ (A (-> (xXi . . . ) xXo) pσ),Γ r , the
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input environment of the first premise includes the same term and univer-
sal variables as Γ n`1, and the solver adds no new variables in construct-
ing Γ n`2 “ Γ

1
. Any term or universal variable in the first premise’s input

environment must appear in Γ l or Γ r , so it also appears in Γ “ Γ l , pX ,Γ r .
Case ILOW:ALL*, ILOW:PI*

According to the induction hypothesis, the premise’s output environment
Γ 1,xa . . . ,Γ 2 introduces no new bindings over the premise’s input en-
vironment Γ l , pX ,Γ r ,xa . . . . The universal variables xa . . . are excluded
from the conclusion’s output environment, so the output environment Γ 1
cannot add bindings not present in Γ l , pX ,Γ r .

Case IHIGH:ALL*, IHIGH:PI*
The induction hypothesis guarantees no new variables appear going
from Γ l , pX ,Γ r ,§xa , pxa . . . to Γ 1,§xa ,Γ 2. Since no variables were added to
Γ “ Γ l , pX ,Γ r to construct the premise’s input environment, we know that
the premise’s output environment also contains no variables not present
in Γ . Since Γ

1
“ Γ 1 has a subset of the entries of Γ 1,§xa ,Γ 2, it also cannot

contain any new term or universal variables.
Case ILOW:SIGMA*

From the induction hypothesis, we know that all variable bindings in the
premise’s output environment Γ 1,§xf ,Γ 2 also appear in its input environ-

ment Γ l , pX ,Γ r ,§xf ,xSa . . . . Since the input environment also introduces
no new term- or universal-variable bindings beyond those in the conclu-
sion’s input environment Γ , the output environment Γ

1
must also contain

no new bindings.
Case IHIGH:SIGMA*

The induction hypothesis implies that the output environment of the sec-
ond premise, Γ 1,Sa . . . ,Γ 2, binds the same term variables and universal
variables as the input environment, Γ l , pX ,Γ r ,Sa . . . . The only variable
bindings these environments have which are not found in Γ “ Γ l , pX ,Γ r
are the index variables Sa . . . , which are also excluded from the output
environment Γ

1
“ Γ 1.

Lemma 8.1.6 (Variable scoping for subtyping). If Γ ;Φ $ τl ď τh %
Γ
1
;Φ 1 ãÑ C, then all of the following hold:

• EVars
r
Γ

z
“ EVars

r
Γ
1
z

• TVars
r
Γ

z
“ TVars

r
Γ
1
z

• IVars
r
Γ

z
“ IVars

r
Γ
1
z

Proof. We use induction on the subtyping judgment derivation.
Case SUB:BASE, SUB:VAR, SUB:EXVAR

These cases are trivial: the input and output environments are equal.
Case SUB:INSTL, SUB:INSTR

This follows from the variable scoping lemma for instantiation.
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Case SUB:ARRAY

The induction hypothesis implies that both Γ 1 and Γ “ Γ 0 bind the same
term and universal variables. The solver specification gives the same
guarantee about Γ 1 and Γ 2 “ Γ

1
.

Case SUB:FN*
From the solver specification, we have Γ “ Γ 0 and Γ 1 binding the same
term and universal variables. The induction hypothesis implies the same
for Γ 2 . . .Γ n`1 “ Γ

1
.

Case SUB:ALL*L, SUB:PI*L
From Γ “ Γ 0 to the first premise’s input environment Γ 0,§xf ,

pX . . . (al-

ternatively, Γ 0,§xf ,
pS . . . ), no term or universal variables are introduced.

The induction hypothesis implies none are added in constructing the
corresponding output environment Γ 1,§xf ,Γ 2. Then Γ

1
“ Γ 1 can only

contain a subset of those variables.
Case SUB:ALL*R

By the induction hypothesis, no variables are added to Γ 0,X . . . (or
Γ 0,S . . . ) to construct the premise’s output environment Γ 1,X . . . ,Γ 2
(or Γ 1,S . . . ,Γ 2). The only variables in that output environment which
do not appear in the original environment Γ are the universal variables
(X . . . or S . . . ), which are excluded from Γ

1
“ Γ 1.

Case SUB:SIGMA*L
The only variable bindings added in the premises are the index variables
S . . . , according to the solver specification and induction hypothesis. All
of S . . . appear between Γ 2 and Γ 3 in the premise’s output environment,
so the conclusion’s output environment Γ

1
“ Γ 2 contains the same term-

and universal-variable bindings as Γ “ Γ 0.
Case SUB:SIGMA*R

The premise’s input environment, Γ 0,§xf ,S . . . , binds the same vari-

ables as Γ “ Γ 0. By the induction hypothesis, no new term, type, or
index variables are added in constructing Γ 1,§xf ,Γ 2. So the conclusion’s

output environment Γ
1
“ Γ 1, which is a prefix of the premise’s output

environment, cannot contain new variable bindings.
Case SUB:INSTÑL, SUB:INSTÑR

From the original input environment Γ “ Γ l , pX ,Γ r , we only add existen-
tial variables to produce the premise’s input environment. The induction
hypothesis implies that no term variables or universal type or index vari-
ables are added to produce the premise’s output environment Γ 1 which
is the same as the conclusion’s output environment Γ

1
.

Lemma 8.1.7 (Variable scoping for bidirectional judgments). Given one
of

• Γ ;Φ $ tð τ % Γ
1
;Φ 1 ãÑ t

• Γ ;Φ $ tñ τ % Γ
1
;Φ 1 ãÑ t

• Γ ;Φ $ (tf : τf ) ‚ rta . . . s ññ τ % Γ
1
;Φ 1 ãÑ t
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then all of the following hold:

• EVars
r
Γ

z
“ EVars

r
Γ
1
z

• TVars
r
Γ

z
“ TVars

r
Γ
1
z

• IVars
r
Γ

z
“ IVars

r
Γ
1
z

Proof. We use induction on the bidirectional typing derivation.
Case SYN:ANNOT, CHK:SIGMA

The induction hypothesis is exactly the goal.
Case SYN:VAR, APP:FN0

This case is trivial: Γ “ Γ
1
.

Case SYN:UNBOX

By the induction hypothesis, going from Γ “ Γ 0 to Γ 1 does not add new
variables, nor does going from Γ 1,xαb, pσb,xi . . . ,xe : τs

“

x1i ÞÑ xi , . . .
‰

to
Γ 2,xi . . . ,Γ 3. So the only variables added going from Γ to Γ 2,xi . . . ,Γ 3
are xi . . . and xe, which are excluded from the output environment Γ 2 “
Γ
1
.
Case SYN:APP

The induction hypothesis and transitivity imply that Γ “ Γ 0, Γ 1, and
Γ 2 “ Γ

1
all contain the same term and universal type and index variables.

Case SYN:FN

By the induction hypothesis, the premise does not introduce any new
variables in its output environment. Since all variables added to Γ “ Γ 0 to
construct the premise’s input environment appear to the right of §xf , they

are all part of the Γ 2 component which is excluded from the conclusion’s
output environment Γ

1
“ Γ 1.

Case SYN:ARRAY, SYN:FRAME

By the induction hypothesis and transitivity of equality, the sets of
variables included in the premises input and output environments—
Γ “ Γ 0,Γ 1, . . . ,Γm “ Γ

1
—are all the same.

Case CHK:SUB

The induction hypothesis ensures that Γ “ Γ 0 and Γ 1 bind the same term
and universal variables. The variable scoping lemma for subtyping does
the same for Γ 1 and Γ 2 “ Γ

1
.

Case CHK:FN

No term variables or universal variables are added to Γ “ Γ 0 to construct
the first premise’s input environment. By the scoping lemma for subtyp-
ing, the first n premises also introduce none in constructing their output
environments Γ 1, . . . ,Γ n. The induction hypothesis then implies none are
introduced in Γ n`1,§xf ,Γ n`2. Since Γ

1
“ Γ n`1 can contain only a subset

of that output environment’s variable bindings, Γ and Γ
1

must contain the
same sets of bindings.

Case CHK:PI, CHK:ALL

By the induction hypothesis, no new variables are introduced by the
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premise going from Γ 0,x . . . to Γ 1,x . . . ,Γ 2. The only new variables
involved which are not part of env “ env0 are the universal variables
x . . . , and they are excluded from the output environment Γ

1
“ Γ 1.

Case CHK:ARRAY, CHK:FRAME

The induction hypothesis implies that the first m output environments,
Γ 1, . . . ,Γm, all have the same set of bindings as Γ “ Γ 0. Since the solver
does not introduce new term or universal variable bindings, Γ

1
“ Γm`1

also has the same set.
Case APP:ALL, APP:PI

The premise’s input environment Γ a,px . . . contains the same term and
universal variable bindings as Γ “ Γ 0. By the induction hypothesis, this
is the same set of bindings as Γ 1 “ Γ .

Case APP:FN*F, APP:FN*A

By the induction hypothesis, solver specification, and transitivity, all
premises’ input and output environments contain the same sets of term
variables and universal type and index variables. This includes the conclu-
sion’s output environment Γ

1
“ Γ 3. The first premise’s input environment

Γ 0,xσF ,xσE also has the same set of bindings as the conclusion’s input
environment Γ “ Γ 0.

Case APP:FN*C

By transitivity and the induction hypothesis, all of Γ “ Γ 0, Γ 1, and Γ 2 “
Γ
1

contain the same term variable and universal variable bindings.

Theorem 8.1.1 (Instantiation coercion). Given all of

• Γ ;Φ $ pX :ď τ % Γ
1
;Φ 1 ãÑ Ct

• KB
r
Γ

z
;SB

r
Γ

z
$ τ :: k

• Γ
1
pĺΓ

2

• SAT JΦ 1K

then Ct coerces from Γ
2
r
pX
z

to Γ
2
JτK and given all of

• Γ ;Φ $ τ ď: pX % Γ 1;Φ 1 ãÑ Ct

• KB
r
Γ

z
;SB

r
Γ

z
$ τ :: k

• Γ
1
pĺΓ

2

• SAT JΦ 1K

then Ct coerces from Γ
2
JτK to Γ

2
r
pX
z

.

Proof. We use induction on the instantiation derivation.
Case ILOW:SOLVE, IHIGH:SOLVE, ILOW:REACH, IHIGH:REACH

Γ
2
JτK“ Γ

2
r
pX
z

, so the coercion must have the same input and output
types. C“ ˝ is the identity coercion.
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Case ILOW:ARRAY, IHIGH:ARRAY

By the induction hypothesis, A coerces from pα to T (or from T to pα)
under Γ 1. The solver specification implies that Γ 2 must also contain
the variable bindings present in Γ 1. The existential variable solutions
in Γ

2
(which must be retained from earlier environments, according to

the solver specification) ensure that Γ
r
pX
z
“ Γ J(A pα pσ)K“ Γ J(A pα I)K.

Then the Lift coercion lemma implies Et “ LiftC
pα JAK coerces from pX

to (A T I) (or from (A T I) to pX ) under Γ
2
.

Case ILOW:FN*, IHIGH:FN*
Monotonicity and the solver specification imply that Γ

2
“ Γ n`2 contains

the bindings necessary for coercing using the contexts generated by the
premises, Ei . . . and Eo. The induction hypothesis then implies that each
Ei coerces from the corresponding Ti to xXi (or from xXi to Ti) and Eo

from xXo to To (or from To to xXo) under Γ
2
. Since Γ

2
must retain the

existential variable solutions which arose in the premises, Γ
2
r
pX
z
“

Γ
2
r
(A (-> (xXi . . . ) xXo) pσ)

z
“ Γ

2
r
(A (-> (xXi . . . ) xXo) I)

z
.

By the Function coercion lemma, Et therefore coerces from Γ
2
r
pX
z

to (A (-> (Ti . . . ) To) I) (or coerces from (A (-> (Ti . . . ) To) I) to
Γ
2
r
pX
z

) under Γ
2
.

Case ILOW:ALL*, ILOW:PI*
By the induction hypothesis, E coerces from pX to (A T Ic) under Γ 1.
The type-abstraction (or index-abstraction) code used to build the Each
context coerces from (A T Ic) to (A (� (xa . . . ) (A T Ic)) (shape))

(or to (A (� (xa . . . ) (A T Ic)) (shape))). So the Each coercion itself
coerces from (A T (++ If Ic)) to (A (� (xa . . . ) (A T Ic)) ιf ) (or to
(A (� (xa . . . ) (A T Ic)) ιf )). Composing the premise’s resulting coer-
cion with the Each coercion thus produces the required result.

Case IHIGH:@*, IHIGH:Π*
The context (t-app ˝ Γ 2 J pxaK . . . ) (or (i-app ˝ Γ 2 J pxaK . . . )) coerces
from the polymorphic type (A (� (xa . . . ) (A T Ic)) If ) (or from (A (�

(xa . . .) (A T Ic)) If )) to the goal type

(A T
”

xa ÞÑ Γ 2 J pxaK , . . .
ı

(++ If Ic))

“(A T (++ If Ic))
”

xa ÞÑ Γ 2 J pxaK , . . .
ı

under Γ
2
“ Γ 1. Note that any existential variables solved in Γ 2 are

replaced with their solutions, so only Γ 1 is needed. By the induction
hypothesis, E coerces from (A T (++ If Ic))rxa ÞÑ pxa, . . . s to px under

Γ 1,§xf ,Γ 2, so it coerces from (A T (++ If Ic))
”

xa ÞÑ Γ 2 J pxaK , . . .
ı

to px

under Γ 1. Composing these contexts thus coerces from (A (� (xa . . .)
(A T Ic)) If ) (or (A (� (xa . . . ) (A T Ic)) If )) to px under Γ 1.
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Case ILOW:SIGMA*
As in the previous case, any existential variables solved in Γ 2 are re-
placed with their solutions by substitution in the context generated by
the conclusion. So Γ

2
, which extends Γ 1 is only used to resolve variables

not resolved by Γ 2. In order to show that the Each context coerces from
the intermediate type

(A T (++ If Ic))rS ÞÑ Sa, . . . s

to the goal type

(A (� (Sa . . . ) (A T Ic)) If )

we must ensure that we have the correct witnesses when constructing the
box. That is, when substituted for the �-bound variables in (A T Ic), they
must produce Γ 2 J(A T Ic)K, the type of the box contents. This require-
ment is upheld because the cell type used by EachC each occurrence of
a �-bound variable Sa replaced by xSa.

The induction hypothesis implies that the premise’s output context
E coerces from Γ

2
JX K to the intermediate type. So composition of

coercions implies that the conclusion’s resulting context coerces from
Γ
2
JX K to the goal type.
Case IHIGH:SIGMA*

The first premise ensures that the body of the dependent sum is a well-
formed type even without the �-bound index variables. So the unbox

context wrapped around a term of the source type is itself typable as
(A T (++ If Ic)). The induction hypothesis implies that the premise
produces a context which coerces from that intermediate type to the goal
type Γ

2
r
pX
z

. So their composition coerces from the source type

(A (� (Sa . . . ) (A T Ic)) If )

to the goal type Γ
2
r
pX
z

.

Theorem 8.1.2 (Subtyping coercion). Given all of

• KB
r
Γ

z
;SB

r
Γ

z
$ τl :: k

• KB
r
Γ

z
;SB

r
Γ

z
$ τh :: k

• Γ ;Φ $ τl ď τh % Γ
1
;Φ 1 ãÑ Ct

• Γ
1
ĺ Γ

2

• SAT JΦ 1K

then Ct coerces from Γ
2
JτlK to Γ

2
JτhK.



P RO O F S ( 8 . 1 : E L A B O R AT I O N S O U N D N E S S ) 251

Proof. We use induction on the subtyping derivation.
Case SUB:BASE, SUB:VAR, SUB:EXVAR

We have τl “ τh, so the identity coercion ˝ suffices.
Case SUB:INSTL, SUB:INSTR

The goal is a direct result of the coercion theorem for instantiation.
Case SUB:ARRAY

The induction hypothesis implies that C coerces from Tl to Th under Γ 1.
By the solver specification, preexisting variable bindings and solutions
are preserved in Γ 2 “ Γ

3
, so the coercion is preserved as well. The solver

also ensures that Γ
2
JIlK“ Γ

2
JIhK. Then the Lift lemma implies that Ct

coerces from (A Tl Il) to (A Th Ih) under Γ
2
.

Case SUB:FN*
The solver specification implies that Γ

2q
If

y
“ Γ

2
r
I1f

z
. Monotonicity

implies that the variable bindings and solutions in the premises’ output
environments are preserved in Γ

2
= Γ n`1. By the induction hypothesis,

each argument context Ci coerces from τ 1i to τi under Γ
2
, and the result

context Co coerces from τo to τ 1o under Γ
2
. Then the Function coercion

lemma implies that Ct coerces from τl to τh.
Case SUB:@*L, SUB:Π*L

The type (or index) application in the generated code coerces from
the polymorphic type (A (� (X . . . ) (A Tl Ic)) If ) to the instantia-

tion (A Tl (++ If Ic))
”

X ÞÑ Γ 2

r
pX
z
, . . .

ı

(or from (A (� (S . . .) (A

Tl Ic)) If ) to (A Tl (++ If Ic))
”

S ÞÑ Γ 2

r
pS
z
, . . .

ı

) under Γ 1 “ Γ
2
. By

the induction hypothesis, C coerces from (A Tl (++ If Ic)) to (A Th Ih)
under Γ 1,X . . . ,Γ 2. Thus composing the premise’s context and the type
(or index) application context produces a coercion from τl to τh under
Γ
2
.
Case SUB:@*R, SUB:Π*R

By the induction hypothesis, the premise’s generated context C co-
erces from (A Tl Il) to (A Th (++ If Ic)) under Γ 1,X . . . ,Γ 2. Note
that Γ 2 cannot contain new variable bindings according to the variable
scoping lemma. So this coercion also works under Γ 1,X . . . (or un-
der Γ 1,S . . . ). This premise also ensures that Γ 1 JIlK “ Γ 1

q
(++ If Ic)

y
.

The type-abstraction (or index-abstraction) context in the conclusion
provides a binder for the universal variables and produces an array of
type (A (� (X . . . ) (A Th Ic)) (shape)) (or (A (� (S . . .) (A Th Ic))
(shape)) ) when the hole is filled with a term of type (A Th Ic). We thus
have a coercion from (A Th Ic) to (A (� (X . . .) (A Th Ic)) (shape))

(or (A (� (S . . . ) (A Th Ic)) (shape))) under Γ 1 “ Γ
2
. The Each context

must then coerce from (A Tl (++ If Ic)) to (A (� (S . . . ) (A Th Ic)) If )
under Γ

2
. Γ
2
JIlK“ Γ

2q
(++ If Ic)

y
, so this is a coercion from τl to τh.
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Case SUB:SIGMA*L
Each box in an array typed as the source type

(A (� (S . . . ) Th) If )

must have contents typed as (A Tl Il), though perhaps only typable
with the �-bound variables. The conclusion’s resulting context thus co-
erces the contents of each box within the source term to the goal cell
type (A Th pσh). The type of the unbox form itself, accounting for the
frame shape If , is therefore (++ If pσh). By the solver specification
(and environment monotonicity), this is equal to the goal shape Ih after
substitution according to Γ

2
. So the frame-lifted unbox form has the type

Γ
2
J(A Th Ih)K

Since the premise’s context E coerces to the goal cell type (by the
induction hypothesis), which must only mention a subset of the index
variables mentioned by the goal type itself, the unbox form’s body type
is well-formed even without the �-bound variables.

Case SUB:SIGMA*R
The context E generated by the premise coerces from the starting type
to the unwrapped form of the goal type. The conclusion’s Each context
then wraps each cell in a box. As in the ILOW:SIGMA* case of Theorem
8.1.1 (Instantiation coercion), the existential witnesses we use here are
the correct ones because they were substituted into the body of the cell
type where the �-bound variables appeared initially. Composing E and
the Each context coerces from the starting type to the intermediate type

(A Th (++ If Ic))
”

S ÞÑ pS , . . .
ı

and from there to the goal type

(A (� (S . . . ) (A Th Ih)) If )

Case SUB:INSTÑL, SUB:INSTÑR
The premise’s input environment solves pX as Tf . Thus any coercion

from (A Tf Il) to (A (-> (τi . . . ) τo) Ih) under Γ 1 “ Γ
2

also coerces
from (A pX Il) to (A (-> (τi . . . ) τo) Ih) and vice versa. The induction
hypothesis implies that C performs that coercion, so it satisfies the
requirements for Ct .

Theorem 8.1.3 (Elaboration soundness). Given Γ
1
pĺΓ

2
with no existen-

tial variables appearing in Γ
2
JtK and SAT JΦ 1K, the following all hold:

• Γ ;Φ $ tð τ % Γ
1
;Φ 1 ãÑ t implies that

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
JtK : Γ

2
JτK

• Γ ;Φ $ tñ τ % Γ
1
;Φ 1 ãÑ t implies that

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
JtK : Γ

2
JτK
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• Γ ;Φ $ (ef : τf ) ‚ rea . . . s ññ τr % Γ
1
;Φ 1 ãÑ er implies that

from TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2q
ef

y
: Γ
2q
τf

y
we can

derive TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
JerK : Γ

2
JτrK

Proof. We use induction on the bidirectional typing derivation.
Case SYN:ANNOT

The induction hypothesis is exactly the goal.
Case SYN:VAR

This case is trivial.
Case SYN:UNBOX

The variable scoping lemma ensures that Γ 3 contains no new variable
bindings after xe, so its contents are not needed in order to ascribe a type
to the emitted expression. Monotonicity implies Γ 1 ĺ Γ 2 (by splitting
at the bound index variables xi . . . ) and Γ 1 ĺ Γ 0 “ Γ . Since we have
Γ 1pĺΓ

2
and Γ 2pĺΓ

2
, the induction hypothesis gives a type derivation for

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
JesK : Γ

2q
(A (box x1i . . . τs) Is)

y

and for

TB
r
Γ p

z
;KB

r
Γ p

z
;SB

r
Γ p

z
$ Γ

2
JesK : Γ

2q
(A (box x1i . . . τs) Is)

y

where Γ p “ Γ
2
,xi . . . ,xe : τs

“

x1i ÞÑ xi , . . .
‰

.
These are the premises for T-UNBOX, along with well-formedness of

(A xαb pσb) under Γ
2

(which contains the solutions for xαb and pσb), thereby
deriving

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$

Γ
2
J(unbox (xi . . . xe es) eb)K : Γ

2
J(A Tb (++ Is pσb))K

Case SYN:APP

The induction hypothesis for the first premise gives a derivation for

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2q
ef

y
: Γ
2q
τf

y

The induction hypothesis for the second premise ensures that from the
previous derivation we can build a derivation for

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
r
(e1f ea . . . )

z
: Γ
2
JτrK

Case SYN:FN

The induction hypothesis implies that for any Γ f where Γ 1,§xf ,Γ 2pĺΓ f ,
we can type the function body:

TB
r
Γ f

z
;KB

r
Γ f

z
;SB

r
Γ f

z
$ Γ f JeK : Γ f JτoK



254 P RO O F S ( 8 . 1 : E L A B O R AT I O N S O U N D N E S S )

By the scoping lemma, the only variable bindings present in Γ 2 are
the function’s formal parameters. Any existential variables not solved
by Γ 2 must be solved by the completion environment Γ

2
. So the type

annotations in the elaborated term are well-formed under Γ
2
. Then by

extending Γ
2

with bindings for the formal parameters, T-LAM derives

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$

Γ
2
r
Γ 2 J(� ((x τi) . . . ) e)K

z
: Γ
2
r
Γ 2 J(-> (τi . . . ) τo)K

z

Case SYN:ARRAY

By the induction hypothesis and monotonicity, each atom in the array
literal can be typed as

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
JaK : Γ

2
JTK

We also have the required number of them. So T-ARRAY can derive

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2q
(array (n . . . ) a a1 . . . )

y

: Γ
2
J(A T (shape n . . . ))K

Case SYN:FRAME

By the induction hypothesis and monotonicity, each cell in the frame
form can be typed as

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
JeK : Γ

2
J(A T ι)K

We also have the required number of them. So T-FRAME can derive

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
r
(frame (n . . . ) e e1 . . . )

z

: Γ
2
J(A T (++ (shape n . . . ) ι))K

Case CHK:SUB

Monotonicity implies that Γ 1pĺΓ
2
. So the induction hypothesis gives a

derivation for

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
JtK : Γ

2
JτlK

Then coercion soundness for subtyping means that we can also derive

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
JCrtsK : Γ

2
JτhK

Case CHK:FN

This case differs from SYN:FN in the need to match up the goal’s input
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types with types derived from rank annotations on formal parameters.
The induction hypothesis ascribes the same type to the function body e
in the SYN:FN case, but the bindings for the formals are supertypes of
the specified input types. That is, with Γ f “ Γ

2
,x : ElabTypeJx,ςK . . . ,

TB
r
Γ f

z
;KB

r
Γ f

z
;SB

r
Γ f

z
$ Γ

2
JeK : Γ

2
JτoK

The subtyping coercion soundness theorem ensures that the resulting
contexts E . . . coerce from τi . . . to the types generated by rank elabora-
tion. So the substitution in the emitted function body e ensures that the
body will type check when Γ is augmented with bindings x : τi . . . :

TB
r
Γ
2
,x : τi . . .

z
;KB

r
Γ
2
,x : τi . . .

z
;SB

r
Γ
2
,x : τi . . .

z
$

Γ
2
Jerx ÞÑErxs , . . . sK : Γ

2
JτoK

This premise allows T-LAM to ascribe the type (-> (τi . . . ) τo) to the
emitted function (� ((x τi) . . . ) erx ÞÑErxs , . . . s).

Case CHK:SIGMA

From the induction hypothesis, we have

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
JeK : Γ

2
Jτrx ÞÑ ι, . . . sK

The ascribed type is equivalent to Γ
2
JτK

”

x ÞÑ Γ
2
JιK , . . .

ı

. This serves
as the typing premise for T-BOX to conclude the elaborated term has
type (� (x . . . ) Γ

2
JτK). The well-formedness requirements are covered

by the premises of CHK:SIGMA.
Case CHK:PI

By the scoping lemma, no new variable bindings can appear in Γ 2. Since
Γ 1pĺΓ

2
, and variable bindings do not affect substitution, the induction

hypothesis implies

TB
r
Γ
2
,x . . .

z
;KB

r
Γ
2
,x . . .

z
;SB

r
Γ
2
,x . . .

z
$ Γ

2
JvK : Γ

2
JTK

Then T-ILAM uses this as its premise to derive

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
J(I� (x . . . ) (array () v))K

: Γ
2
J(� (x . . . ) (A T (shape)))K

Case CHK:ALL

This case proceeds much like CHK:PI. From the induction hypothesis,
we have

TB
r
Γ
2
,x . . .

z
;KB

r
Γ
2
,x . . .

z
;SB

r
Γ
2
,x . . .

z
$ Γ

2
JvK : Γ

2
JTK
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This serves as the premise for T-TLAM, giving the conclusion

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
J(T� (x . . . ) (array () v))K

: Γ
2
J(� (x . . . ) (A T (shape)))K

Case CHK:ARRAY

This case is similar to SYN:ARRAY, except that we do not directly take
the array literal’s annotated shape. Instead, the final premise asks the
solver to equate the annotated shape with the goal shape. If SAT JΦn`1K,
then this request succeeded, so a T-EQV step after T-ARRAY can ascribe
the desired type.

Case CHK:FRAME

This case is similar to SYN:ARRAY, using a goal shape instead of the
frame form’s own shape. As in CHK:ARRAY, the solver equates the
goal shape with the concatenation of the annotated frame shape and cell
shape. If successful, i.e., SAT JΦn`1K, then the T-FRAME derivation can
be followed with T-EQV to ascribe the desired type.

Case APP:ALL

By the induction hypothesis, from the premise

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2q
(t-app ef px . . . )

y

: Γ
2q

(A τf (++ ιa ιf ))rx ÞÑ px, . . . s
y

we can derive

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
r
(e1f ea . . . )

z
: Γ
2
JτrK

Our goal is to show that the same result can be derived from the type
ascribed to ef itself. Taking as a premise

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2q
ef

y

: Γ
2q

(A (� (x . . . ) (A τf ιf )) ιa)
y

allows T-TAPP to conclude the earlier result ascribing the goal type to
(t-app ef px . . . ). So the required implication holds.

Case APP:PI

This case is similar to APP:ALL. The induction hypothesis states that the
following premise

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2q
(i-app ef px . . . )

y

: Γ
2q

(A τf (++ ιa ιf ))rx ÞÑ px, . . . s
y

allows a type derivation to reach the following conclusion

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
r
(e1f ea . . . )

z
: Γ
2
JτrK
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34 The only difference between these two
is the shape ascribed to ef , either If or
IF .

Taking as a premise the expectation noted in the conclusion of APP:ALL

that

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2q
ef

y

: Γ
2q

(A (� (x . . . ) (A τf ιf )) ιa)
y

leads via T-IAPP to the premise proposed by the induction hypothesis,
and in turn the required conclusion.

Case APP:FN*F, APP:FN*A

The goal is to show that from the “goal premise,” which is

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2q
ef

y

: Γ
2q

(A (-> ((A τi Ii) τ
1
a . . . ) τo) If )

y

we can derive the “goal conclusion”

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2q
(ef ea e

1
a . . . )

y
: Γ
2
JτrK

From the induction hypothesis, we have a derivation (ab initio) for

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2
JeaK : Γ

2
J(A τi (++ IF Ii))K

taking IF “ (shape) for the APP:FN*C case, and we also have the ability
to construct from (in the APP:FN*F and APP:FN*C cases)

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2q
ef

y

: Γ
2q

(A (-> (τ 1a . . . ) τo) If )
y

or (in the APP:FN*A case)34

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2q
ef

y

: Γ
2q

(A (-> (τ 1a . . . ) τo) IF)
y

a derivation for

TB
r
Γ
2
z
;KB

r
Γ
2
z
;SB

r
Γ
2
z
$ Γ

2q
(ef e

1
a . . . )

y
: Γ
2
JτrK

We also have from the solver a guarantee of frame compatibility between
the function ef and the first argument ea.

The judgment which the induction hypothesis offers for the application
premise must use T-APP with some principal frame Ip. Premises for
that use of T-APP must also ascribe to the arguments e1a . . . types which
are compatible with the respective τ 1a . . . and have frames compatible
with Ip. The frame shape ascribed to the function ef in the assumption
must also be compatible with Ip. That shape is either If (for APP:FN*F

and APP:FN*C) or IF (for APP:FN*A), whichever turns out to be larger.
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Either way, the solver has guaranteed that Ip is compatible with the shape
of ea.

So the goal premise, ascribing the higher-arity type to ef , allows ef to
take the one extra argument ea and recycle the portions of the derivation
offered by the induction hypothesis. The output type ef is assumed to
have does not change. For APP:FN*F and APP:FN*C, the frame shape
of ef also does not change. For APP:FN*A, the frame shape changes,
but it does so by shrinking from having the same frame as ea. That is, in
the induction hypothesis’s derivation, ef had forced the principal frame
to be at least as large as IF , and ea now sets that same lower bound. Thus
the principal frame shape remains unchanged, and the goal conclusion is
reached with the same result type τr .

Case APP:FN0
From the assumption that e is an array of nullary functions with output
type (A τo Io) and shape If , T-APP concludes that applying e to no
arguments gives output of type (A τo (++ If Io)).
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Lemma 10.2.1 (Erasure in context). Given an evaluation context V and
expression e, where Vres is well-typed, EJVresK“ CJVKrEJeKs.

Proof. We use induction on V.

A R R AY L I T E R A L C O N TA I N I N G U N E VA L UAT E D B OX :

V“ (array (n . . . ) v . . . (box ι . . . V1 τ)a . . . )

EJ(array (n . . . ) v . . . (box ι . . . V1 τ)a . . . )resK
“ EJ(array (n . . . ) v . . . (box ι . . . V1res τ)a . . . )K
“ (array (n . . . )AJvK . . . AJ(box ι . . . V1res τ)KAJaK . . . )
“ (array (n . . . )AJvK . . . (box ι . . . EJV1resK)AJaK . . . )
“ (array (n . . . )AJvK . . . (box ι . . . CJV1KrEJeKs)AJaK . . . )
“ (array (n . . . )AJvK . . . (box ι . . . CJV1K)AJaK . . . )rEJeKs
“ CJ(array (n . . . ) v . . . (box ι . . . V1 τ)a . . . )KrEJeKs

F R A M E C O N TA I N I N G U N E VA L UAT E D C E L L S :

V“ (frame (n . . . ) v . . . V1 e1 . . . )τr

E
q
(frame (n . . . ) v . . . V1 e . . . )τrres

y

“ E
q
(frame (n . . . ) v . . . V1res e1 . . . )τr

y

“ (frame (T JτrK) EJvK . . . EJV1resK EJe1K . . . )
“ (frame (T JτrK) EJvK . . . CJV1KrEJeKs EJe1K . . . )
“ (frame (T JτrK) EJvK . . . CJV1K EJe1K . . . )rEJeKs
“ C

q
(frame (n . . . ) v . . . CJV1K e1 . . . )τr

y
rEJeKs

A P P L I C AT I O N W I T H U N E VA L UAT E D F U N C T I O N :

V“ (V1(A (-> (τi ...) τo) ιf ) ea . . . )
τr

E
r
(V1(A (-> (τi ...) τo) ιf ) ea . . . )

τr
res

z

“ E
r
(V1(A (-> (τi ...) τo) ιf )res ea . . . )

τr
z

“ (EJV1resK (EJeaK T JτiK) . . . T JτrK)
“ (CJV1Kres (EJeaK T JτiK) . . . T JτrK)
“ (CJV1K (EJeaK T JτiK) . . . T JτrK)res
“ C

r
(V1(A (-> (τi ...) τo) ιf ) ea . . . )

z
res

259
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A P P L I C AT I O N W I T H U N E VA L UAT E D A R G U M E N T :

V“ (ef
(A (-> (τ1 ... τ2 τ3 ...) τo) ιf ) v1 . . . V1 e3 . . . )

τr

E
r
(ef

(A (-> (τ1 ... τ2 τ3 ...) τo) ιf ) v1 . . . V1 e3 . . . )
τr
res

z

“ E
r
(ef

(A (-> (τ1 ... τ2 τ3 ...) τo) ιf ) v1 . . . V1res e3 . . . )
τr

z

“ (E
q
ef

y
(EJv1K T Jτ1K) . . . (EJV1resK T Jτ2K)
(EJe3K T Jτ3K) . . . T JτrK)

“ (E
q
ef

y
(EJv1K T Jτ1K) . . . (CJV1KrEJeKs T Jτ2K)
(EJe3K T Jτ3K) . . . T JτrK)

“ (E
q
ef

y
(EJv1K T Jτ1K) . . . (CJV1K T Jτ2K)
(EJe3K T Jτ3K) . . . T JτrK)rEJeKs

“ C
r
(ef

(A (-> (τ1 ... τ2 τ3 ...) τo) ιf ) v1 . . . V1 e3 . . . )
τr

z
rEJeKs

T Y P E A P P L I C AT I O N :

V“ (t-app V1 τa . . . )
τr

E
q
(t-app V1 τa . . . )

τrres
y

E
q
(t-app V1res τa . . . )

τr
y

“ (i-app EJV1resK T JτaK . . . T JτrK)
“ (i-app CJV1KrEJeKs T JτaK . . . T JτrK)
“ (i-app CJV1K T JτaK . . . T JτrK)rEJeKs
“ C

q
(t-app V1 τa . . . )

τr
y
rEJeKs

I N D E X A P P L I C AT I O N :

V“ (i-app V1 ιa . . . )
τr

E
q
(i-app V1 ιa . . . )

τrres
y

“ E
q
(i-app V1res ιa . . . )

τr
y

“ (i-app EJV1resK ιa . . . T JτrK)
“ (i-app CJV1KrEJeKs ιa . . . T JτrK)
“ (i-app CJV1K ιa . . . T JτrK)rEJeKs
“ C

q
(i-app V1 ιa . . . )

τr
y
rEJeKs

U N B OX I N G :

V“ (unbox (xi . . . xe V1) eτbb )

E
q
(unbox (xi . . . xe V1) eτbb )res

y

“ E
q
(unbox (xi . . . xe V1res) eτbb )

y

“ (unbox (xi . . . xe EJV1resK) E
q
eτbb

y
T JτbK)

“ (unbox (xi . . . xe CJV1KrEJeKs) E
q
eτbb

y
T JτbK)
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“ (unbox (xi . . . xe CJV1K) E
q
eτbb

y
T JτbK)rEJeKs

“ CJ(unbox (xi . . . xe V1) eb)KrEJeKs

Lemma 10.2.2 (Substituting terms into terms commutes with erasure).
RJtrx ÞÑ EJexKsK“RJtKrx ÞÑ EJexKs

Proof. We use induction on t. We skip the cases where x does not appear
free in t, as substitution would not change t.

T E R M A B S T R AC T I O N :

t“ (� ((xi τ) . . . ) e), where x R xi . . .

RJ(� ((xi τ) . . . ) e)rx ÞÑ EJexKsK
“AJ(� ((xi τ) . . . ) e)rx ÞÑ EJexKsK
“AJ(� ((xi τ) . . . ) erx ÞÑ EJexKs)K
“ (� (xi . . . ) EJerx ÞÑ EJexKsK)
“ (� (xi . . . ) EJeKrx ÞÑ EJexKs)
“ (� (xi . . . ) EJeK)rx ÞÑ EJexKs
“AJ(� ((xi τ) . . . ) e)Krx ÞÑ EJexKs
“RJ(� ((xi τ) . . . ) e)Krx ÞÑ EJexKs

T Y P E A B S T R AC T I O N :

t“ (T� ((xi k) . . . ) v)

RJ(T� ((xi k) . . . ) v)rx ÞÑ EJexKsK
“AJ(T� ((xi k) . . . ) v)rx ÞÑ EJexKsK
“AJ(T� ((xi k) . . . ) vrx ÞÑ EJexKs)K
“ (I� (xi . . . ) EJvrx ÞÑ EJexKsK)
“ (I� (xi . . . ) EJvKrx ÞÑ EJexKs)
“ (I� (xi . . . ) EJvK)rx ÞÑ EJexKs
“AJ(T� ((xi k) . . . ) v)Krx ÞÑ EJexKs
“RJ(T� ((xi k) . . . ) v)Krx ÞÑ EJexKs

I N D E X A B S T R AC T I O N :

t“ (I� ((xi γ) . . . ) v)

RJ(I� ((xi γ) . . . ) v)rx ÞÑ EJexKsK
“AJ(I� ((xi γ) . . . ) v)rx ÞÑ EJexKsK
“AJ(I� ((xi γ) . . . ) vrx ÞÑ EJexKs)K
“ (I� (xi . . . ) EJvrx ÞÑ EJexKsK)
“ (I� (xi . . . ) EJvKrx ÞÑ EJexKs)
“ (I� (xi . . . ) EJvK)rx ÞÑ EJexKs
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“AJ(I� ((xi γ) . . . ) v)Krx ÞÑ EJexKs
“RJ(I� ((xi γ) . . . ) v)Krx ÞÑ EJexKs

B OX :

t“ (box ι . . . es τ)

RJ(box ι . . . es τ)rx ÞÑ EJexKsK
“AJ(box ι . . . es τ)rx ÞÑ EJexKsK
“AJ(box ι . . . esrx ÞÑ EJexKs τ)K
“ (box ι . . . EJesrx ÞÑ EJexKsK)
“ (box ι . . . EJesKrx ÞÑ EJexKs)
“ (box ι . . . EJesK)rx ÞÑ EJexKs
“AJ(box ι . . . es τ)Krx ÞÑ EJexKs
“RJ(box ι . . . es τ)Krx ÞÑ EJexKs

VA R I A B L E :

t“ x

RJxrx ÞÑ EJexKsK
“ EJxrx ÞÑ EJexKsK
“ EJexK
“ xrx ÞÑ EJexKs
“ EJxKrx ÞÑ EJexKs
“RJxKrx ÞÑ EJexKs

A R R AY:

t“ (array (n . . . ) a . . . )

RJ(array (n . . . ) a . . . )rx ÞÑ EJexKsK
“ EJ(array (n . . . ) a . . . )rx ÞÑ EJexKsK
“ EJ(array (n . . . ) arx ÞÑ EJexKs . . . )K
“ (array (n . . . )AJarx ÞÑ EJexKsK . . . )
“ (array (n . . . )AJaKrx ÞÑ EJexKs . . . )
“ (array (n . . . )AJaK . . . )rx ÞÑ EJexKs
“ EJ(array (n . . . ) a . . . )Krx ÞÑ EJexKs
“RJ(array (n . . . ) a . . . )Krx ÞÑ EJexKs

F R A M E :

t“ (frame (n . . . ) ec . . . )
τr
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RJ(frame (n . . . ) ec . . . )
τrrx ÞÑ EJexKsK

“ EJ(frame (n . . . ) ec . . . )τrrx ÞÑ EJexKsK
“ E

q
(frame (n . . . ) ecrx ÞÑ EJexKs . . . )τr

y

“ (frame (T JτrK) EJecrx ÞÑ EJexKsK . . . )
“ (frame (T JτrK) EJecKrx ÞÑ EJexKs . . . )
“ (frame (T JτrK) EJecK . . . )rx ÞÑ EJexKs
“ EJ(frame (n . . . ) ec . . . )τr Krx ÞÑ EJexKs
“RJ(frame (n . . . ) ec . . . )

τr Krx ÞÑ EJexKs

A P P L I C AT I O N :

t“ (ef
(A (-> (τi ...) τo) ιf ) ea . . . )

τr

R
r
(ef

(A (-> (τi ...) τo) ιf ) ea . . . )
τr
rx ÞÑ EJexKs

z

“ E
r
(ef

(A (-> (τi ...) τo) ιf ) ea . . . )
τr
rx ÞÑ EJexKs

z

“ E
r
(ef

(A (-> (τi ...) τo) ιf )rx ÞÑ EJexKs earx ÞÑ EJexKs . . . )
τr

z

“ (E
q
ef rx ÞÑ EJexKs

y
(EJearx ÞÑ EJexKsK T JτiK) . . . T JτrK)

“ (E
q
ef

y
rx ÞÑ EJexKs (EJeaKrx ÞÑ EJexKs T JτiK) . . . T JτrK)

“ (E
q
ef

y
(EJeaK T JτiK) . . . T JτrK)rx ÞÑ EJexKs

“ E
r
(ef

(A (-> (τi ...) τo) ιf ) ea . . . )
τr

z
rx ÞÑ EJexKs

“R
r
(ef

(A (-> (τi ...) τo) ιf ) ea . . . )
τr

z
rx ÞÑ EJexKs

T Y P E A P P L I C AT I O N :

t“ (t-app ef τa . . . )
τr

R
q
(t-app ef τa . . . )

τrrx ÞÑ EJexKs
y

“ E
q
(t-app ef τa . . . )

τrrx ÞÑ EJexKs
y

“ E
q
(t-app ef rx ÞÑ EJexKs τa . . . )τr

y

“ (i-app E
q
ef rx ÞÑ EJexKs

y
T JτaK . . . T JτrK)

“ (i-app E
q
ef

y
rx ÞÑ EJexKs T JτaK . . . T JτrK)

“ (i-app E
q
ef

y
T JτaK . . . T JτrK)rx ÞÑ EJexKs

“ E
q
(t-app ef τa . . . )

τr
y
rx ÞÑ EJexKs

“R
q
(t-app ef τa . . . )

τr
y
rx ÞÑ EJexKs

I N D E X A P P L I C AT I O N :

t“ (i-app ef ιa . . . )
τr

R
q
(i-app ef ιa . . . )

τrrx ÞÑ EJexKs
y

“ E
q
(i-app ef ιa . . . )

τrrx ÞÑ EJexKs
y

“ E
q
(i-app ef rx ÞÑ EJexKs ιa . . . )τr

y
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“ (i-app E
q
ef rx ÞÑ EJexKs

y
ιa . . . T JτrK)

“ (i-app E
q
ef

y
rx ÞÑ EJexKs ιa . . . T JτrK)

“ (i-app E
q
ef

y
ιa . . . T JτrK)rx ÞÑ EJexKs

“ E
q
(i-app ef ιa . . . )

τr
y
rx ÞÑ EJexKs

“R
q
(i-app ef ιa . . . )

τr
y
rx ÞÑ EJexKs

U N B OX I N G :

t“ (unbox (xi . . . xe es) e
τb
b )

R
q
(unbox (xi . . . xe es) e

τb
b )rx ÞÑ EJexKs

y

“ E
q
(unbox (xi . . . xe es) e

τb
b )rx ÞÑ EJexKs

y

“ E
q
(unbox (xi . . . xe esrx ÞÑ EJexKs) e

τb
b rx ÞÑ EJexKs)

y

“ (unbox (xi . . . xe EJesrx ÞÑ EJexKsK) E
q
eτbb rx ÞÑ EJexKs

y
T JτbK)

“ (unbox (xi . . . xe EJesKrx ÞÑ EJexKs) E
q
eτbb

y
rx ÞÑ EJexKs T JτbK)

“ (unbox (xi . . . xe es) eb T JτbK)rx ÞÑ EJexKs
“ EJ(unbox (xi . . . xe es) eb)Krx ÞÑ EJexKs
“RJ(unbox (xi . . . xe es) eb)Krx ÞÑ EJexKs

Lemma 10.2.3 (Substituting types into types commutes with erasure).
T Jτrx ÞÑ τxsK“ T JτKrx ÞÑ T JτxKs

Proof. We use induction on τ . We elide the cases where x does not
appear free in τ .

VA R I A B L E :

τ “ x

T Jxrx ÞÑ τxsK
“ T JτxK
“ xrx ÞÑ T JτxKs
“ T JxKrx ÞÑ T JτxKs

F U N C T I O N :

τ “ (-> (τi . . . ) τo)

T J(-> (τi . . . ) τo)rx ÞÑ τxsK
“ T J(-> (τirx ÞÑ τxs . . . ) τorx ÞÑ τxs)K
“ (shape)

“ T J(-> (τi . . . ) τo)Krx ÞÑ T JτxKs
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U N I V E R S A L :

τ “ (� ((xu k) . . . ) τu), where x R xu . . .

T J(� ((xu k) . . . ) τu)rx ÞÑ τxsK
“ T J(� ((xu k) . . . ) τurx ÞÑ τxs)K
“ (shape)

“ T J(� ((xu k) . . . ) τu)Krx ÞÑ T JτxKs

D E P E N D E N T P RO D U C T :

τ “ (� ((xp γ) . . . ) τp)

T
q
(� ((xp γ) . . . ) τp)rx ÞÑ τxs

y

“ T
q
(� ((xp γ) . . . ) τprx ÞÑ τxs)

y

“ (shape)

“ T
q
(� ((xp γ) . . . ) τp)

y
rx ÞÑ T JτxKs

D E P E N D E N T S U M :

τ “ (� ((xp γ) . . . ) τp)

T
q
(� ((xp γ) . . . ) τp)rx ÞÑ τxs

y

“ T
q
(� ((xp γ) . . . ) τprx ÞÑ τxs)

y

“ (shape)

“ T
q
(� ((xp γ) . . . ) τp)

y
rx ÞÑ T JτxKs

A R R AY:

τ “ (A τa ι)

T J(A τa ι)rx ÞÑ τxsK
“ T J(A τarx ÞÑ τxs ιa)K
“ ιa (note: x is a type variable and cannot appear in ιa)
“ T J(A τa ι)Krx ÞÑ T JτxKs

Lemma 10.2.4 (Substituting types into terms commutes with erasure).
RJtrx ÞÑ τxsK“RJtKrx ÞÑ T JτxKs

Proof. We use induction on t. We elide the cases where x does not appear
free in t.

T E R M A B S T R AC T I O N :

t“ (� ((xi τ) . . . ) e)
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RJ(� ((xi τ) . . . ) e)rx ÞÑ τxsK
“AJ(� ((xi τ) . . . ) e)rx ÞÑ τxsK
“AJ(� ((xi τ) . . . ) erx ÞÑ τxs)K
“ (� (xi . . . ) EJerx ÞÑ T JτxKsK)
“ (� (xi . . . ) EJeKrx ÞÑ T JτxKs)
“ (� (xi . . . ) EJeK)rx ÞÑ T JτxKs
“AJ(� ((xi τ) . . . ) e)Krx ÞÑ T JτxKs
“RJ(� ((xi τ) . . . ) e)Krx ÞÑ T JτxKs

T Y P E A B S T R AC T I O N :

t“ (T� ((xi k) . . . ) v), where x R xi . . .

RJ(T� ((xi k) . . . ) v)rx ÞÑ τxsK
“AJ(T� ((xi k) . . . ) v)rx ÞÑ τxsK
“AJ(T� ((xi k) . . . ) vrx ÞÑ τxs)K
“ (T� (xi . . . ) EJvrx ÞÑ τxsK)
“ (T� (xi . . . ) EJvKrx ÞÑ T JτxKs)
“ (T� (xi . . . ) EJvK)rx ÞÑ T JτxKs
“AJ(T� ((xi k) . . . ) v)Krx ÞÑ T JτxKs
“RJ(T� ((xi k) . . . ) v)Krx ÞÑ T JτxKs

I N D E X A B S T R AC T I O N :

t“ (I� ((xi γ) . . . ) v)

RJ(I� ((xi γ) . . . ) v)rx ÞÑ τxsK
“AJ(I� ((xi γ) . . . ) v)rx ÞÑ τxsK
“AJ(I� ((xi γ) . . . ) vrx ÞÑ τxs)K
“ (I� (xi . . . ) EJvrx ÞÑ τxsK)
“ (I� (xi . . . ) EJvKrx ÞÑ T JτxKs)
“ (I� (xi . . . ) EJvK)rx ÞÑ T JτxKs
“AJ(I� ((xi k) . . . ) v)Krx ÞÑ T JτxKs
“RJ(I� ((xi k) . . . ) v)Krx ÞÑ T JτxKs

B OX :

t“ (box ι . . . es τ)

RJ(box ι . . . es τ)rx ÞÑ τxsK
“AJ(box ι . . . es τ)rx ÞÑ τxsK
“AJ(box ι . . . esrx ÞÑ τxs τrx ÞÑ τxs)K
“ (box ι . . . EJesrx ÞÑ τxsK)
“ (box ι . . . EJesKrx ÞÑ T JτxKs)
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“ (box ι . . . EJesK)rx ÞÑ T JτxKs
“AJ(box ι . . . es τ)Krx ÞÑ T JτxKs
“RJ(box ι . . . es τ)Krx ÞÑ T JτxKs

A R R AY:

t“ (array (n . . . ) a . . . )

RJ(array (n . . . ) a . . . )rx ÞÑ τxsK
“ EJ(array (n . . . ) a . . . )rx ÞÑ τxsK
“ EJ(array (n . . . ) arx ÞÑ τxs . . . )K
“ (array (n . . . )AJarx ÞÑ τxsK . . . )
“ (array (n . . . )AJaKrx ÞÑ T JτxKs . . . )
“ (array (n . . . )AJaK . . . )rx ÞÑ T JτxKs
“ EJ(array (n . . . ) a . . . )Krx ÞÑ T JτxKs
“RJ(array (n . . . ) a . . . )Krx ÞÑ T JτxKs

F R A M E :

t“ (frame (n . . . ) ec . . . )
τr

RJ(frame (n . . . ) ec . . . )
τrrx ÞÑ τxsK

“ EJ(frame (n . . . ) ec . . . )τrrx ÞÑ τxsK
“ E

r
(frame (n . . . ) ecrx ÞÑ τxs . . . )

τrrx ÞÑτxs
z

“ (frame (T Jτrrx ÞÑ τxsK) EJecrx ÞÑ τxsK . . . )
“ (frame (T Jτrrx ÞÑ τxsK) EJecKrx ÞÑ T JτxKs . . . ),
by the induction hypothesis
“ (frame (T JτrKrx ÞÑ T JτxKs) EJecKrx ÞÑ T JτxKs . . . ),
by Lemma 10.2.3
“ (frame (T JτrK) EJecK . . . )rx ÞÑ T JτxKs
“ EJ(frame (n . . . ) ec . . . )τr Krx ÞÑ T JτxKs
“RJ(frame (n . . . ) ec . . . )

τr Krx ÞÑ T JτxKs

A P P L I C AT I O N :

t“ (ef
(A (-> (τi ...) τo) ιf ) ea . . . )

τr

R
r
(ef

(A (-> (τi ...) τo) ιf ) ea . . . )
τr
rx ÞÑ τxs

z

“ E
r
(ef

(A (-> (τi ...) τo) ιf ) ea . . . )
τr
rx ÞÑ τxs

z

“ E
s
(ef rx ÞÑ τxs

(A (-> (τi ...) τo) ιf )rx ÞÑτxs earx ÞÑ τxs . . . )
τrrx ÞÑτxs

{

“ E
s
(ef rx ÞÑ τxs

(A (-> (τirxÞÑτxs ...) τorxÞÑτxs) ιf )
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earx ÞÑ τxs . . . )
τrrx ÞÑτxs

{

“ (E
q
ef rx ÞÑ τxs

y
(EJearx ÞÑ τxsK T Jτirx ÞÑ τxsK) . . . T Jτrrx ÞÑ τxsK)

“ (E
q
ef

y
rx ÞÑ T JτxKs

(EJeaKrx ÞÑ T JτxKs T Jτirx ÞÑ τxsK) . . .
T Jτrrx ÞÑ τxsK), by the induction hypothesis

“ (E
q
ef

y
rx ÞÑ T JτxKs

(EJeaKrx ÞÑ T JτxKs T Jτirx ÞÑ τxsK) . . .
EJτrKrx ÞÑ T JτxKs), by Lemma 10.2.3

“ (E
q
ef

y
(EJeaK T JτiK) . . . EJτrK)rx ÞÑ T JτxKs

“ E
r
(ef

(A (-> (τi ...) τo) ιf ) ea . . . )
τr

z
rx ÞÑ T JτxKs

“R
r
(ef

(A (-> (τi ...) τo) ιf ) ea . . . )
τr

z
rx ÞÑ T JτxKs

T Y P E A P P L I C AT I O N :

t“ (t-app ef τa . . . )
τr

R
q
(t-app ef τa . . . )

τrrx ÞÑ τxs
y

“ E
q
(t-app ef τa . . . )

τrrx ÞÑ τxs
y

“ E
r
(t-app ef rx ÞÑ τxs τarx ÞÑ τxs . . . )

τrrx ÞÑτxs
z

“ (i-app E
q
ef rx ÞÑ τxs

y
T Jτarx ÞÑ τxsK . . . T Jτrrx ÞÑ τxsK)

“ (i-app E
q
ef

y
rx ÞÑ T JτxKs T Jτarx ÞÑ τxsK . . . T Jτrrx ÞÑ τxsK),

by the induction hypothesis
“ (i-app E

q
ef

y
rx ÞÑ T JτxKs T JτaKrx ÞÑ T JτxKs . . .

T JτrKrx ÞÑ T JτxKs),
by Lemma 10.2.3
“ (i-app E

q
ef

y
T JτaK . . . T JτrK)rx ÞÑ T JτxKs

“ E
q
(t-app ef τa . . . )

τr
y
rx ÞÑ T JτxKs

“R
q
(t-app ef τa . . . )

τr
y
rx ÞÑ T JτxKs

I N D E X A P P L I C AT I O N :

t“ (i-app ef ιa . . . )
τr

R
q
(i-app ef ιa . . . )

τrrx ÞÑ τxs
y

“ E
q
(i-app ef ιa . . . )

τrrx ÞÑ τxs
y

“ E
r
(i-app ef rx ÞÑ τxs ιa . . . )

τrrxÞÑτxs
z

“ (i-app E
q
ef rx ÞÑ τxs

y
ιa . . . T Jτrrx ÞÑ τxsK)

“ (i-app E
q
ef

y
rx ÞÑ T JτxKs ιa . . . T Jτrrx ÞÑ τxsK),

by the induction hypothesis
“ (i-app E

q
ef

y
rx ÞÑ T JτxKs ιa . . . T JτrKrx ÞÑ T JτxKs),

by Lemma 10.2.3
“ (i-app E

q
ef

y
ιa . . . T JτrK)rx ÞÑ T JτxKs
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“ E
q
(i-app ef ιa . . . )

τr
y
rx ÞÑ T JτxKs

“R
q
(i-app ef ιa . . . )

τr
y
rx ÞÑ T JτxKs

U N B OX I N G :

t“ (unbox (xi . . . xe es) e
τb
b )

R
q
(unbox (xi . . . xe es) e

τb
b )rx ÞÑ τxs

y

“ E
q
(unbox (xi . . . xe es) e

τb
b )rx ÞÑ τxs

y

“ E
r
(unbox (xi . . . xe esrx ÞÑ τxs) ebrx ÞÑ τxs

τbrx ÞÑτxs )
z

“ (unbox (xi . . . xe EJesrx ÞÑ τxsK) EJebrx ÞÑ τxsK T Jτbrx ÞÑ τxsK)
“ (unbox (xi . . . xe EJesrx ÞÑ τxsK) EJebrx ÞÑ τxsK T JτbKrx ÞÑ T JτxKs)
“ (unbox(xi . . . xe EJesKrx ÞÑ T JτxKs)
EJebKrx ÞÑ T JτxKs T JτbKrx ÞÑ T JτxKs)

“ (unbox (xi . . . xe EJesK) EJebK T JτbK)rx ÞÑ T JτxKs
“ EJ(unbox (xi . . . xe es) eb)Krx ÞÑ T JτxKs
“RJ(unbox (xi . . . xe es) eb)Krx ÞÑ T JτxKs

Lemma 10.2.5 (Substituting indices into types commutes with erasure).
T Jτrx ÞÑ ιxsK“ T JτKrx ÞÑ ιxs

Proof. We use induction on τ . We elide the cases where x does not
appear free in τ .

F U N C T I O N :

τ “ (-> (τi . . . ) τo)

T J(-> (τi . . . ) τo)rx ÞÑ ιxsK
“ T J(-> (τirx ÞÑ ιxs . . . ) τorx ÞÑ ιxs)K
“ (shape)

“ (shape)rx ÞÑ ιxs
“ T J(-> (τi . . . ) τo)Krx ÞÑ ιxs

U N I V E R S A L :

τ “ (� ((xu k) . . . ) τu)

T J(� ((xu k) . . . ) τu)rx ÞÑ ιxsK
“ T J(� ((xu k) . . . ) τurx ÞÑ ιxs)K
“ (shape)

“ (shape)rx ÞÑ ιxs
“ T J(� ((xu k) . . . ) τu)Krx ÞÑ ιxs
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D E P E N D E N T P RO D U C T :

τ “ (� ((xp γ) . . . ) τp), where x R xp . . .

T
q
(� ((xp γ) . . . ) τp)rx ÞÑ ιxs

y

“ T
q
(� ((xp γ) . . . ) τprx ÞÑ ιxs)

y

“ (shape)

“ (shape)rx ÞÑ ιxs
“ T

q
(� ((xp γ) . . . ) τp)

y
rx ÞÑ ιxs

D E P E N D E N T S U M :

τ “ (� ((xp γ) . . . ) τp), where x R xp . . .

T
q
(� ((xp γ) . . . ) τp)rx ÞÑ ιxs

y

“ T
q
(� ((xp γ) . . . ) τprx ÞÑ ιxs)

y

“ (shape)

“ (shape)rx ÞÑ ιxs
“ T

q
(� ((xp γ) . . . ) τp)

y
rx ÞÑ ιxs

A R R AY:

τ “ (A τa ι)

T J(A τa ι)rx ÞÑ ιxsK
“ T J(A τarx ÞÑ ιxs ιrx ÞÑ ιxs)K
“ ιrx ÞÑ ιxs
“ T J(A τa ι)Krx ÞÑ ιxs

Lemma 10.2.6 (Substituting indices into terms commutes with erasure).
RJtrx ÞÑ ιxsK“RJtKrx ÞÑ ιxs

Proof. We use induction on t. We elide the cases where x does not appear
free in t.

T E R M A B S T R AC T I O N :

t“ (� ((xi τ) . . . ) e)

RJ(� ((xi τ) . . . ) e)rx ÞÑ ιxsK
“AJ(� ((xi τ) . . . ) e)rx ÞÑ ιxsK
“AJ(� ((xi τ) . . . ) erx ÞÑ ιxs)K
“ (� (xi . . . ) EJerx ÞÑ ιxsK)
“ (� (xi . . . ) EJeKrx ÞÑ ιxs)
“ (� (xi . . . ) EJeK)rx ÞÑ ιxs
“AJ(� (xi . . . ) e)Krx ÞÑ ιxs
“RJ(� (xi . . . ) e)Krx ÞÑ ιxs
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T Y P E A B S T R AC T I O N :

t“ (T� ((xi k) . . . ) v)

Note: x is an index variable, while the xi . . . are type variables, so they
do not shadow. RJ(T� ((xi k) . . . ) v)rx ÞÑ ιxsK
“AJ(T� ((xi k) . . . ) v)rx ÞÑ ιxsK
“AJ(T� ((xi k) . . . ) vrx ÞÑ ιxs)K
“ (I� (xi . . . ) EJvrx ÞÑ ιxsK)
“ (I� (xi . . . ) EJvKrx ÞÑ ιxs)
“ (I� (xi . . . ) EJvK)rx ÞÑ ιxs
“AJ(T� ((xi k) . . . ) v)Krx ÞÑ ιxs
“RJ(T� ((xi k) . . . ) v)Krx ÞÑ ιxs

I N D E X A B S T R AC T I O N :

t“ (I� ((xi γ) . . . ) v), where x R xi . . .

RJ(I� ((xi γ) . . . ) v)rx ÞÑ ιxsK
“AJ(I� ((xi γ) . . . ) v)rx ÞÑ ιxsK
“AJ(I� ((xi γ) . . . ) vrx ÞÑ ιxs)K
“ (I� (xi . . . ) EJvrx ÞÑ ιxsK)
“ (I� (xi . . . ) EJvKrx ÞÑ ιxs)
“ (I� (xi . . . ) EJvK)rx ÞÑ ιxs
“AJ(I� ((xi γ) . . . ) v)Krx ÞÑ ιxs
“RJ(I� ((xi γ) . . . ) v)Krx ÞÑ ιxs

B OX :

t“ (box ι . . . es τ)

RJ(box ι . . . es τ)rx ÞÑ ιxsK
“AJ(box ι . . . es τ)rx ÞÑ ιxsK
“AJ(box ιrx ÞÑ ιxs . . . esrx ÞÑ ιxs τrx ÞÑ ιxs)K
“ (box ιrx ÞÑ ιxs . . . EJesrx ÞÑ ιxsK)
“ (box ιrx ÞÑ ιxs . . . EJesKrx ÞÑ ιxs)
“ (box ι . . . EJesK)rx ÞÑ ιxs
“AJ(box ι . . . es τ)Krx ÞÑ ιxs
“RJ(box ι . . . es τ)Krx ÞÑ ιxs

A R R AY:

t“ (array (n . . . ) a . . . )

RJ(array (n . . . ) a . . . )rx ÞÑ ιxsK
“ EJ(array (n . . . ) a . . . )rx ÞÑ ιxsK
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“ EJ(array (n . . . ) arx ÞÑ ιxs . . . )K
“ (array (n . . . )AJarx ÞÑ ιxsK . . . )
“ (array (n . . . )AJaKrx ÞÑ ιxs . . . )
“ (array (n . . . )AJaK . . . )rx ÞÑ ιxs
“ EJ(array (n . . . ) a . . . )Krx ÞÑ ιxs
“RJ(array (n . . . ) a . . . )Krx ÞÑ ιxs

F R A M E :

t“ (frame (n . . . ) ec . . . )
τr

RJ(frame (n . . . ) ec . . . )
τrrx ÞÑ ιxsK

“ EJ(frame (n . . . ) ec . . . )τrrx ÞÑ ιxsK
“ E

r
(frame (n . . . ) ecrx ÞÑ ιxs . . . )

τrrxÞÑιxs
z

“ (frame (T Jτrrx ÞÑ ιxsK) EJecrx ÞÑ ιxsK . . . )
“ (frame (T Jτrrx ÞÑ ιxsK) EJecKrx ÞÑ ιxs . . . ), by the induction hypoth-
esis
“ (frame (T JτrKrx ÞÑ ιxs) EJecKrx ÞÑ ιxs . . . ), by Lemma 10.2.5
“ (frame (T JτrK) EJecK . . . )rx ÞÑ ιxs
“ EJ(frame (n . . . ) ec . . . )τr Krx ÞÑ ιxs
“RJ(frame (n . . . ) ec . . . )

τr Krx ÞÑ ιxs

A P P L I C AT I O N :

t“ (ef
(A (-> (τi ...) τo) ιf ) ea . . . )

τr

R
r
(ef

(A (-> (τi ...) τo) ιf ) ea . . . )
τr
rx ÞÑ ιxs

z

“ E
r
(ef

(A (-> (τi ...) τo) ιf ) ea . . . )
τr
rx ÞÑ ιxs

z

“ E
s
(ef rx ÞÑ ιxs

(A (-> (τirxÞÑιxs ...) τorx ÞÑιxs) ιfrx ÞÑιxs)

earx ÞÑ ιxs . . . )
τrrx ÞÑιxs

{

“ (E
q
ef rx ÞÑ ιxs

y
(EJearx ÞÑ ιxsK T Jτirx ÞÑ ιxsK) . . . T Jτrrx ÞÑ ιxsK)

“ (E
q
ef

y
rx ÞÑ ιxs (EJeaKrx ÞÑ ιxs T Jτirx ÞÑ ιxsK) . . . T Jτrrx ÞÑ ιxsK),

by the induction hypothesis
“ (E

q
ef

y
rx ÞÑ ιxs (EJeaKrx ÞÑ ιxs T JτiKrx ÞÑ ιxs) . . . T JτrKrx ÞÑ ιxs),

by Lemma 10.2.3
“ (E

q
ef

y
(EJeaK T JτiK) . . . T JτrK)rx ÞÑ ιxs

“ E
r
(ef

(A (-> (τi ...) τo) ιf ) ea . . . )
τr

z
rx ÞÑ ιxs

“R
r
(ef

(A (-> (τi ...) τo) ιf ) ea . . . )
τr

z
rx ÞÑ ιxs

T Y P E A P P L I C AT I O N :

t“ (t-app ef τa . . . )
τr
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R
q
(t-app ef τa . . . )

τrrx ÞÑ ιxs
y

“ E
q
(t-app ef τa . . . )

τrrx ÞÑ ιxs
y

“ E
r
(t-app ef rx ÞÑ ιxs τarx ÞÑ ιxs . . . )

τrrx ÞÑιxs
z

“ (i-app E
q
ef rx ÞÑ ιxs

y
T Jτarx ÞÑ ιxsK . . . T Jτrrx ÞÑ ιxsK)

“ (i-app E
q
ef

y
rx ÞÑ ιxs T Jτarx ÞÑ ιxsK . . . T Jτrrx ÞÑ ιxsK),

by the induction hypothesis
“ (i-app E

q
ef

y
rx ÞÑ ιxs T JτaKrx ÞÑ ιxs . . . T JτrKrx ÞÑ ιxs),

by Lemma 10.2.3
“ (i-app E

q
ef

y
T JτaK . . . T JτrK)rx ÞÑ ιxs

“ E
q
(t-app ef τa . . . )

τr
y
rx ÞÑ ιxs

“R
q
(t-app ef τa . . . )

τr
y
rx ÞÑ ιxs

I N D E X A P P L I C AT I O N :

t“ (i-app ef ιa . . . )
τr

R
q
(i-app ef ιa . . . )

τrrx ÞÑ ιxs
y

“ E
q
(i-app ef ιa . . . )

τrrx ÞÑ ιxs
y

“ E
r
(i-app ef rx ÞÑ ιxs ιarx ÞÑ ιxs . . . )

τrrxÞÑιxs
z

“ (i-app E
q
ef rx ÞÑ ιxs

y
ιarx ÞÑ ιxs . . . T Jτrrx ÞÑ ιxsK)

“ (i-app E
q
ef

y
rx ÞÑ ιxs ιarx ÞÑ ιxs . . . T Jτrrx ÞÑ ιxsK),

by the induction hypothesis
“ (i-app E

q
ef

y
rx ÞÑ ιxs ιarx ÞÑ ιxs . . . T JτrKrx ÞÑ ιxs),

by Lemma 10.2.3
“ (i-app E

q
ef

y
ιa . . . T JτrK)rx ÞÑ ιxs

“ E
q
(i-app ef ιa . . . )

τr
y
rx ÞÑ ιxs

“R
q
(i-app ef ιa . . . )

τr
y
rx ÞÑ ιxs

U N B OX I N G :

t“ (unbox (xi . . . xe es) e
τb
b ), where x R xi . . .

R
q
(unbox (xi . . . xe es) e

τb
b )rx ÞÑ ιxs

y

“ E
q
(unbox (xi . . . xe es) e

τb
b )rx ÞÑ ιxs

y

“ E
r
(unbox (xi . . . xe esrx ÞÑ ιxs) ebrx ÞÑ ιxs

τbrxÞÑιxs )
z

“ (unbox (xi . . . xe EJesrx ÞÑ ιxsK) EJebrx ÞÑ ιxsK T Jτbrx ÞÑ ιxsK)
“ (unbox (xi . . . xe EJesrx ÞÑ ιxsK) EJebrx ÞÑ ιxsK T JτbKrx ÞÑ ιxs)
“ (unbox (xi . . . xe EJesKrx ÞÑ ιxs) EJebKrx ÞÑ ιxs T JτbKrx ÞÑ ιxs)
“ (unbox (xi . . . xe EJesK) EJebK T JτbK)rx ÞÑ ιxs
“ E

q
(unbox (xi . . . xe es) e

τb
b )

y
rx ÞÑ ιxs

“R
q
(unbox (xi . . . xe es) e

τb
b )

y
rx ÞÑ ιxs
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U N B OX I N G , W I T H S H A D O W E D VA R I A B L E :

t“ (unbox (xi . . . xe es) e
τb
b ), where x P xi . . .

R
q
(unbox (xi . . . xe es) e

τb
b )rx ÞÑ ιxs

y

“ E
q
(unbox (xi . . . xe es) e

τb
b )rx ÞÑ ιxs

y

“ E
q
(unbox (xi . . . xe esrx ÞÑ ιxs) e

τb
b )

y

“ (unbox (xi . . . xe EJesrx ÞÑ ιxsK) EJebK T JτbK)
“ (unbox (xi . . . xe EJesKrx ÞÑ ιxs) EJebK T JτbK)
“ (unbox (xi . . . xe EJesK) EJebK T JτbK)rx ÞÑ ιxs
“ E

q
(unbox (xi . . . xe es) e

τb
b )

y
rx ÞÑ ιxs

“R
q
(unbox (xi . . . xe es) e

τb
b )

y
rx ÞÑ ιxs

Lemma 10.2.7 (Values erase to values). For any well-typed term t,

• If t has the form v, then RJtK has the form pv

• If t has the form v, then RJtK has the form pv

Proof. We use induction on t. The result is trivial for all atom cases
except for boxes, so we have only two cases left to consider.

B OX :

t“ (box ι . . . v τ)

According to the grammar of Remora, v must have the form (array

(n . . .) v . . .). Then RJtK “ AJ(box ι . . . v τ)K “ (box ι . . . EJvK). By
the induction hypothesis, EJvK has the form pv, so RJtK has the form
(box ι . . . pv), which is a valid pv form.

A R R AY L I T E R A L :

t“ (array (n . . . ) v . . . )

The induction hypothesis implies that for each vi P v . . . , AJviK pro-
duces an erased atomic value pvi . Therefore the erased term RJtK “
EJ(array (n . . . ) v . . . )K “ (array (n . . .) AJvK . . .) must have the
form (array (n . . . ) pv . . . ).

Lemma 10.2.8 (Lockstep). For any well-typed e, one of the following
holds:

• e has the form v, and EJeK has the form pv

• e ÞÑ e1, and EJeK ÞÑ EJe1K

• e ÞÑ, and EJeK ÞÑ

Proof. We prove this by induction on e. Note that if e is not itself a
redex or a value form, then the progress lemma implies that it must be
an evaluation context filled with a redex.
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VA L U E : This case is exactly the expression case of Lemma 10.2.7.

R E D E X W I T H I N N O N T R I V I A L E VA L UAT I O N C O N T E X T :

e“Vrers , where er ÞÑ e1r

Then e ÞÑ e1 “Vre1rs. By Lemma 10.2.1 (erasure in context), we have
EJVrersK“ CJVKrEJerKs. The induction hypothesis implies that EJerK ÞÑ
EJe1rK, so the full erased expression CJVKrEJerKs ÞÑ CJVKrEJe1rKs. Era-
sure in context gives us CJVKrEJe1rKs “ EJVre1rsK. Therefore EJVrersK ÞÑ
EJVre1rsK.

L I F T R E D E X :

e “ ((array (nf . . . ) vf . . . )
(A τf (shape nf ...))

(array (na . . . ni . . . ) va . . . )
(A τi (shape na ... ni ...))

¨ ¨ ¨)(A τo (shape np ... no ...))

ÞÑlift

e1 “ ((array (np . . .)

Concat
r
Repnfe

q
Split1

q
vf . . .

yyz
)(A τf (shape np ...))

(array (np . . . ni . . .)

Concat
r
Repnae

r
Splitnac Jva . . .K

zz
)(A τi (shape np ... ni ...))

¨ ¨ ¨)(A τo (shape np ... no ...))

where τf “ (-> ((A τi (shape ni . . . )) . . . ) (A τo ιo)). Then

EJeK “ ((array (nf . . . )A
q
vf

y
. . . )

((array (na . . . ni . . . )AJvaK . . . ) (shape ni . . . ))
¨ ¨ ¨ (shape np . . . no . . . ))

This is a lift redex in Erased Remora, and it steps to

EJe1K “ ((array (np . . . ) Concat
r
Repnfe

q
Split1

q
A

q
vf

y
. . .

yyz
)

((array (np . . . ni . . .)

(Concat
r
Repnae

r
Splitnac JAJvaK . . .K

zz
)

(shape ni . . . ))
¨ ¨ ¨ (shape np . . . no . . . ))

That is, EJeK ÞÑlift EJe1K.

M A P R E D E X :

e “ ((array (nf . . . ) vf . . . )
(A τf (shape nf ...))

(array (nf . . . ni . . . ) va . . . )
(A τi (shape nf ... ni ...))

¨ ¨ ¨)(A τo (shape nf ... no ...))
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ÞÑmap

e1 “ (frame (nf . . .)
((array () vf )

(A (-> ((A τi (shape ni ...)) ...) (A τo ιo)) (shape))

(array () vc . . . )
(A τi (shape ni ...))

¨ ¨ ¨)(A τo (shape no ...))

¨ ¨ ¨)(A τo (shape nf ... no ...))

The argument cells’ atoms ppvc . . .q . . .q are given by

Transpose
r
Splitnc Jva . . .K . . .

z

where each nc is computed as the product of the corresponding position’s
expected argument dimensions ni . . . , as in Figure 4.11. We then consider
the erased form of e:

EJeK “ ((array (nf . . . )A
q
vf

y
. . . )

((array (nf . . . ni . . . )AJvaK . . . ) (shape ni . . . )) ¨ ¨ ¨
(shape np . . . no . . . ))

This is a map redex in Erased Remora. The argument atoms

ppAJvaK . . .q . . .q

are split up into cells in the same way with

pppvc . . .q . . .q “ ppAJvcK . . .q . . .q

as the result of Transpose
r
Splitnc JAJvaK . . .K . . .

z
. So EJeK steps to

EJe1K “ (frame (nf . . .)
((array ()A

q
vf

y
)

((array ()AJvcK . . . ) (shape ni . . . ))
¨ ¨ ¨)

¨ ¨ ¨)

B E TA R E D E X : Note that τI here must be (A τi (shape na . . . )).

e “ ((array () (� ((x τi) . . . ) eb))
(A (-> (τI ...) τO) (shape))

(array (na . . . ) va . . . )
τI

. . .)τO

ÞÑβ

e1 “ ebrx ÞÑ (array (na . . . ) va . . . )
τI , . . . s

Then
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EJeK “ ((array () (� (x . . . ) EJebK))
((array (na . . . )AJvaK . . . ) (shape na . . . ))
. . .)τO

ÞÑβ EJebKrx ÞÑ (array (na . . . )AJvaK . . . ), . . . s

By Lemma 10.2.2 (substitution commutes with erasure), this result term
is equal to EJe1K.

I - B E TA R E D E X :

e “ (i-app

(array (nf . . .)
(I� ((x γ)) eb) . . .)

(A (� ((x γ) ...) τb) (shape nf ...))

ιa ...)τR

ÞÑiβ

e1 “ (frame (nf . . . ) ebrx ÞÑ ιa, . . . s . . . )
τR

Then

EJeK “ (i-app (array (nf . . . ) (I� (x) EJebK) . . . ) ιa ... T JτRK)

ÞÑiβ (frame (nf . . . ) EJebKrx ÞÑ ιa, . . . s . . . )
τR “ EJe1K

T- B E TA R E D E X :

e “ (t-app (array (nf . . .)
(T� ((x k)) eb) . . .)

(A (� ((x k) ...) τb) (shape nf ...))

τa ...)τR

ÞÑtβ

e1 “ (frame (nf . . . ) ebrx ÞÑ τa, . . . s . . . )
τR

Recall that type abstraction and application erase to index abstraction
and application. So in the erased language, we have:

EJeK “ (i-app (array (nf . . . ) (I� (x) EJebK) . . . ) τa ... T JτRK)

ÞÑiβ (frame (nf . . . ) EJebKrx ÞÑ τa, . . . s . . . )
τR “ EJe1K

U N B OX R E D E X :

e “ (unbox (xi . . . xe (array (ns . . . ) (box ιs . . . vs τs) . . . ))
ebτB)τR

ÞÑunbox



278 P RO O F S ( 1 0 . 2 : C O R R E C T N E S S O F T R A N S L AT I O N )

e1 “ (frame (ns . . . ) ebrxi ÞÑ ιs, . . . ,xe ÞÑ vss . . . )
τR

Then relying on our earlier result that erasure commutes with substitution,
we can take a reduction step on the erased version of e to get the erased
version of e1:

EJeK “ (unbox (xi . . . xe (array (ns . . . ) (box ιs . . . EJvsK) . . . ))
EJebK T JτBK)

ÞÑunbox

(frame ((++ (shape ns . . . ) T JτBK))
EJebKrxi ÞÑ ιs, . . . ,xe ÞÑ EJvsKs . . .)

“ (frame ((++ (shape ns) T JτBK))
EJebrxi ÞÑ ιs, . . . ,xe ÞÑ vssK . . .)

“ EJe1K

M I S - A P P L I E D P R I M I T I V E O P E R AT O R : The remaining case is
that e is not reducible (i.e., e ÞÑ), but e is still not a value. Since e is well-
typed, Lemma 4.4.1 (Progress) implies that e must be a mis-application
of a primitive operator. That is, e has the form V r((array () o) v . . . )s,
where SJoK is (-> (τI . . .) τO), and the types of v . . . are τi . . . . Using
Lemma 10.2.1 (Erasure in context), EJeK is CJVK r(o (EJvK T JτIK) . . .
T JτrK)s. Since each v has shape T JτIK, we still have function application
with a scalar frame, and the values given as arguments are still out-of-
domain for o.
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