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Abstract

Behavioral software contracts allow programmers to strengthen the obligations and promises that
they express with conventional types. They lack expressive power, though, when it comes to invari-
ants that hold across several function calls. Trace contracts narrow this expressiveness gap. A trace
contract is a predicate over the sequence of values that flow through function calls and returns. This
paper presents a principled design, an implementation, and an evaluation of trace contracts.

1 Multi-call constraints for APIs

Conventional type systems lack the power to express all the obligations and promises that
an API imposes on, or promises to, client modules. Some language designers cover this
expressiveness gap with contracts (Meyer, 1988, 1992), dubbed behavioral contracts in
the literature. Simply put, a contract is a Boolean-valued assertion that governs some aspect
of an API. Suppose a programmer wishes to narrow the set of valid inputs to a function
from integers to primes. A type combined with a contract, say {p:Int | isPrime p},
expresses this concisely. A proof assistant might discharge this assertion at compile time
or a run-time check might monitor it during execution.

While contracts can easily express logical constraints on function signatures, other con-
straints pose challenges. Temporal properties in particular are difficult to express. Due to
this expressiveness gap, APIs come with sequence diagrams, protocol descriptions, and
other informal specifications. The Unix I/O API is a standard example: “open a file before
reading from it.” A framework for specifying static-analysis passes may state that it must
be given monotone transfer functions. A GUI framework may allow the registration of
callback objects and promise to call them back in the order of registration.

This paper presents trace contracts, an extension of contract systems that permits the
functional specification of constraints across multiple function and method calls. A trace
reifies the sequence of values that flow through certain interception points of a contract
system (Dimoulas et al., 2016), such as function calls. A trace contract inspects this reified
trace with a predicate that decides whether a property holds.
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2 C. Moy and M. Felleisen

Concretely, this paper reports two contributions. The first is a principled blueprint of
trace contracts (Section 4), including the design of a compiler to ordinary contracts with a
correctness theorem (Section 6). Working through the blueprint points to the central chal-
lenge of extending existing systems with trace contracts: on the one hand, specifications
should remain functional, while on the other hand, collecting a trace of values necessarily
involves mutable state. Managing this state while maintaining ordinary contract composi-
tion is key. Our insight is to separate value-interception time from the point when a value
crosses from one component to another.

The second contribution is a practical and efficient implementation of the blueprint in
Racket, which could be ported to any other language that satisfies some basic requirements
(Section 7). The implementation supports both predicates over full traces (as streams) as
well as the use of efficient, bespoke data structures. For example, the creator of a static-
analysis pass could state the monotonicity obligation as a predicate either across a full trace
of all input–output pairs or a special-purpose tree-based data structure. A performance
evaluation shows that the fixed-cost overhead of trace contracts is between 1% and 17%
on average (Section 8).

2 Pedagogic trace-contract examples

Constraints on sequences of function calls are common. Sometimes these constraints cover
just one function, but more commonly they involve several. In a functional language such
as Racket, they also govern higher-order functions. This section introduces the Racket
implementation of trace contracts with pedagogic examples of such constraints. It demon-
strates how the integration of trace contracts with Racket’s higher-order contract system
facilitates authoring maintainable specifications.

2.1 A naive look at trace contracts

In 2020, a developer reported a bug to Racket’s mailing list about the
current-memory-use function.1 The documentation states that the function “returns an
estimate of the total number of bytes allocated since start up, including bytes that have
since been reclaimed by garbage collection” (Flatt & PLT, 2010). Given this description,
one might expect that the series of return values from current-memory-use would
increase over time. However, a memory-consumption plot for a long-running system
showed periodic dips.

In a language with a conventional type system, such as Java, this function would have
the following signature:

// Returns the number of bytes allocated since start up,
// including those deallocated during garbage collection.
int currentMemoryUse();

The comment mentions two unchecked constraints. First, the function’s result cannot be
negative, so int is imprecise. In Racket, the API author could improve on this type with a

1 https://groups.google.com/g/racket-users/c/xqOY8uevGzE/m/mBtHeq2jAwAJ
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Trace contracts 3

run-time-checked contract such as (-> natural?). This notation denotes the signature of
a function that takes no arguments and returns natural numbers. Second, the documentation
implies that every call returns a number that is greater than or equal to the result of all
previous calls. Existing contract systems cannot express this constraint easily.

With trace contracts, it is possible to express this second constraint directly:

(provide
(contract-out
[current-memory-use
(trace/c ([y natural?])1

(-> y)2

(full (y) sorted?)3 )]))

This contract captures both of the constraints that conventional type systems could not
express. As the highlighting and subscripts indicate, a trace contract consists of three
parts: (1) a sequence of trace variable declarations , including one behavioral contract
for each; (2) a contract expression, dubbed the body contract ; and (3) a sequence of
predicate clauses , in this example introduced with full.

Here, there is a single trace variable, y, associated with natural?. The body contract
is (-> y), which specifies ordinary, single-call constraints placed on values protected by
the trace contract. When a client module calls current-memory-use, the contract system
ensures that the returned value is a natural number and, if so, collects the value in a data
structure associated with y. This data structure is called a trace. Additionally, the trace
contract specifies a full predicate clause that depends on y. For full, the trace data
structure is a stream. Every time the contract system collects a value in the y trace, it
applies the function specified in the predicate clause—sorted?—to the stream of values.
The trace contract fails if sorted? returns false, indicating a dip in the sequence.

Note that sorted? is a pure function in the host language, just like ordinary first-
order behavioral contracts. One immediate advantage is that a developer can test contracts
like any other piece of code—an important property considering that all code, including
specification code, may have bugs. Testing builds confidence in the correctness of the
specification itself.

With this contract in place, violations are detected as soon as they occur. Moreover, the
trace contract blames the appropriate party for the violation:

> (current-memory-use)
100
> (current-memory-use)
200
> (current-memory-use)
; current-memory-use: broke its own contract
; produced: 0
; ...
; blaming: current-memory-use
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4 C. Moy and M. Felleisen

In this interaction, current-memory-use returns increasing values for the first two calls.
On the third call it produces 0, causing a contract error. Since the problematic value was
collected from the module that defined current-memory-use, the function itself is to
blame. Developers confronted with this error message can immediately report a bug in the
run-time library, knowing with confidence that their code is not responsible for the fault.

2.2 A less naive look: tolerable performance

In its current form, the current-memory-use contract comes with a steep performance
cost. While any contract can slow down a program, naive trace contracts can be especially
expensive because they execute code every time a value is added to a trace. Programmers
should be mindful of this expense. In particular, sorted? iterates through the entire y
trace every time a new value is collected. Thus, checking this trace contract is quadratic in
the number of calls to current-memory-use. To reduce this overhead, a trace-contract
system must hand developers fine-grained control over the trace data structure.

Fine-grained control means that developers can choose a custom representation of
the trace instead of the naive, stream data structure. When choosing, a developer must:
(1) decide on a data structure; (2) pick an initial value; and (3) supply an operation that
incorporates a value into the existing trace representation or signals a failure. This kind of
predicate clause is introduced with accumulate and the data structure is referred to as the
accumulator. Note that the function given to accumulate is no longer a predicate. Instead,
it receives two values: the current accumulator and the newly collected values. It returns
the new accumulator on success or a designated failure value otherwise.

For the running example, it suffices to use a single number as the accumulator. A simple
comparison between any collected value and the accumulator is enough to enforce the
promised behavior:

(trace/c ([y natural?])
(-> y)
(accumulate 0

[(y) (λ (acc cur)
(if (<= acc cur) cur (fail)))]))

The accumulate clause specifies an initial accumulator value of 0 and an accumulating
function. When y receives a new value, the latter is applied to the current accumulator and
the latest value. If the current accumulator is smaller than the new value, then the new
value is returned and becomes the next accumulator.2 Otherwise, the function’s result is
(fail), the designated failure value.

Every trace contract can be expressed with accumulate instead of full. In fact, full
is just syntactic sugar over an accumulate clause with a stream accumulator. While full

2 If current-memory-use were to return a non-numeric result, an error would be raised even without the
natural? check on y because <= expects two numbers. The error message, however, would blame the contract
itself for violating the precondition of <=, instead of current-memory-use. Thus, to generate practical error
messages, the natural? check must remain.
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is a useful tool to understand trace contracts conceptually, in practice programmers should
almost always use accumulate combined with an efficient trace data structure.

2.3 Checking all calls to one function

Consider a compiler pass that computes a live-variables analysis via fixed-point iteration.
The interface to such an analysis, using ordinary contracts, might look like this:

(provide
(contract-out
;; The transfer function must be monotonically increasing.
[live-vars (-> (-> set? set?) label? set?)]))

Given a monotonically increasing transfer function and a program label, live-vars
returns the set of live variables at that label (Nielson et al., 2005). Unlike the simplistic
example from the preceding section, this constraint involves a higher-order function. A
comment describes the constraint, but it is not enforced. Since an incorrectly computed
least fixed point can lead to a silent failure, this problem may be difficult to debug.

A trace contract can replace the informal comment, enforcing monotonicity:

(provide
(contract-out
[live-vars (-> (monotone/c set? set? subset?) label? set?)]))

;; Contract Contract (Set Set -> Boolean) -> Contract
(define (monotone/c dom/c cod/c leq?)

(trace/c ([x dom/c] [y cod/c])
(-> x y)
(accumulate (red-black-tree leq?)

[(x y) (monotone-func leq?)])))

The monotone/c function consumes two contracts and a comparison function; it returns
a function contract that checks monotonicity with respect to the given comparison func-
tion. When a client module imports live-vars and invokes it, the highlighted contract is
attached to the supplied transfer function. This contract stipulates that the transfer function
takes and returns sets and is monotone with respect to set inclusion. During fixed-point
iteration, the trace contract observes all input–output pairs of the transfer function and
builds an extensional representation of the function. Violations are detected by ensuring
that no two input–output pairs fail monotonicity.

While a stream containing all input–output pairs would work, it would be inefficient. An
order-aware data representation can reduce the time needed to determine whether mono-
tonicity holds from O(n3) to O(n log n), where n is the number of calls to the transfer
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6 C. Moy and M. Felleisen

function. One possible choice is a red-black tree as it can quickly determine the immediate
predecessor and successor of an ordered element.3

Every time the trace contract monitors a new value, it initializes a new accumula-
tor. If live-vars is invoked twice, two separate accumulators are created, one for each
given transfer function. This policy allows trace contracts to compose sensibly with other
contract combinators.

Here is the (curried) function that finishes the definition of monotone/c:

;; Acc = [Ordered-Dict Set Set]
;; Comparator -> (Acc Set Set -> [Or Acc Fail])
(define ((monotone-func leq?) acc x y)

(cond
[(dict-has-key? acc x)
(if (equal? y (dict-ref acc x)) acc (fail))]

[else
(define pred-y (dict-pred acc x))
(define succ-y (dict-succ acc x))
(if (and (=> pred-y (leq? pred-y y))

(=> succ-y (leq? y succ-y)))
(dict-set acc x y)
(fail))]))

When the transfer function returns, monotone-func is applied to the current accumu-
lator acc, the latest input x, and the latest output y. It determines the transfer function’s
predecessor and successor results for x and, if they exist, checks that they properly relate to
the current output y. Just two comparisons suffice: by transitivity there are no other mono-
tonicity violations. If successful, monotone-func returns the next accumulator, relating
the new input–output pair in the augmented red-black tree.

2.4 Global initialization of traces

The following warning from Racket’s documentation tells developers about an essential
constraint that the language does not enforce:

“If a key in an equal?-based hash table is mutated (e.g., a key string is modified with
string-set!), then the hash table’s behavior for insertion and lookup operations becomes

unpredictable.”
Time and again, however, programmers—especially novices—fail to heed this warning,

experience arbitrary program behavior, and have a difficult time debugging such mistakes.
Trace contracts can enforce such constraints:

3 Ordinarily this works only for a total order, not a partial order such as set inclusion. However, since fixed-point
iteration always explores comparable elements, a red-black tree is acceptable. A general-purpose contract for
monotonicity that supports partial orders would require a different data structure. Assuming that fixed-point
iteration climbs the lattice in order, as it often does, a contract like the one from Section 2.2 would also work.
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(provide
(contract-out
[hash-set hash-set/c]
[string-set! (-> mutable/c natural? char? void?)]))

(define-values (hash-set/c mutable/c)
(trace/c ([t any/c])

#:global
(values (-> hash? (list/t ’set t) any/c void?)

(list/t ’mut t))
(full (t) not-interfere?)))

This trace contract makes use of a few features. First, the body contract produces two
values using Racket’s values function, which allows an expression to return multiple
values (Ashley & Dybvig, 1994). Because the property relates different functions, i.e.,
hash-set and string-set!, their contracts need to be created within the same trace/c.
Second, the #:global option causes the state of the trace contract to be initialized at
definition time, not the usual attachment time. Without #:global, the hash-set/c and
mutable/c contracts would be initialized separately and could never interact. Finally, the
list/t function alters the given contract to tag incoming values with a symbol. Here, the
symbol is used to indicate the operation.

The not-interfere? predicate ensures that no key is modified after it becomes a key
in a hash table:

(define/match (not-interfere? xs)
[((stream))
true]

[((stream* ‘(mut ,x) xt))
(not-interfere? xt)]

[((stream* ‘(set ,x) xt))
(and (not (stream-member? xt ‘(mut ,x)))

(not-interfere? xt))])

2.5 The full grammar of trace contracts

In summary, the trace contract library extends Racket’s grammar with a trace/c form
that constructs trace contracts. Figure 1 displays the extension to Racket’s grammar. As the
preceding examples motivate, each piece of the trace contract (trace variable declarations,
the body contract expression, and predicate clauses) comes with enhancements that make
the system practical:

Trace variable declarations The trace-variable declarations [x et] determine how many
traces the contract creates. Each declaration comes with a contract et that governs
newly collected values.
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8 C. Moy and M. Felleisen

Fig. 1. The extended racket grammar for trace contracts.

Body-contract expression When a trace contract is attached to a value, the body-contract
expression eb is evaluated in an environment where trace variables are bound to
collectors. A collector is a contract that gathers values that flow through the cor-
responding points in the body contract. These points are called interception points,
e.g., argument or return positions. Once collected, values are added to all dependent
trace data structures.
If trace/c comes with the #:global option, then the collectors are initialized only
once, namely, when the contract is created. The default behavior, as demonstrated in
Section 2.3, initializes collectors each time the trace contract is attached to a value.
The body-contract expression may produce multiple values, which is useful in con-
junction with #:global. Programmers should use the #:global option when more
than one contract must share a trace or multiple traces, as seen in Section 2.4.

Predicate clauses A predicate clause c is responsible for determining how the trace should
be updated when a new value is collected and whether the contract is violated. The
implementation supports three types: accumulate, full, and track.
The accumulate clause consists of several subclauses that determine how the
accumulator is updated when a new value is collected. A subclause consists of
a dependency specification and an expression ea, which must evaluate to a func-
tion. When a subclause depends on more than one collector, the contract system
waits until all values have been collected before applying the function. If a collector
receives more than one value before the other collectors are ready, then all but the
last are discarded.4 The corresponding accumulating function must return either an
updated accumulator or a value indicating failure.
The full clause evaluates the expression ep to a predicate and applies this pred-
icate to a time-ordered stream of collected values. Instead of triggering when all
the dependent collectors have new values, the predicate is applied when any of the
dependent collectors have new values.
The track clause augments the error message of other clauses with information
about all the parties that contributed values to the trace. Section 7.1 describes this
feature in detail.

4 Other choices are expressible by having multiple accumulate subclauses with one dependency each.
The accumulator would store collected values and then the accumulating function would determine the
policy.
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3 Real-world trace-contract examples

This section provides two real-world examples of trace contracts. The first comes from
Racket’s drawing library and the second comes from code written as part of the grading
infrastructure for an undergraduate course.

3.1 Reusing trace contracts

Racket comes with a built-in library, racket/draw, for drawing images. The library pro-
vides a thin wrapper around a low-level graphics API written in C. As such, the wrapper
must protect against client behavior that would induce undefined behavior at the C level.
One instance of undefined behavior occurs with drawing context (DC) objects.

To produce an image with racket/draw, a developer must first choose a DC represent-
ing the desired output device. There are many such contexts, but they all share a common
interface. Part of this interface is a collection of methods that manages the pages of a doc-
ument: start-doc, start-page, end-page, end-doc. Clients must call these methods
in a particular order. It does not make sense to call, e.g., end-doc before start-doc.
Moreover, all drawing commands must occur within a page.

Here is a regular expression that describes a valid complete sequence of method calls:

start-doc, (start-page, draw�, end-page)�, end-doc

This regular expression is not suitable for trace-contract monitoring. A trace contract also
checks every incomplete sequence of method calls, not just the complete sequence. So, this
regular expression has to be adapted to accept any prefix of the complete sequence.

Here is an adapted version of the regular expression above, described using Racket’s
automata library (McCarthy, 2011):

(define SINGLE-PAGE
(re (seq/close ’start-page (star ’draw) ’end-page)))

(define DC-RE
(re (seq/close ’start-doc (star ,SINGLE-PAGE) ’end-doc)))

The re form compiles a finite-state automaton that accepts the given regular expres-
sion. Within re, seq/close denotes a regular expression that accepts not just the given
sequence, but any prefix of that sequence.

The following trace contract enforces the protocol using DC-RE:

(provide
(contract-out [make-ps-dc (-> (dc/c DC-RE))]))

(define (dc/c aut)
(trace/c ([s symbol?])

(object/c
[start-doc (apply/c [s ’start-doc])]
[start-page (apply/c [s ’start-page])]
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[draw-point (apply/c [s ’draw])]
[end-page (apply/c [s ’end-page])]
[end-doc (apply/c [s ’end-doc])])

(accumulate aut
[(s) (λ (acc x)

(define acc* (acc x))
(if (machine-accepting? acc*) acc* (fail)))])))

Given a finite-state automaton, dc/c produces a contract for a DC where the method
call sequence is governed by the regular expression. In the body of dc/c, a trace con-
tract is wrapped around an object contract specifying each of the DC methods. There is
only a single collector, s, that collects symbols corresponding to the method calls. The
apply/c combinator provides the collector with a constant value each time a protected
method is called. To check the protocol, the trace predicate uses the state of the automaton
as the accumulator. So long as the automaton is accepting, the contract is satisfied. The
trace contract is used in the codomain of make-ps-dc, which produces PostScript (PS)
DCs.

As mentioned before, there is more than one kind of DC. In particular, an Encapsulated
PostScript (EPS) DC has a slightly different constraint than an ordinary PS context. Since
an EPS file is intended to be embedded in a larger document, it can only have a single
page. Supporting EPS is easy since dc/c abstracts over the regular expression. Checking
a different protocol requires only passing in a different regular expression to dc/c:

(provide (contract-out [make-eps-dc (-> (dc/c EPS-RE))]))

(define EPS-RE
(re (seq/close ’start-doc ,SINGLE-PAGE ’end-doc)))

3.2 Protocols for many methods

Imagine a board-game framework that pits AI player components against one another. In
a typical board game, players (1) receive their game pieces; (2) take turns, which may
consist of several interactions with the board; and (3) determine which ones won and lost.
Winners of a game move to the next round of a tournament while losers are left behind.

A natural implementation of an AI player is as an object with methods that correspond
to these game stages. Each player expects that these methods are called in a certain order,
which may depend on the state of the game. In short, the methods relate to each other
according to a value-dependent, multi-function, temporal property.

Programmers often use state-transition diagrams to document such multi-function pro-
tocols. Figure 2 displays a diagram for an AI board-game player (top), together with
a matching trace-contract specification (bottom). States in this diagram indicate which
method the referee component must call next. Labeled edges represent transitions that
depend on either an argument value or a return value. Unlabeled edges represent inde-
pendent transitions. Since there are several possible transitions for some states, this is a
nondeterministic automaton.
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Fig. 2. The state-machine contract for AI players, with a transition diagram.

Specifically, this diagram dictates that players must implement five methods:

1. A setup method that delivers the game pieces.
2. A pick method that asks a player to choose some game objectives.
3. A play method that grants a player the right to take a turn. The result is either a

request to perform an action on the game state or a request for more game pieces.
4. If the referee gets this second kind of request in response to play, it may invoke the

player’s more method. But, it may also skip this call, depending on the game state.
5. The player is granted turns and more pieces until the referee discovers an end-

game condition and then informs the player whether it won or lost. The player may
participate in the next game only if win is called with true.

In this particular software system, a factory function creates AI players from a strategy
and returns player objects that implement the above five methods. The contract on this
factory method attaches a trace contract to each player object. As a result, every instance
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of the player class must obey the order of method calls specified in the sequence diagram.
Otherwise, the system raises an error with a blame-assignment message that informs the
developer of the player that was mistreated; once again, the trace-contract design greatly
benefits from a tight integration with higher-order behavioral contracts.

This protocol is a language over the alphabet containing the names of methods, along
with the specific arguments or return values of two of them: play and win. For example,
the following sequence of method calls is correct so long as play returned a value satis-
fying the more? predicate: setup, pick, play, more. If play returned a value satisfying
action? instead, then that sequence of method calls is invalid, and a contract error should
be raised on the call to more.

To check this protocol, the trace contract once again simulates the finite-state machine
with accumulate. Unlike the automaton in Section 3.2, this machine inspects pieces
of data. For setup, pick, and more, the transition is independent of run-time values.
However, play and win have value-dependent transitions. For example, play uses the
action? and more? predicates to determine the next set of states. It does so using Racket’s
(? p) match pattern, which matches a value if the predicate p holds.

3.3 Contracts are better than ad hoc checks

As mentioned previously, these two examples come from real-world projects. In the origi-
nal code, both contained ad hoc protocol checks instead of trace contracts. Given that, it is
worth reviewing why contracts are preferable to such handwritten checks:

1. Contracts cleanly separate specification code and implementation code—with ad-
hoc checks the two are intertwined. This makes programs difficult to read,
and thus hard to maintain (Meyer, 1988, 1992). Additionally, the code needed
to check a specification is often repetitive and tedious. Getting it wrong is
inevitable.

2. As a direct consequence of separating specification and implementation, contracts
enable static and dynamic analyses. For example, the contract library supports pro-
filing (Andersen et al., 2018) to determine which contracts are slowing down a
program. Static techniques (Nguyễn et al., 2018) can verify whether a program
satisfies a contract. These kinds of tools are impossible with ad hoc checks.

3. The contract library automatically supports detailed error messages with blame that
points to the module that violated the contract. This information is exceptionally
useful for debugging (Lazarek et al., 2020).

4. Programmers have fine-grained control over the scope of a contract, i.e., which mod-
ules get checks and which ones do not. Trusted modules may not need checks. Thus,
the balance between correctness and performance can be tuned precisely. This also
allows tools to automatically bypass contracts in certain cases, for instance, when
they are statically proven to be unnecessary (Moy et al., 2021).

5. Finally, contracts permit specification reuse. In Section 3.1, repetitive blocks of ad
hoc checking code are replaced with make-ps-dc and make-eps-dc; abstracting
over the contract eliminates duplicate code.
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Fig. 3. Surface and evaluation syntax of �.

4 A model of trace contracts

A design requires a rigorous blueprint so that implementors of other languages can under-
stand the idea and adapt it. This section presents a model of the λ-calculus extended with
trace contracts. To keep the formalism accessible, the model is developed and explained
incrementally using five languages: �, �B, �C , �T , �U . Additionally, some of the prag-
matic features of Section 2 have been omitted to reduce the complexity of the final model.
Section 5 presents formal properties of these models.

4.1 A functional base

Figure 3 (left) defines the surface syntax of �, the call-by-value λ-calculus (Plotkin, 1975)
extended with Booleans and mutable queues. The final model represents traces using
queues. The nullary constructor queue builds a new instance and add! puts an element into
a queue. Primitive operations allow functions to walk over queues similar to immutable
lists. All the remaining syntax is standard.

Figure 3 (right) defines the evaluation syntax of �. Along with a grammar of values and
evaluation contexts, the syntax contains errors and queue-specific stores.

Errors come with two labels: j names the party that specified the violated contract and
k names the party that violated the contract. There are two special labels: ◦ refers to the
language runtime itself and † refers to the read-eval-print-loop (REPL). Since � does not
have user-defined contracts, the only possible error is err†◦.

Stores map addresses to either an empty queue (null) or a cons cell that combines
a head value with an address containing the remaining elements. This choice facilitates
functional iteration over queues.

Next, Figure 4 defines the reduction relation for � with the supporting metafunctions
provided in Figure 5. Conditionals and application are standard. For functional prim-
itive operations, the δ metafunction (Barendregt, 1981) is used to compute the result.
Constructing a new queue uses the next free address in the store and sets it to the empty
queue. Adding to an existing queue updates the store, replacing the empty queue at the end
with a cons cell containing the new value. The last three rules deal with error conditions.
Errors to do with primitive operations are handled by δ itself.
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Fig. 4. Reduction relation of �.

Fig. 5. Metafunctions of �

4.2 The classic contract model

Figure 6 defines the surface and evaluation syntax for �B, a model of higher-order con-
tracts based on that of Dimoulas & Felleisen (2011) and Dimoulas et al. (2011). The
surface syntax extends � with two new elements: dependent function contracts ed →i ec

and monitors monk,l
j eκ ec. A dependent function contract can describe properties of func-

tions where the codomain contract depends on the argument to the protected function.5 A
monitor is then used to attach a contract to a value. So, monk,l

j eκ ec attaches eκ to ec. The
value of ec is dubbed the carrier of the contract. Monitors also come with labels naming
the parties that agreed to the contract: the contract-defining module j, the server module k,
and the client module l.

In addition to dependent function contacts, the evaluation syntax reveals that Booleans
and functions can be used as contracts. When used as a contract, true permits any value
and false forbids all values. These correspond to Racket’s any/c and none/c contracts,
respectively. When used as a contract, a function checks first-order properties of the carrier.
This corresponds to Racket’s flat contracts.

5 This paper uses the abbreviation ed → ec to stand for an independent function contract, i.e., ed →i (λ_.ec).
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Fig. 6. Surface and evaluation syntax of �B.

Fig. 7. Reduction relation of �B.

Here is an example program with a contract:6

monlib,main
ctc (true→i (λx.λy.x = y)) (λz.z) (1)

This example contains a contract fully specifying the behavior of the identity function.
Since the domain contract is true, every argument is accepted. When the function returns,
the output value is checked against the codomain contract λy.x = y, ensuring that it is equal
to the input value.

Figure 7 shows the reduction relation for �B. The first four rules describe the checks per-
formed by each kind of contract. For true and false, the check immediately succeeds or
immediately fails, respectively. For a flat contract λx.e, the result of applying this function
to the carrier is then used as the new contract. Thus, if λx.e is a predicate, this corresponds
exactly to a first-order check because true and false are themselves contracts.

While λx.e may return a Boolean, there is nothing in the semantics that forces it to be
one. In particular, it could return a function contract. This can be used to create cascading
contracts that combine arbitrary first-order checks with higher-order contracts.

Consider this example:

λf .if (arity f = 1) (int?→ int?) false

Assuming an arity primitive, this cascading contract checks a first-order constraint, namely
that the carrier has arity one. If successful, the higher-order contract int?→ int? protects
the carrier. Otherwise, the contract fails.

6 These example programs are intended to illustrate a point, and therefore may use language features that are not
formally defined. The meaning should always be clear from context.
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In Racket, function contracts perform arity checks eagerly, exactly in this manner. The
model from Dimoulas & Felleisen (2011) cannot encode this behavior. Cascading contracts
are essential for defining the compiler in Section 6.

Finally, MON-FUN describes the indy semantics of dependent function con-
tracts (Dimoulas et al., 2011). The key insight of indy is that the contract itself can be
inconsistent, and therefore must be subject to checks.

Here is an example that illustrates this point:

(bool?→ bool?) →i (λf .f 42)

While the domain contract states that the input is a function over Booleans, generating the
codomain contract violates that assumption by applying f to a number. In this case, indy
raises an error blaming the contract itself.

4.3 A revised contract model

As is, �B cannot accommodate contracts with effects, such as trace contracts. When used
as the domain of a function, a contract’s effects are erroneously duplicated.

Take the following variation on program (1):

monlib,main
ctc ( (λx.print x ; true) →i (λx.λy.x = y)) (λz.z)

The only difference is the presence of an effect in the domain contract. As the following
reduction sequence demonstrates, print is executed twice:

〈(monlib,main
ctc ((λx.print x ; true) →i (λx.λy.x = y)) (λz.z)) 42, ∅〉

By MON-FUN, the monitor produces a wrapper function that checks the arguments
against the domain contract and the return value against the codomain contract.

�−→ 〈(λx.monlib,main
ctc ((λx.λy.x = y) (monmain,ctc

ctc (λy.print y ; true) x))

((λz.z) (monmain,lib
ctc (λy.print y ; true) x))) 42, ∅〉

The wrapper function is applied to 42.

�−→ 〈monlib,main
ctc ((λx.λy.x = y) (monmain,ctc

ctc (λy.print y ; true) 42))

((λz.z) (monmain,lib
ctc (λy.print y ; true) 42)), ∅〉

To produce the codomain contract, the argument is first checked against the doma-
in contract with the contract-defining party (ctc) as the client label. This prints 42.

�−→+ 〈monlib,main
ctc ((λx.λy.x = y) 42)

((λz.z) (monmain,lib
ctc (λy.print y ; true) 42)), ∅〉

Once the argument is checked, the codomain contract can be created.

�−→ 〈monlib,main
ctc (λy.42 = y)

((λz.z) (monmain,lib
ctc (λy.print y ; true) 42)), ∅〉

The argument has to be checked against the domain contract once more. This time
the client label is lib. Again, 42 is printed.

�−→+ 〈monlib,main
ctc (λy.42 = y) ((λz.z) 42), ∅〉
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Fig. 8. Surface and evaluation syntax of �C .

The carrier is applied to 42. Since the carrier is the identity function, it returns
42.

�−→+ 〈monlib,main
ctc (λy.42 = y) 42, ∅〉

The returned value is checked against the generated codomain contract. In this case,
the contract is satisfied and is discharged.

�−→ 〈42, ∅〉

Effect duplication is a major problem for trace contracts. If a collector is used as the
domain of a function, then it will collect duplicate values.

To understand the source of the problem, consider the contractum of MON-FUN. It con-
tains two vd monitors that differ only in their client label: one uses j and the other uses k.
A simple let binding cannot be used to eliminate the duplicated effect since each of the
monitors may produce wrappers that contain different labels.

The conclusion to draw is that �B conflates interception time and crossing time.
Interception time occurs when the contract system intercepts a value from the monitored
program, i.e., when a value flows through an interception point. Crossing time occurs when
an intercepted value moves to another component.

Consider a wrapper for the contract vd → vc. Every time the wrapper is applied, it must
perform two tasks related to the argument. First, vd must be used to check first-order prop-
erties of the argument. Second, if vd is a higher-order contract, wrappers must be created for
every client of the argument. In the case of indy, there are two such clients, labeled j and
l. Interception time corresponds to when task one occurs and crossing time corresponds to
when task two occurs.7 Since �B has only one mon form, both tasks are its responsibility.

Splitting the three-labeled monitor into two forms separates these responsibilities. Figure 8
defines the syntax of �C, a revised contract language. While the surface syntax is the same
as �B, the evaluation syntax has a few differences (highlighted): two-labeled monitors
monk

j eκ ec, guarded values grdk
j ω v, and label applications eg · l. Reduction of monk

j eκ ec

corresponds to interception time, when first-order properties of the carrier are checked.
Reduction of (grdk

j ω v) · l corresponds to crossing time and produces a wrapper for client l.
Figure 9 displays the reduction relation for �C. The first rule, MON-APPLY, decomposes

the surface-level monitor into a two-labeled monitor applied to the client label. If successful,

7 Often, interception-time coincides with first-order checks and crossing-time coincides with higher-order wrap-
ping. There are exceptions, however. For example, in Racket the unconstrained-domain-> contract makes
no demand on function arguments. Because such a contract is guaranteed never to blame clients, its wrapper
can be constructed at interception time. For simplicity, though, this paper blurs the distinction.
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Fig. 9. Reduction relation of �C .

Fig. 10. Surface and evaluation syntax of �T .

the two-labeled monitor produces a guarded value. The next four rules are responsible for
the first-order checks of each contract. In the case of MON-TRUE and MON-FALSE, the
first-order check is all that needs to occur.

Below the monitor rules, there are two rules for guarded values: GRD-TRUE and GRD-
FUN. For true, there is no wrapper needed so the carrier is produced directly. A wrapper is
needed for function contracts, though. The wrapper in the contractum of GRD-FUN exploits
the two-stage process. Instead of two vd monitors, there is now only one, with its result bound
to xg. Effects caused by checking vd occur only once while binding xg. In the scope of this
let binding, two wrappers are produced by applying xg to the two client labels. Constructing
these wrappers is not effectful.

4.4 The trace contract model

Finally, Figure 10 defines the trace contract model �T that extends �C. The surface syntax
contains only one new form: tr eκ ep. This represents a trace contract with body-contract
constructor eκ and trace predicate ep. A body-contract constructor is a function that, when
provided with a collector, returns the body contract. The evaluation syntax contains one new
form: co α vp. This represents a collector with trace address α and trace predicate vp.

The reduction relation for �T is presented in Figure 11. MON-TRACE performs two tasks.
First, it allocates a queue for storing the trace. Second, it creates a collector and provides it
to the body-contract constructor. MON-COL produces code that adds a new value to the trace
and checks it using the trace predicate.
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Fig. 11. Reduction relation of �T .

Here is a translation of the current-memory-use example from Section 2.1:

tr (λy.true→ y) sorted? (2)

As mentioned earlier, the body-contract constructor consumes a collector k and returns a
contract: true→ k. That is, the generated contract does not impose any precondition on the
argument of the carrier; the collector itself serves as the function’s codomain contract. The
trace predicate sorted? consumes and inspects a queue to ensure that it is sorted.8

Here is an example reduction sequence generated by protecting a function with this
contract and applying it to false:

〈let f = monlib,main
lib (tr (λy.true→ y) sorted?) (λx. ) in f false, ∅〉

A three-labeled mon becomes a two-labeled mon that is immediately applied to the
client label. All other monitor reductions are defined only on the two-labeled form.

�−→ 〈let f = (monliblib (tr (λy.true→ y) sorted?) (λx. )) · main in f false, ∅〉
MON-TRACE allocates a fresh queue for the trace and constructs a collector to
give to the body-contract constructor.

�−→ 〈let f = (monliblib ((λy.true→ y) (co α0 sorted?)) (λx. )) · main in
f false, [α0 �→ null]〉

In this step, the first argument to the trace contract produces the body contract—
filling in the appropriate spot with the collector.

�−→ 〈let f = (monliblib (true→ (co α0 sorted?)) (λx. )) · main in
f false, [α0 �→ null]〉

The monitor contains a function contract, so the first-order check succeeds and
produces a guarded value by MON-FUN.

�−→ 〈let f = (grdliblib (true→ (co α0 sorted?)) (λx. )) · main in
f false, [α0 �→ null]〉

After several let-based steps, the elided function is applied to false.

�−→+ 〈(monliblib (co α0 sorted?) ((λx. ) false)) · main, [α0 �→ null]〉
Assume that the elided function produces 42.

�−→+ 〈(monliblib (co α0 sorted?) 42) · main, [α0 �→ null]〉

8 This model’s syntax does not support trace variable declarations, so the natural? constraint from Section 2.1
is missing. Section 4.5 demonstrates how to add this feature to the model.
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Fig. 12. Surface and evaluation syntax of �U .

Fig. 13. Reduction relation of �U .

MON-COL appends the newly received value, 42, to the trace. It then arranges for
the trace predicate to be checked.

�−→+ 〈(monliblib (sorted? α0) 42) · main, [α0 �→ cons 42 α1, α1 �→ null]〉
Since the singleton queue containing just 42 is sorted, the predicate succeeds.

�−→+ 〈(monliblib true 42) · main, [α0 �→ cons 42 α1, α1 �→ null]〉
The result is just the return value of the function.

�−→+ 〈42, [α0 �→ cons 42 α1, α1 �→ null]〉

4.5 Extending the model

While the Racket implementation pairs each trace variable with a contract that governs col-
lected values, the model omits this capability. To illustrate the versatility of the model, this
subsection shows how to add this feature. To do so is relatively simple: one tweak to the
syntax and another to MON-COL suffices. Other adaptations to the model—making it more
faithful to the implementation—are similarly straightforward.

The revised surface syntax, shown in Figure 12, adds contracts to the body-contract con-
structor; an analogous change augments collectors with contracts to protect collected values.
Figure 13 shows the modified reduction relation. The MON-TRACE rule is just adapted for
the new argument, while the revised MON-COL reduction has some new behavior. In the
contractum, a let expression binds xv to the collected value v, monitored with contract vκ .
The second binding, for xj, applies the monitored value xv to j because the consumer of the
trace is the contract-defining party. At this point, the value is added to the trace, and the trace
is tested with the predicate. If the predicate succeeds, the monitored value xv becomes the
result of the let expression.

This variant of MON-COL demands careful construction. First, it requires the proper man-
agement of blame parties. Monitoring the to-be-collected value is the responsibility of the
contract-defining party, but using the value remains the responsibility of the client, which is
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the context. Second, the right-hand side may not duplicate the monitoring expression because
a contract may have effects—after all, it could be another collector. So, like GRD-FUN, this
rule is arranged such that the effects of vκ are performed only once.

5 Semantic properties

Here is an evaluation function that can be used for all of the languages defined in Section 4:

evalL : Prog → Ans

evalL (e) =

⎧⎪⎨
⎪⎩

b if 〈e, ∅〉 �−→� 〈b, σ 〉
opaque if 〈e, ∅〉 �−→� 〈v, σ 〉, v /∈ Bool
errk

j if 〈e, ∅〉 �−→� 〈errk
j , σ 〉

The evalL function takes programs as input. A program is a closed surface expression. If the
reduction relation connects a program to a Boolean, then evalL produces the same Boolean.
If the reduction relation connects a program to any other value, then evalL produces opaque,
just like the REPL does for a λ expression. Finally, evalL produces an error token with two
labels when the reduction relation does too.

The evalL relation is a partial function. Thus, a deterministic interpreter can be defined.

Theorem 5.1 (Functional evaluator). evalL is a partial function.

Proof See Appendix B.

Moreover, the only time evalL is undefined is when it diverges.

Theorem 5.2 (Uniform evaluator). For all programs e, either evalL (e) is defined or the
reduction sequence starting with 〈e, ∅〉 is unbounded.

Proof See Appendix C.

Finally, the revised contract semantics is equivalent to the original model in the absence
of mutations.

Definition (Mutation free). An expression e is mutation free if for all e′ such that 〈e, ∅〉 �−→�

〈e′, σ 〉 it must be that σ = ∅.

Theorem 5.3 (Evaluator equivalence). For all mutation-free programs e, eval�B (e) =
eval�C (e).

Proof See Appendix D.

6 Implementation in principle

The semantics of Section 4 suggests a macro-style compilation of trace contracts into a mix
of plain contracts and queue manipulations. Such a translation requires the timely initializa-
tion of traces, strict control of effects (i.e., queue manipulation), the injection of run-time
checks, and proper blame assignment. Compiler correctness follows from a theorem like the
one Findler & Felleisen (2002) prove for plain contracts.
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6.1 Theoretical compiler

Consider the following compiler that translates a �T program into a �C program:

C (tr eb ep) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

let xb = C (eb) in
let xp = C (ep) in
λ_. let xα = queue in

xb (λy.xp (add! xα y))

Since there is only one construct related to trace contracts in the surface syntax, C has only
one interesting case and is otherwise a homomorphism.

For a trace contract, the compiler sets up two bindings in a let expression: xb and xp.
These stand for the compilations of the body-contract constructor and the trace predicate,
respectively. The body of the let expression is a flat contract. Like MON-TRACE, it creates
a fresh queue, and then an instance of the body contract by applying xb to (the compilation
of) a collector. The flat contract is used as a mechanism to initialize the queue at attachment
time. Similarly, the compilation of the collector yields a flat contract that simulates MON-
COL. Specifically, it adds the given element to the queue and then passes the extended queue
to the trace predicate.

Here is the compilation of program (2):

let xb = λy.true→ y in
let xp = sorted? in
λ_. let xα = queue in

xb (λy.xp (add! xα y))

(3)

6.2 Compiler correctness

Compare the reduction sequence for program (2) with that of program (3):

〈let f = monlib,main
lib ( let xb = λy.true→ y in

let xp = sorted? in
λ_. let xb = queue in

xκ (λy.xp (add! xα y)))

(λx. ) in f false, ∅〉
Following left-to-right evaluation, the compilation uses a sequence of let expre-
ssions to evaluate the arguments of the trace contract.

�−→+ 〈let f = monlib,main
lib (λ_. let xα = queue in

(λy.true→ y) (λy.sorted? (add! xα y)))

(λx. ) in f false, ∅〉
The three-labeled mon becomes a two-labeled mon applied to the client label.

�−→ 〈let f = (monliblib (λ_. let xα = queue in
(λy.true→ y) (λy.sorted? (add! xα y)))

(λx. )) · main in f false, ∅〉
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The flat contract constructs a new queue and then produces an application of the
body-contract constructor to the compiled collector.

�−→+ 〈let f = (monliblib ((λy.true→ y) (λy.sorted? (add! α0 y)))

(λx. )) · main in f false, [α0 �→ null]〉
Substituting gives a function contract with the compiled collector as the codomain.

�−→ 〈let f = (monliblib (true→ (λy.sorted? (add! α0 y)))

(λx. )) · main in f false, [α0 �→ null]〉
After a few steps, the elided function produces 42 by assumption. This must be
checked against the compiled collector.

�−→+ 〈(monliblib (λy.sorted? (add! α0 y)) 42) · main, [α0 �→ null]〉
The compiled collector adds the given value to the associated trace.

�−→ 〈(monliblib (sorted? α0) 42) · main, [α0 �→ cons 42 α1, α1 �→ null]〉
Finally, the trace predicate is run to ensure that the trace is sorted. Since it is, the
final value is the result of the function: 42.

�−→ 〈42, [α0 �→ cons 42 α1, α1 �→ null]〉

This comparison suggests a proof that the compiled trace contract simulates the origi-
nal behavior. Indeed, evaluating the compiled code always yields the same answer as the
uncompiled source code, including divergence and errors.

Theorem 6.1 (Compiler correctness). eval�T = eval�C ◦ C

Proof See Appendix E.

7 Implementation in practice

A principled design (Section 4) specifies when traces are initialized, when they are updated,
and when a predicate evaluates their validity. The design gives rise to a principled imple-
mentation (Section 6), which clarifies how to translate key features into a kernel language.
But, developers do not live by principles alone; pragmatics matter just as much.

One pragmatic concern is contract blame. Contracts help enforce basic correctness claims,
and contract failures alert developers to problems. Findler & Felleisen (2002) insist on pre-
cise blame assignment in failure messages. The design of the trace contract system carefully
reuses the blame assignment mechanism from the underlying contract system. Experience
suggests that for trace contracts, developers may need additional information beyond what
standard blame provides (Section 7.1).

Another concern is the availability of contract combinators. Working with the trace con-
tract system pointed to limitations in the existing behavioral contract system. In particular,
additional combinators are needed to support the specification of interception points relevant
to trace contracts. Fortunately, these pragmatically important combinators are orthogonal
additions to the base system (Section 7.2).

Finally, an implementation effort also informs designers of what is needed in a target host
language to add a new feature. While the use of Racket’s macro system greatly facilitates the
addition of macro-expressible features, it should not be much more effort to extend existing
compilers directly with support for trace contracts, provided the target language supports
certain features (Section 7.3).
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7.1 Blame and suspects

When a contract system discovers a contract violation, it raises an exception that includes a
witness value and a pointer to the responsible component. This is dubbed blame assignment.
Section 2.1 illustrates this point with an example of a violated trace contract.

As Lazarek et al. (2020) show in the context of behavioral contracts, blame assignment
comes with enough information to almost always locate the actual source of the bug. They
simulate tens of thousands of buggy programs by introducing a targeted fault via mutation. In
most cases, following blame assignment leads to the source of the bug. For the few hundred
cases where blame fails to identify the bug, Lazarek et al. (2020) reduce the failure to a
lack of multi-call contracts. One of their examples is the DUNGEON program. As Section 8
explains, strengthening the behavioral contract to a trace contract for DUNGEON provides
exactly the needed blame information.

Trace contracts also complicate the situation, however. By default, blame goes to the
party that added a value to the trace just before the predicate fails. Since all prefixes of the
trace satisfied the predicate, this blame assignment seems to make sense. Yet, debugging
real scenarios suggests that neither the blame correctness property (Dimoulas & Felleisen,
2011) nor the complete monitoring property (Dimoulas et al., 2012) are as useful for trace
contracts as they are for behavioral ones.

Imagine a scenario with five components (A, B, C, D, E), where each contributes a number
to a trace in increasing order (≤). Here is an execution:

Component A B C E D
Contribution 1.41 2.71 3.14 5.00 4.67

The model blames D because it contributes 4.67, causing the ≤ relation to fail. But, E might
have made a call to the API out of order, and blaming just D does not even indicate a
suspicion that some other component could be at fault. It is often useful to know the source of
all values in a trace. After all, the idea behind traces is to subject multi-function interactions
to contractual obligations.

A careful reader may argue that the problem is not with the blame assignment system, but
with the predicate. Perhaps ≤ does not capture the specification to a sufficient degree. This
claim is already true about behavioral contracts because a predicate may always be weaker
than the intended property. And if the predicate is weaker than the intended property, the
contract system may blame the wrong party.

This argument, however, overlooks the key premise of contract-system design: blame
assignment must help developers narrow the search space for bugs, regardless of the strength
of the predicate. To explain this idea rigorously, Lazarek et al. (2020) turn folk wisdom into
two properties: blame trail and search progress. The blame trail property states that either
(1) blame is assigned to the buggy component or (2) blame can be shifted to another com-
ponent by strengthening contracts. The search progress property states that blame shifting
always points to a component closer to the bug than before the modification.

For trace contracts, both properties can be violated in practice. In the example, strengthen-
ing contracts on D is unlikely to shift the blame, meaning the blame trail property is violated.
When strengthening a trace predicate, the violating trace may decrease in length, but there is
no reason to think a priori that the last contributor to a trace is always closest to the source of
a bug, violating the search progress property. In short, the current blame assignment scheme
points to the broken contract, but more information is needed to help identify the fault.

https://doi.org/10.1017/S0956796823000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000096


Trace contracts 25

To address this problem, the implementation comes with three different ways of express-
ing blame assignments. Let a suspect be any party that contributes to a trace. Here are the
three mechanisms used to express blame:

1. By default, the trace/c implementation does not report suspects. Instead, the error
message merely mentions the violated contract and its parties.

2. The setof-suspect option forces the trace-contract system to track the set of all
suspects and report that information when assigning blame. Frequently, there are just
two parties to a contract. Without #:global, a two-party contract has a suspect set
with at most two elements.

3. The listof-suspect option causes the trace-contract system to report the exact
sequence of suspects, one per value in the trace. This option supplies the most com-
prehensive information, but it requires a large amount of memory and makes for large
error messages.

Whether all of these strategies are useful in practice, only some of them, or some in certain
circumstances and some in other circumstances, is left as an open research question.

7.2 Supporting functionality

The trace contract library comes with additional functions for manipulating interception
points, resetting state explicitly, transforming collectors, and augmenting error messages
with additional information.

Unlike behavioral contracts, trace contracts occasionally need to note events even in the
absence of an informative value flow. For example, when a function receives no arguments,
there is no natural interception point. The trace contract library supplies some combinators
to create interception points for such situations (e.g., apply/c, return/c). See Section 3.1
for sample uses.

Collector transformers wrap a collector and compute the value to be added to a trace from
the given one. An example is list/t, which allows a programmer to tag values before
they go into a trace. Typically, this tag adds information about the interception point. See
Section 3.2 for an example. Another one is map/t, which applies a given function to the
captured value before adding it to a trace.

In practical situations, the fail function may have to perform more tasks than just inform
the contract system of a failure. A software system may have to recover from a contract
failure, and in those cases, a failure should reset accumulators to certain values. The author
of a trace contract may also wish to add information about the rationale behind a failure. To
this end, the trace-contract system supports augmenting error messages.

7.3 Implementing trace contracts in general

While the implementation is based on Racket’s contract system, the design is language inde-
pendent. Implementors of other programming languages may wonder what it takes to add
trace contracts in their settings. Our experience suggests a few criteria.

A trace is a data structure representing the sequence of values collected from various inter-
ception points. In the context of a functional language, function calls and returns are obvious
interception points. Similarly, in an object-oriented language, this same role is played by
methods. Generally speaking, an implementor’s first business is to decide where to intercept
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and how to monitor the flow of values. The rest of this section assumes that call-and-return
points suffice.

7.3.1 Monitoring higher-order values

In a higher-order language, functions, objects, modules, and classes may be first-class values.
This implies that a contract system cannot determine statically where a particular call or
return takes place. It is the task of the target language’s runtime to support the monitoring of
value flows. The Racket implementation employs proxy values (Strickland et al., 2012)—
invisible wrappers—for interception. With such wrappers, it is straightforward to perform
interception even in the presence of higher-order values.

Wrappers are not the only option. For instance, the weaving mechanism from aspect-
oriented programming (Kiczales et al., 1997) could be used for a similar purpose. Roughly
speaking, weaving injects code into the program at specifiable program points. Although
weaving is powerful, it is not clear whether weaving can efficiently intercept values in a
higher-order language, as needed by the proposed design.

7.3.2 Mutation within contracts

Trace-contract checking is effectful. When a collector receives a value, it mutably adds this
value to a trace. Even though, as some of the examples in Section 2 show, the component
itself can be purely functional. Hence, the underlying language must allow side effects in
contracts, even though trace predicates themselves are pure functions.9

Formally, Section 6 validates that trace contracts are expressible as shorthand in an under-
lying language with higher-order contracts and a mutable data structure. In the terminology
of Felleisen (1991), the new feature is macro expressible. Theorem 6.1 shows that this trans-
lation completely preserves the specified behavior. Though, Felleisen (1991) also shows
that imperative assignment increases the expressive power of a pure host language. By
implication, trace contracts are not expressible in such a setting.

7.3.3 Interception and crossing times

As mentioned in Section 4.3, a trace-contract system assumes that crossing and intercep-
tion time in the target contract system are separate. As it turns out, the implementation
of trace contracts exposed the lack of this separation in Racket’s contract system. Racket
fails to separate the two points in one combinator: the depended-upon argument contract in
->i (Dimoulas et al., 2013). A change to Racket’s contract system allows trace contracts to
distinguish these boundary crossings, meaning that a collector may ignore arguments pass-
ing through a boundary that has an indy (third) party.10 This is sufficient to eliminate the
duplicate-collection problem.

7.3.4 Macros not needed

An implementor can easily add trace contracts to a language with a rich macro system, such
as a Racket. Including all of the practical features mentioned in Section 2 makes this macro
rather large and complex. While macros are a convenient implementation mechanism for

9 Since collectors mutate traces, checking a collector is not idempotent. While idempotence is sometimes con-
sidered an important property of contract systems (Findler & Blume, 2006; Degen et al., 2009), it often fails to
hold for other reasons. For example, Owens (2012) and Hinze et al. (2006) observe violations of idempotence
in several useful contexts.

10 Thanks to Robby Findler for help with this change to Racket’s contract system.
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trace contracts, they are not a requirement. The implementor of a functional language such
as SML, which elaborates surface syntax into a small kernel, can add trace contracts with a
similar addition to the front-end elaborator.

8 Usability and performance evaluation

Usability questions concern the ease with which programmers can write trace-contract
properties for their programs and what performance penalty the system imposes.

Section 8.2 gives a qualitative assessment of our experience writing trace contracts.
This assessment suggests two opposite insights. On the one hand, trace contracts enable
developers to use the entire underlying programming language. Hence, developing a trace-
contract property is just like developing an ordinary predicate in an ordinary language, using
all available tools—especially unit and property-testing frameworks. On the other hand,
as experience with ordinary higher-order contracts shows, contracts are a special-purpose
domain. Such domains call for specific, tailor-made notations to eliminate boilerplate code.
Developing such notations remains future work.

As for performance, the only relevant question is what kind of fixed cost the mechanism
itself imposes on programs, not the variable cost of the programmer-defined predicates.11

Trace initialization, trace updates, and calls to predicates are all included in this fixed cost.
The results of measuring the performance of trace contracts, presented in Section 8.3, are
quite encouraging.

8.1 Benchmark programs

The selected benchmarks represent real-world uses of Racket that offer opportunities for
adding trace contracts. MEMORY turns the example from Section 2.1 into a pathological
stress test. FUTURE is a large existing Racket library equipped with trace contracts, plus
an application that stresses the functionality. Four of the benchmark programs (DUNGEON,
JPEG, LNM, TETRIS) are variants on programs from the standard gradual typing benchmark
suite (Greenman et al., 2019). Three (DATAFLOW, FISH, TICKET) are programs developed
for use in university courses. All of the benchmarks have been adapted so that they do not
measure I/O operations.

DATAFLOW Computes a constant propagation analysis for a simple imperative language.
A trace contract, similar to the one from Section 2.3, checks the monotonicity of a
transfer function during fixed-point iteration.

DUNGEON Generates the specification of a maze. A trace contract on the random-number
generator ensures that it does not exhaust a fixed pool of random numbers. In the
original program, resizing the random number pool caused a contract violation that
failed to provide helpful blame information (Lazarek et al., 2020, sec. 5.1). With a
trace contract, this same bug produces an error message with a blame assignment
that directly points to the problem. The contract keeps track of how many times the
random function is called, so its accumulator is just a natural number and the check is
cheap.

11 The performance evaluation cannot answer questions concerning the variable cost of trace predicates. Trace
contracts are property agnostic, so the variable cost of a trace contract depends largely on the property being
checked. In other words, this cost is solely under the purview of the programmer, not the trace-contract system.

https://doi.org/10.1017/S0956796823000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000096


28 C. Moy and M. Felleisen

FISH Runs a “That’s My Fish” board game tournament. There are two trace contracts: a
referee contract and a player contract.
The referee contract ensures that the referee calls back players in the specified order
unless the game state does not permit the player to take a turn. The contract is a
promise made by the referee to all players. To enforce this promise, the contract is
placed on the referee’s list of player objects. A collector receives a new value every
time the referee calls the take-turn method on any player. The trace contract then
checks that this is in accordance with the promised callback order on the players,
including skipping over players that are momentarily prohibited from taking a turn.
The player contract enforces a sequence property on its method calls. In other words,
the player components ensure that their individual methods are called in the specified
order. This contract is similar to the value-dependent temporal protocol example from
Section 3.2. It is independent of, and orthogonal to, the referee contract.

FUTURE Visualizes the performance of a futures benchmark. Futures are a run-time mech-
anism for incrementally adding parallelism to programs (Swaine et al., 2010). The
future visualizer (Swaine et al., 2012) uses Racket’s drawing library, which has been
equipped with trace contracts to enforce multi-call properties. A full list of these prop-
erties is enumerated in Appendix F. Some of the properties were monitored by the
drawing library using ad hoc checks and others were not checked at all.

JPEG Parses a JPEG input stream and writes it to an output stream. A trace contract guaran-
tees that operations on the output stream occur in the correct order. Like the example
in Section 3.2, it checks every stream-related function call against a finite automaton.
Formulating the trace contract involves creating several contracts that share the same
accumulator (the state of the finite automaton).

LNM Draws plots of the performance measurements of a gradual type system. Like FUTURE,
this benchmark uses a variant of Racket’s drawing library with trace contracts.

MEMORY Reports memory use, including garbage-collected blocks. The trace contract
from Section 2.1 ensures that current-memory-use returns increasing numbers over
time; it is called 10,000 times in a tight loop, the results of which are graphed on a line
chart using Racket’s plot (Toronto & Harsányi, 2011) library.

TETRIS Simulates and displays a recording of the game of Tetris. This benchmark also uses
a variant of Racket’s drawing library equipped with trace contracts.

TICKET Runs a “Ticket to Ride” board game tournament. Like FISH, TICKET has both a
referee and a player contract. The referee contract enforces a promise that the referee
calls back players in the specified order. This trace contract is significantly simpler
than the one for FISH, because every player can execute an action in every game
state. The player-side trace contract enforces the correct sequence of method calls.
The example presented in Section 3.2 is a simplified version of this contract.

8.2 Benchmark summary

Table 1 first lists the number of essential lines of source code (SLOC) for each program,
including the trace contract and its auxiliary functions.

None of the trace contracts require much code. FISH and TICKET contain the most com-
plex ones, but the others are relatively simple. Even the most complex trace contracts are
concise. Indeed, the contract for TICKET is shown nearly verbatim in Section 3.2. Since
predicates are ordinary code, they can make use of existing data structure libraries, and
those libraries serve as workhorses in many cases. For example, JPEG uses an existing FSM
package that renders its temporal constraint predicate practically a one-liner.
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Table 1. Basic metrics and performance measurements.

Benchmark SLOC Protects Checks Disabled Enabled Predicate Overhead

DATAFLOW 502 1 584 83 ± 3 87 ± 2 274 ± 3 5%
DUNGEON 589 0 538,000 2441 ± 38 2715 ± 46 2713 ± 33 11%
FISH 1,452 2,698 63,175 7780 ± 70 8340 ± 82 8366 ± 80 7%
FUTURE 1,721 16,360 234,444 6075 ± 54 7083 ± 83 7502 ± 86 17%
JPEG 1,481 0 54,556 276 ± 5 303 ± 6 316 ± 6 10%
LNM 564 168 3,248 522 ± 8 532 ± 9 534 ± 9 2%
MEMORY 59 0 10,000 141 ± 4 164 ± 4 164 ± 4 16%
TETRIS 334 6,807 125,570 3040 ± 24 3566 ± 36 3927 ± 43 17%
TICKET 1,427 384 15,794 13062 ± 149 13186 ± 170 13199 ± 182 1%

Tight integration with the existing contract system makes writing many trace contracts
natural. Since the trace contract mechanism manages state behind the scenes, contract com-
position and contract abstraction work as expected. Developers can write trace contracts as
ordinary code, compose them as usual, and even abstract over them.

Programming trace contracts for these benchmark programs also points to limitations.
For example, placing collector contracts can be awkward and repetitive. Consider the trace
contracts in Sections 3.1 and 3.2, both of which contain several nearly identical lines. A
macro can eliminate the repetition in each case individually, but it is not obvious if there is
a general-purpose DSL that could reduce such repetitive code across many cases.

8.3 Performance measurements

The performance measurements on the right side of Table 1 were recorded on a dedicated
Linux machine with an Intel Xeon E3 processor running at 3.10 GHz with 32 GB of RAM
and with Racket 8.6 CS. Each benchmark configuration was repeated 100 times with a
maximum timeout of two minutes.

The Protects column reports the number of times a trace contract protects a new value
during the steady state of a program’s execution. Each time, there is some overhead due to
allocating references for accumulators and creating collector contracts. Some benchmarks
have a zero entry because all of the trace contracts are initialized before the main body of
the program begins, for example, when dependencies are being loaded.

The Checks column states the number of times each trace predicate is checked. As men-
tioned, this evaluation is concerned with the fixed cost of trace contracts. Therefore, each
trace predicate is replaced with the trivial predicate that always returns true. Benchmarks
were executed at two levels: Disabled where trace contracts are disabled, and Enabled where
they are enabled. These measurements are the mean number of milliseconds it takes to
run each benchmark, averaged over 100 samples, along with the standard deviation. The
Predicate column lists the performance numbers where trace contracts are enabled and the
predicate actually checks the desired property. Despite it not being the primary means of
evaluation, these numbers are provided for context. Such predicates are straightforward
implementations and are not heavily optimized. Finally, the Overhead column shows the
percent overhead of Enabled compared to Disabled.

The overhead of the trace-contract mechanism is relatively low, somewhere between 1%
and 17%. As is, the setups basically simulate worst-case scenarios. For example, MEMORY

just calls a simple function in a tight loop, so contract checking takes up a large portion
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of total execution time. By contrast, benchmarks that are closer to real-world programs,
such as TICKET, incur a low overhead. Thus, the evidence suggests that the trace-contract
mechanism itself does not exhibit any performance pathology.

These measurements do not exercise an industrial-strength implementation of trace con-
tracts, but rather a direct translation of the design. This implementation serves as a vehicle
for exploration. With some performance engineering, it is likely to perform significantly
better. While this evaluation can provide some first impression of the performance of trace
contracts, it is not enough to generalize to other settings or languages.

9 Related work

Prior work is in the tradition of software contracts or runtime verification (RV). Specifically,
this paper leverages the development of higher-order dependent contracts (Findler &
Felleisen, 2002; Blume & McAllester, 2006; Findler & Blume, 2006; Greenberg et al., 2010;
Dimoulas et al., 2012); the temporal contract system of Disney et al. (2011) is the most
directly comparable piece of work from this area. Within the runtime verification area, the
most similar approach is the monitor-oriented programming framework (Chen et al., 2005;
Chen & Roşu, 2007; Meredith et al., 2011).

These two bodies of research have distinct philosophies about expressing and checking
properties. Trace contracts borrow the notion of traces from RV to extend a higher-order
behavioral contract system. They seek to bridge the gap between the two areas. Eventually,
this bridge should make many results from RV available to contract programmers, and it
may inject new ideas into RV.

9.1 Runtime verification, generally

Traditional contract systems and RV systems differ along several dimensions. Most impor-
tantly, as Meyer (1992) observes, contracts are a design tool for the developer; in contrast,
RV is a tool for the quality assurance stage of the development process.

9.1.1 Scope

Contracts are modular. A programmer attaches contracts to the interface of a “server”
component. When a “client” component imports a server component, it is forced to agree
to the contract. Similarly, a client component may impose a contract on imported pieces
of functionality to protect itself from a misbehaving server. In the first case, clients do
not need to be adapted to the service contract, and in the second case, service compo-
nents remain unaware of the client’s protective contract. Put differently, it is possible
to compile these components in either order or, even better, to link precompiled binary
objects.

RV is whole program. A programmer specifies events of interest and properties about
event traces. The RV system converts this specification into an executable monitor and
weaves interception code into the host program to communicate first-order data about events
to a separate monitor process (Bartocci et al., 2018).

Monitoring higher-order values is possible with RV, but the encoding uses a com-
plex protocol between the server and the client module; it requires source modification
to both components. Implementing the protocol on a modular basis is either impossible,
which precludes the binary-linking approach available with contracts, or requires complex
extensions (Xiang et al., 2015).
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9.1.2 Language

Contracts are linguistic elements inside the language. The programmer uses the same
language—and the exact same tools—for writing code and contracts. Extending the notation
for contracts in a domain-specific manner (via macros in Racket) is useful; the -> abbre-
viation for function contracts is one example. Racket treats contracts as first-class objects,
meaning they can be put into lists, passed and returned from functions, and composed at run
time.

RV is extra-linguistic; that is, RV systems exist outside the language. Specifications are
usually written in a distinct, external logic language and tend to make temporal statements
about sequences of first-order data (Havelund et al., 2018). While this language may contain
fragments of host-language code, it is only loosely connected with the host language and its
tool chain.

9.1.3 Violations

As a consequence of linguistic differences, contracts and RV differ in two ways concerning
the violation of specifications: recovery and error-location information.

When a contract system discovers a violation of an assertion, it raises an exception that
includes information about the parties that agreed to the contract and which of them violated
it—blame information. By raising an exception at the very point where a contract violation
is discovered, the contract system gives the program a chance to recover immediately and
with a response targeted to the problem. In a language with resumable exceptions, such as
Common Lisp (Steele, 1990), a program may even resume its execution at the exact place
where the violation occurred.

The precise error information in violation messages enables the developer to understand
the cause of a violation. Lazarek et al. (2020) show that this blame information is effec-
tive at narrowing the search space during debugging. It is also a well-founded concept;
Dimoulas et al. (2012) provide a framework for proving that blame information points to
the component which supplies a value that does not meet the specification.

Traditionally, RV systems report violations of specifications with delay and do not
contain blame information (Swords, 2019). The delay is due to the underlying process-
communication arrangement between the program proper and its monitor. This poses a
problem for tracking the provenance of values and for assigning blame. Hence, RV makes it
difficult to restart programs with a problem-specific, localized response, unless an additional
“diagnosis layer” is supplied (Leucker & Schallhart, 2009).

9.1.4 Properties

Contracts are property agnostic. Any predicate, including one that tries to decide a
recursively-enumerable property, can be used as a contract. This is maximally expressive
but can be computationally expensive.

RV is property sensitive. Much of RV research focuses on the development of specifica-
tion languages that can express properties of interest concisely and that can be compiled into
efficient monitoring code (Leucker & Schallhart, 2009). Often these are variants of temporal
logic. These specialized logics can provide hard guarantees about time and space efficiency,
at the cost of expressive power.
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9.2 Runtime verification, specifically

Within the landscape of RV tools, JavaMOP is the best point for comparison. It is the most
versatile implementation in the family of monitor-oriented programming (MOP) systems
(Meredith et al., 2011). A selling feature of JavaMOP is that it is generic; the programmer
can choose the events of interest, specification logic, and violation handler code. Chen &
Roşu (2007) argue that there is no logic suitable to express all properties, and thus JavaMOP
developers must engineer external logic “plugins” (Chen et al., 2005).

Trace contracts, by contrast, allow programmers to take full advantage of the host lan-
guage. If this host language comes with expressive meta-programming facilities, such as
the macros of Racket (Flatt, 2002; Felleisen et al., 2018; Ballantyne et al., 2020), develop-
ers can easily add a custom notation for trace contracts. Consider Section 3.2 which uses
Racket’s automata package (McCarthy, 2011) and significantly improves the readability of
the trace predicate without external tooling. With the visual-interactive syntax of Andersen
et al. (2020), a developer could even edit and view the NFA graphically.

For an example of cross-pollination, consider trace slicing. This idea is due to the RV
community (Chen & Roşu, 2007). In the RV world, this operation is not exposed to users
of RV systems; rather, an efficient slicing algorithm is derived from data quantifiers in the
specification logic. The trace contract library supports trace slicing via tagging and ordinary
stream functions. In keeping with the philosophy of contract-system design, the power is
handed to programmers.

9.3 Higher-order contracts, specifically

While higher-order contracts are typically independent of state, trace contracts manage state
behind the scenes to support a mostly functional view of specifications. Others show that
contracts could occasionally benefit from a modicum of state (Tov & Pucella, 2010; Moore
et al., 2016; Waye et al., 2017), though these systems do not come with the expressiveness
of trace contracts.

The higher-order temporal contracts of Disney et al. (2011) are the closest prior work
to trace contracts. Their research focuses on two aspects: an operational theory of temporal
event sequences and the specification of properties. On the theory side, the work introduces a
novel approach to operational semantics that formalizes the meaning of modules as automata
that create trees of observable events, similar to game-based denotational semantics. The
semantics satisfies a noninterference theorem, meaning that streams of values are kept sep-
arate. On the practical side, the work focuses on specifying properties of event sequences
as regular expressions without giving programmers access to a data representation of traces.
Trace contracts come with more expressive power, yet do not necessarily sacrifice efficiency.

At first glance, computational contracts (Scholliers et al., 2015) look similar to higher-
order temporal contracts. But, computational contracts go far beyond any classical contract
classification scheme (Beugnard et al., 1999, 2010), providing unprecedented power and
imposing a similarly high cost. A computational contract system empowers programmers to
impose arbitrary restrictions on components from the outside and in a post hoc manner. Thus,
computational contracts depart from the idea that contracts are assertions at the boundary
between black-box components, instead turning components into glass boxes.

9.4 Typestate and type systems

Researchers often try to move from dynamically checked contracts to statically checked
types, because discovering general mistakes during compile time is safer than discovering
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specific mistakes at run time, perhaps even after a program has been deployed. This
subsection deals with two distantly related ideas from the world of static checking.

The work of Strom & Yemini (1986) on typestate systems, recently resumed in various
forms (Pucella & Tov, 2008; Jaspan & Aldrich, 2009; Wolff et al., 2011), directly addresses
simple but common affinity restrictions in APIs. For example, typestate systems can check
constraints such as “method m may be called at most once” and even “method m must be
called before method n.” These constraints are restricted to regular properties, i.e., those that
can be expressed using a finite-state machine.

Honda et al. (1998)’s notion of session type is a closely related idea. Recently this field
has experienced rapid growth. Roughly speaking, session types for objects come with the
same expressive power as typestate (Gay et al., 2010).

Effect systems are also capable, in a limited way, of constraining the order in which effects
can be performed. Ordinary effect systems do not consider the order of effects, but sequen-
tial effect systems (Tate, 2013; Koskinen & Terauchi, 2014) can. Further extensions can
statically verify some temporal logic propositions (Gordon, 2017).

But no existing static technique can express all of the trace-contract examples. By com-
bining traces with plain code, a programmer can formulate arbitrary predicates and check
value-dependent constraints on traces. Trace predicates can look for specific values or
use specific values to express a constraint, which is impossible with these type systems.
Dependent session types (Toninho et al., 2011) may be able to do better, but are still lim-
ited to statically decidable properties. Trace contracts, by monitoring programs at run time,
are able to take advantage of the precision that run-time checking offers. A combination of
session types and contracts (Bocchi et al., 2010) can refine the content of messages passed
between parties, but the structure of the protocol remains fixed. This approach also does not
naturally extend to contracts on higher-order values.

10 Trace contracts for rich specifications

Engineering complex software requires mechanisms for expressing and enforcing compo-
nent specifications. Types, contracts, run-time verification—each has been successful in its
own way, but major expressiveness gaps remain.

This paper introduces trace contracts as a novel, practical, and well-founded element of
this spectrum. Specifically, trace contracts enable developers to protect the elements of their
API across multiple function and method calls. The trace contract system provides traces of
argument and result values as a first-class piece of data. Hence, trace contracts can express
protocols that are ubiquitous in practice, but are usually specified informally.

In addition to a principled design, this paper describes an implementation of trace
contracts, along with an evaluation. The implementation addresses a good number of prag-
matic concerns, especially those of performance. On the question of blame assignment,
the implementation supports several natural strategies with different precision and memory
consumption trade-offs.

Critically, the trace-contract design separates the concept of a value trace from the lan-
guage of enforced properties. In other words, trace contracts separate the low-level collection
mechanism from the high-level property formulation. Hence, the design enables an inves-
tigation of trace-collection performance, independent of an exploration of problem-specific
notations for expressing the properties of traces. Racket, with its powerful tools for creating
embedded and extensible DSLs (Ballantyne et al., 2020), is a convenient platform for this
kind of research.
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Plenty of work remains. Section 7.1 proposes three blame strategies but gives no the-
oretical or empirical justification for any of them. What are the trade-offs between these
approaches with regard to theory (blame correctness), implementation (memory use), and
pragmatics (debugging violations)? Protocols are common in concurrent programs but are
often informally described. Can trace contracts be adapted to monitor protocols in concurrent
applications? Techniques exist to statically verify functional contracts in Racket (Nguyễn
et al., 2018). Is static verification practical for trace contracts? Section 9 compares trace con-
tracts to other research results. How many of these systems can be implemented on top of
trace contracts? If they can, what are the benefits of doing so? If they cannot, how can trace
contracts be extended to accommodate such systems?

Even though future work is needed to turn trace contracts into a truly practical technol-
ogy, hopefully the foundation put forth in this paper is sufficient to advance the practice of
software specification in Racket and beyond.
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A Proof syntax and judgments

The proofs in the sections that follow require some additional syntax and judgments. In
particular, certain sets of expressions that exist implicitly in the semantics must be named
explicitly. Additionally, a judgment identifying valid expressions is needed.

Figure 14 defines three sets of terms. An answer is the result of evalL (for a language L )
and is either a terminal expression or the opaque token. A terminal expression is either a
value or an error token. Finally, a reducible expression (redex) is an expression that inhabits
the hole of an evaluation context on the left-hand side of a reduction rule.

Figure 15 defines a judgment that identifies valid expressions from the too-liberal gram-
mar of evaluation syntax. A valid expression is closed and contains only addresses that map
to valid queues. A valid queue contains only valid values.

B Functional evaluator proof

The theorems in this section hold for all languages presented in Section 4.

Theorem 5.1 (Functional evaluator). evalL is a partial function.

Proof A straightforward consequence of Lemma B.1.

Lemma B.1 (Deterministic Evaluator). If 〈e, σ 〉 �−→� 〈t1, σ1〉 and 〈e, σ 〉 �−→� 〈t2, σ2〉, then
t1 = t2 and σ1 = σ2.

Proof By Lemma B.2, every expression can be decomposed into a unique evaluation con-
text and a unique redex. For each redex, there is only one reduction rule that could apply.
Thus, evaluation is deterministic.

Fig. 14. Proof Syntax of �, �B, and �C

Fig. 15. Valid expression judgment.
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Lemma B.2 (Unique Decomposition). For all e ∈ Expr, either e ∈ Ter or there exists a
unique evaluation context E and unique redex r such that e = E[r].

Proof By induction on the structure of e.

Case e = t.
Trivial.

Case e = o ea.
Applying the inductive hypothesis to ea, it follows that either (1) ea ∈ Ter or (2) there
exists unique Ea and r such that ea = Ea[r]. For (1), ea could be a value, in which case
E =�, r = o ea. Otherwise, ea = errk

j , in which case E = o �, r = errk
j . For (2), E =

o Ea since E[r] = (o Ea)[r] = o Ea[r] = o ea = e. This decomposition is unique since
Ea is unique.

Case e = monk
j eκ ev .

Apply induction to eκ . Either (1) eκ ∈ Ter or (2) there exists a unique Eκ and r such
that eκ = Eκ [r]. For (1), there are two subcases.
Case eκ = vκ .

Apply induction to ev . If ev = v then E =�, r = monk
j vκ v = e. If ev = Ev[r] then

E = monk
j vκ Ev .

Case eκ = errk
j .

E = monk
j � ev , r = errk

j .

For (2), E = monk
j Eκ ev .

Otherwise.
The remaining cases are similar to one of the above.

C Uniform evaluator proof

The proofs in this section hold for all languages presented in Section 4.

Theorem 5.2 (Uniform evaluator). For all programs e, either evalL (e) is defined or the
reduction sequence starting with 〈e, ∅〉 is unbounded.

Proof By interleaved application of Lemma C.1 and Lemma C.2.

Lemma C.1 (Progress). If σ � e then either e ∈ Ter or 〈e, σ 〉 �−→ 〈e′, σ ′〉.
Proof By Lemma B.2 either e ∈ Ter or e = E[r]. By cases on r.

Case r = if v et ef .
Either IF-TRUE or IF-FALSE apply.

Case r = add! vα va.
Suppose vα is an address. Since σ � e, add(σ , vα , v) is defined, so ADD! applies. If vα

is not an address then ERR-ADD! applies.
Case r = monk

j vκ v.
By cases on vκ .
Case vκ /∈ Con.

ERR-MON applies.
Case vκ = b.

Either MON-TRUE or MON-FALSE applies.
Case vκ = λx.e.

MON-FLAT applies.
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Case vκ = vd →i vc.
MON-FUN applies.

Case vκ = tr vb vp.
MON-TRACE applies.

Case vκ = co α vp.
MON-COL applies.

Otherwise.
The remaining cases are similar to one of the above.

Lemma C.2 (Preservation). If σ � e and 〈e, σ 〉 �−→ 〈e′, σ ′〉 then σ ′ � e′.

Proof By cases on the reduction relation.

Case 〈E[if v et ef ], σ 〉 �−→ 〈E[et], σ 〉, v = false.
Since σ � if v et ef it must be that σ � et.

Case 〈E[(λx.eb) v], σ 〉 �−→ 〈E[eb[v/x]], σ 〉.
This follows from Lemma C.3.

Case 〈E[add! α v], σ 〉 �−→ 〈E[α], add(σ , α, v)〉.
This follows from Lemma C.4.

Case 〈E[monk
j (tr vb vp) v], σ 〉 �−→ 〈E[monk

j (vb (co α vp)) v], σ ′〉.
The contractum is closed since no new variables are introduced. A new address α is
introduced. For the expression to remain valid, σ ′ � σ ′(α) must hold which it does
since σ ′(α) = null.

Case 〈E[monk
j (co α vp) v], σ 〉 �−→ 〈E[monk

j (vp (add! α v)) v], σ 〉.
No variables are introduced, no addresses are introduced, and the store is maintained.
Therefore, the contractum remains closed with addresses still mapped to valid queues.

Otherwise.
The remaining cases are similar to one of the above.

Lemma C.3 (Substitution preservation). If σ � λx.eb and σ � v then σ � eb[v/x].

Proof By induction on eb.

Lemma C.4 (Store preservation). If σ � α and σ � v then add(σ , α, v) � α.

Proof By induction on |dom(σ )| − α.

D Evaluator equivalence proof

This section shows the equivalence of �B and �C in the absence of queue mutations. Because
no mutation occurs, the store is irrelevant to reduction calculations and is thus omitted. The
proof proceeds by a simulation argument. Figure 16 relates �B expressions and evaluation
contexts to equivalent ones in �C.

Lemma D.1 (Mutation freedom). If expression e contains no queue subexpression, then it
is mutation free.

Proof Assume to the contrary that 〈e, ∅〉 �−→� 〈e′, ∅〉 �−→ 〈e′′, σ 〉 for σ = ∅. The latter
reduction must be QUEUE because the only other store-manipulating rule, ADD!, presup-
poses a non-empty store. However, this is a contradiction since QUEUE only applies if the
initial program e contains a queue subexpression.
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Fig. 16. Expression and evaluation context simulation relation.

Theorem 5.3 (Evaluator equivalence). For all mutation-free programs e, eval�B (e) =
eval�C (e).

Note. By design, trace contracts use mutation and the existing behavior of dependent
function contracts is inappropriate for this case. Conversely, queue-mutating programs are
excluded because it is the purpose of �C to specify a behavior for →i that is appropriate
when contracts perform mutation.

Proof There are two directions to prove. First, that eval�B ⊆ eval�C on the restricted domain
of mutation-free expressions. By cases on eval�B (e).

Case eval�B (e) = b.
Thus e �−→�

�B
b. Because e ∼ e, Lemma D.2 yields e �−→�

�C
bf and there exists b̃ such

that bf �obs b̃ and b ∼ b̃. Observational equivalence and the simulation both preserve
Booleans, therefore bf = b̃ = b. Hence, e �−→�

�C
b and eval�C (e) = b.

Case eval�B (e) = opaque.
Similar to the prior case since preserving Booleans also implies preserving non-
Booleaness.

The inverse direction states that eval�C ⊆ eval�B . There is only one interesting case,
namely showing that the situation where e �−→�

�C
t but eval�B (e) is undefined is impossible.

Assume the contrary. Using Lemma D.3 yields a contradiction. By Theorem 5.2, the
reduction sequence in �B is unbounded. Let e �−→�

�B
e′ and e �−→�

�C
ẽ′ where e′ ∼ ẽ′ are the

last pair of expressions related under ∼. This choice is possible since the reduction sequence
in �C is finite. Because e′ can take a step, Lemma D.3 applies and generates a later pair of
related expressions, contradicting the choice of e′ ∼ ẽ′.

Lemma D.2 (Transitive simulation). Let e be mutation free. If e �−→�
�B

t and e ∼ ẽ, then
there exists tf and t̃ such that ẽ �−→�

�C
tf , tf �obs t̃, and t ∼ t̃.

Proof By induction on the number of steps n in e �−→�
�B

t.

Case n = 0.
Trivial.
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Case n > 0.
By Lemma D.3, e �−→+

�B
e′′, ẽ �−→+

�C
ei, ei �obs ẽ′′, and e′′ ∼ ẽ′′. From Lemma B.1,

e′′ �−→�
�B

t. Applying the inductive hypothesis yields ẽ′′ �−→�
�C

ti where ti �obs t̃ and
t ∼ t̃. In summary, ẽ �−→+

�C
ei �obs ẽ′′ �−→�

�C
ti �obs t̃, which suffices.

Lemma D.3 (Simulation). Let e be mutation free and e ∼ ẽ. If e �−→�B e′, then there exists
e′′, ei, ẽ′′ such that e �−→+

�B
e′′, ẽ �−→+

�C
ei, ei �obs ẽ′′, and e′′ ∼ ẽ′′.

Proof By cases on e �−→�B e′. Each case relies on Lemma D.4 followed by Lemma D.5.

Case E[if v et ef ] �−→ E[et], v = false.
Let ẽ = Ẽ[if ṽ ẽt ẽf ]. The simulation preserves non-Booleans, so ṽ = false. Thus,
Ẽ[if ṽ ẽt ẽf ] �−→ Ẽ[ẽt].

Case E[(λx.let xj ) v] �−→ E[let xj ].
This reduction implies that Ẽ[(λx.let xg ) ṽ] �−→ Ẽ[ei] where

ei = let xg = monl
j ṽd ṽ in

let xj = xg · j in
let xk = xg · k in

monk,l
j (ṽc xj) (̃v xk).

Because e is mutation free, ei �obs ẽ′ where

ẽ′ = let xj = (monl
j ṽd ṽ) · j in

let xk = (monl
j ṽd ṽ) · k in

monk,l
j (ṽc xj) (̃v xk).

Thus, Ẽ[ei] �obs Ẽ[ẽ′]. Note that e′ ∼ ẽ′, therefore E[let xj ] ∼ Ẽ[ẽ′].
Case E[let xj = vj in ] �−→ E[let xk = ek in ].

Ẽ[let xj = ṽj in ] �−→ Ẽ[let xk = ẽk in ]

Case E[let xk = vk in ] �−→ E[monk,l
j (vc vj) (v vk)].

Ẽ[let xk = ṽk in ] �−→ Ẽ[monk,l
j (ṽc ṽj) (̃v ṽk)]

Case E[monk,l
j true v] �−→ E[v].

Ẽ[(monk,l
j true ṽ) · l] �−→ Ẽ[(grdk,l

j true ṽ) · l] �−→ Ẽ[̃v]

Case E[monk,l
j false v] �−→ E[errk

j ].

Ẽ[(monk,l
j false ṽ) · l] �−→ Ẽ[errk

j · l] �obs Ẽ[errk
j ]

Case E[monk,l
j (λx.e) v] �−→ E[monk,l

j ((λx.e) v) v].

Ẽ[(monk,l
j (λx.̃e) ṽ) · l] �−→ Ẽ[(monk,l

j ((λx.̃e) ṽ) ṽ) · l]

Case E[monk,l
j (vd →i vc) v] �−→ E[λx.let xj ].

Ẽ[(monk,l
j (ṽd →i ṽc) ṽ) · l] �−→ Ẽ[(grdk,l

j (ṽd →i ṽc) ṽ) · l] �−→ Ẽ[λx.let xg ]

Otherwise.
The remaining cases are similar to one of the above or are standard.

https://doi.org/10.1017/S0956796823000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000096


42 C. Moy and M. Felleisen

Fig. 17. Expression and evaluation context compiler.

Lemma D.4 (Simulation decomposition). If e ∼ ẽ and e = E[es], then exists Ẽ and ẽs such
that ẽ = Ẽ[ẽs] where E ∼ Ẽ and es ∼ ẽs.

Proof By induction on e ∼ ẽ.

Lemma D.5 (Simulation composition). If E ∼ Ẽ and e ∼ ẽ, then E[e] ∼ Ẽ[̃e].

Proof By induction on E ∼ Ẽ.

E Compiler correctness proof

This section proves that the compiler is correct. Like Appendix D, the proof follows from
a simulation argument. However, the simulation relation is the compiler function C itself
extended to the evaluation syntax. Since the evaluation syntax contains collectors, C defines
the compilation of collectors following the description in Section 6.1. Figure 17 defines the
relevant extension of C .

Theorem 6.1 (Compiler correctness). eval�T = eval�C ◦ C

Proof Similar to the proof of Theorem 5.3. Let e ∈ �T . It suffices to show that if σ �
e and 〈e, σ 〉 �−→ 〈e′, σ ′〉, then there exists e′′ and σ ′′ such that 〈e, σ 〉 �−→� 〈e′′, σ ′′〉 and
〈C (e), C ◦ σ 〉 �−→� 〈C (e′′), C ◦ σ ′′〉. By cases on 〈e, σ 〉 �−→ 〈e′, σ ′〉.
Case 〈E[monk

j (tr vb vp) v], σ 〉 �−→ 〈E[monk
j (vb (co α vp)) v], σ [α �→ null]〉.

The compiled reduction sequence mirrors this step:

〈C (E[monk
j (tr vb vp) v]), C ◦ σ 〉

= 〈C (E)[monk
j C (tr vb vp) C (v)], C ◦ σ 〉

= 〈C (E)[monk
j (let xb = C (vb) in
let xp = C (vp) in
λ_.let xα ) C (v)], C ◦ σ 〉

�−→+ 〈C (E)[monk
j (let xα = queue in

C (vb) C (coC (vp) xα)) C (v)], C ◦ σ 〉
�−→+ 〈monk

j C (vb) C (co α C (vp)) C (v), C ◦ σ ′〉
Case 〈E[monk

j (co α vp) v], σ 〉 �−→ 〈E[monk
j (vp (add! α v)) v], σ 〉.

〈C (E[monk
j (co α vp) v]), C ◦ σ 〉

= 〈C (E)[monk
j C (co α vp) C (v)], C ◦ σ 〉

= 〈C (E)[monk
j (λy. ) C (v)], C ◦ σ 〉

�−→+ 〈C (E)[monk
j (C (vp) (add! α C (v))) C (v)], C ◦ σ 〉
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Otherwise.
The remaining cases are straightforward.

The inverse direction follows from an argument similar to the one made in the proof of
Theorem 5.3.

Lemma E.1 (Simulation decomposition). C (E[e]) = C (E)[C (e)]

Proof By induction on E.

F Trace contracts for

The following items describe the properties that racket/draw12 either maintains through
defensive-programming checks or documents but does not check:

1. A call to get-data-from-file must return false unless the bitmap is created with
save-data-from-file and the image is loaded successfully.

2. The load-file method of bitmap% cannot be called with bitmaps created by
make-platform-bitmap, make-screen-bitmap, or make-bitmap in canvas%.

3. The methods get-text-extent, get-char-height, and get-char-width can be
called before a bitmap is installed. All others must be called after a bitmap is installed.

4. The method set-argb-pixels cannot be called if the given bitmap is produced by
make-screen-bitmap or make-bitmap in canvas%.

5. A bitmap can be installed into at most one bitmap DC and only when it is not used by
a control (as a label), a pen%, or a brush%.

6. A brush cannot be modified while it is installed into a DCt.
7. A brush cannot be modified if it is obtained from a brush-list%.
8. A color cannot be modified if it is created by passing a string to make-object or by

retrieving a color from the color database.
9. The methods start-doc, start-page, end-page, and end-doc from dc<%> must

be called in the correct order.
10. Some methods of dc-path% extend an open sub-path, some close an open sub-path,

and some add closed sub-paths to an existing path. Those must all be kept consistent,
e.g., if a method can only extend an open sub-path, then it cannot be called on an
object where no sub-path is open.

11. A pen cannot be modified if it is obtained from a pen-list%.
12. A pen cannot be modified while it is installed into a DC.
13. If as-eps is set in a post-script-dc% object, then only one page can be created.
14. The is-empty? method of region% can only be called when associated with a DCt.
15. There are no restrictions on the sequence of start-doc, start-page, end-page,

and end-doc for record-dc%.

The revision of racket/draw enforces all of these properties with trace contracts.

12 https://docs.racket-lang.org/draw/
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