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Exact probabilistic inference is a requirement for many applications of probabilistic programming languages

(PPLs) such as in high-consequence settings or verification. However, designing and implementing a PPL with

scalable high-performance exact inference is difficult: exact inference engines, much like SAT solvers, are

intricate low-level programs that are hard to implement. Due to this implementation challenge, PPLs that

support scalable exact inference are restrictive and lack many features of general-purpose languages.

This paper presents Roulette, the first discrete probabilistic programming language that combines high-

performance exact inference with general-purpose language features. Roulette supports a significant subset of

Racket, including data structures, first-class functions, surely-terminating recursion, mutable state, modules,

and macros, along with probabilistic features such as finitely supported discrete random variables, conditioning,

and top-level inference. The key insight is that there is a close connection between exact probabilistic inference

and the symbolic evaluation strategy of Rosette. Building on this connection, Roulette generalizes and extends

the Rosette solver-aided programming system to reason about probabilistic rather than symbolic quantities.

We prove Roulette sound by generalizing a proof of correctness for Rosette to handle probabilities, and

demonstrate its scalability and expressivity on a number of examples.
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1 Efficient Inference With Improved Expressivity
There are many applications of probabilistic programming languages (PPLs) that require or benefit

from deterministic exact answers to probabilistic inference queries. In some kinds of verifica-

tion, such as verified differential privacy [2, 41], it is critical that probabilistic inference be exact

because even a small probability of error can be catastrophic. Even when approximations are

permissible, exact inference is often useful as a subroutine for scaling approximate inference using

Rao-Blackwellization [37].
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Unfortunately, implementing PPLs that support scalable high-performance exact inference

is difficult today and requires great care and expertise. Inference is the task of computing the

probability that a probabilistic program evaluates to a particular value, and is #P-hard even for

restricted languages (e.g., straight-line programs with only if-statements and Boolean random

variables [29, 53]). Consequently, state-of-the-art exact inference algorithms walk the fine line of

computational intractability. Much like SAT solvers, they rely on careful heuristics and performance

tricks to maximize performance at the edge of worst-case hardness. This makes them delicate and

error-prone programs—not something one wants to implement twice.

The consequence of this difficulty is that today’s languages that support exact probabilistic

inference are either (1) small purpose-built languages that support only a limited subset of language

features, or (2) expressive but lag behind the performance of state-of-the-art approaches that target

more restricted languages. In the first category are languages such as Dice [5, 21, 29], ProbLog [17],

and SPPL [55]: these languages are quite restrictive and omit most high-level features (e.g., recursion

and mutable state), but in exchange can use high-performance exact inference algorithms. In the

second category are languages such as PSI [23, 24] and Hakaru [38]: these languages are more

expressive and support many language features (e.g., continuous random variables), but their

performance lags behind the more restricted languages when they are evaluated on head-to-head

benchmark problems [23, 29].

Our aim is to narrow the exact inference performance gap between expressive PPLs and restricted

PPLs. Towards this goal, we present Roulette, the first discrete PPL that supports high-performance

exact probabilistic inference and the essential features of a general-purpose language. Specifically,

Roulette is a PPL with finitely supported discrete random variables, Bayesian conditioning, and a

significant subset of the Racket programming language [18], including its data structures, standard

library, and macro system. Roulette brings together two main ideas: exact inference via knowledge
compilation [7, 14, 17, 29, 56] and execution via symbolic evaluation [60, 61].

Knowledge compilation (KC) is the state-of-the-art approach for exact inference of probabilistic

graphical models and discrete probabilistic programs [7, 9, 29, 43, 56]. The heart of KC is a reduction

from probabilistic inference to weighted model counting (WMC), which is a probabilistic analogue

of the satisfiability problem: given a Boolean formula 𝜑 and weight map 𝑤 that maps literals to

real-valued weights, WMC(𝜑,𝑤) computes the cumulative weight of models of 𝜑 . Steady progress

has been made on designing and implementing scalable WMC solvers, and today these tools are

widely used within the AI and automated reasoning communities for solving discrete probabilistic

inference tasks [32, 35, 44, 45].

The key challenge with applying inference-via-KC to probabilistic program inference is the

laborious translation from programs to weighted Boolean formulae. Existing PPLs that leverage

inference-via-KC, such as Dice [29], meticulously translate each language feature into a weighted

Boolean formula and prove each translation correct. Due to the degree of manual work involved in

this translation, Dice is an impoverished language. An analogous challenge of encoding programs

into logical formulae is present in traditional symbolic execution, and herein lies a solution: the

Rosette solver-aided programming model [60, 61]. Rosette is a programming language and symbolic

evaluator within the Racket ecosystem. Rosette allows developers to write expressive high-level

Racket code enhanced with primitives for introducing and constraining symbolic values. It then

compiles programs into SMT constraints and dispatches them to an off-the-shelf SMT solver such

as Z3 [15]. The results of queries are then made available from within the language. Rosette has

proven effective in practice and has found numerous applications [10, 39, 64]: programmers can

embed a language in Rosette and immediately inherit a state-of-the-art symbolic evaluator, without

manually encoding each language construct as an SMT constraint.
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(a) The Diamond Network Visualized

(define SIZE 4)

(define (diamond data)
(if (flip 0.5) (noisy 0.01 data) (drop 0.99 data)))

(define (drop rate node)
(if (flip rate) node #false))

(define (noisy rate data)
(define bit (select (range SIZE)))
(define mask (rotate-left bit (bv 1 SIZE)))
(if (and (flip rate) data) (bvxor data mask) data))

(b) Definition of diamond

Fig. 1. Network Reliability Example

Roulette generalizes Rosette to handle finitely supported discrete random variables rather than

symbolic variables, enabling high-performance inference-via-KC for a significant subset of Racket.

The rest of this paper proceeds as follows. First, Section 2 gives a quick tour of Roulette and

demonstrates its unique expressivity by computing network analyses, performing inference on

Bayesian networks, running an interpreter for unreliable hardware, exploring laziness for geometric

distributions, and embedding a relational language. Then, Section 3 gives an informal semantics of

Roulette, explains how Roulette compiles programs to weighted Boolean formulae, and articulates

key points that differentiate Roulette from Rosette. Sections 4 and 5 give a formal semantics for

Rosette and Roulette, respectively, and prove correctness theorems for both. Section 6 empirically

evaluates the performance of Roulette on a number of benchmarks, including well-known Bayesian

networks and tasks that are traditionally challenging for exact inference. The benchmarks establish

that, when suitably optimized, Roulette is capable of competitive performance with existing state-

of-the-art exact inference strategies while being significantly more expressive. Section 7 discusses

related work and Section 8 concludes.

2 Programming in Roulette
This section presents examples that demonstrate some unique features of Roulette, a subset of

Racket augmented with discrete random variables, observation, and top-level inference. All the

usual constructs of a traditional Scheme-like functional language, including symbols, lists, recursive

functions, mutable state, standard library functions, macros, and REPL interactions, are available.

Each example is intended to showcase some of these features.

2.1 Data Structures for Network Reliability
Many important problems require exact discrete probabilistic inference. One example is network

reliability, which asks for the probability that a packet reaches some node given a network topology

and some chance of failure along the way. PPLs are useful for modeling such tasks because

one can use a probabilistic program to describe the network’s topology and randomized routing

protocols [22, 29, 57]. Then, once the network is described, the PPL can answer queries about the

network’s behavior, such as the probability that a packet successfully traverses the network with

its data intact. In this setting, exact inference is critical because failure probabilities can be small

and errors catastrophic [57].

Figure 1 gives an example encoding of a network reliability problem in Roulette. Figure 1a shows

a visualization of a small network where nodes in the graph represent routers and edges represent
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directed links between routers. Edges are annotated with the probability a packet is forwarded

along that connection, and the gray router is faulty and may corrupt the payload. Figure 1b shows

a program that models this network’s behavior, written in Roulette. The diamond function, given a

bitvector payload representing a packet, returns the payload when it reaches the end of the network

or #false if the packet is dropped. The probabilistic behavior in this program is introduced via

the (flip p) syntax, which yields a Boolean random variable that is #true with probability 𝑝 and

#false with probability 1 − 𝑝 . The diamond function forwards the packet to one of two routers

with 50% probability: the behavior of these two routers is modeled by the drop and noisy functions.
The drop function drops a packet with some probability. The noisy function forwards a packet

and potentially introduces some error in the payload by drawing a bit index uniformly between 0
and SIZE-1 (using select), masking with 1 at that index, and then computing the exclusive-or of

the given payload with probability rate. In other words, noisy randomly flips a bit of the payload

with probability rate.
Here is an example output from the program, printed using Roulette’s REPL:

> (diamond (bv #b1111 SIZE))
(pmf | #false : 0.00500 | (bv #b1111 4) : 0.99

| (bv #b0111 4) : 0.00125 | (bv #b1011 4) : 0.00125
| (bv #b1101 4) : 0.00125 | (bv #b1110 4) : 0.00125)

The above probability mass function (pmf) maps Racket values to their probabilities. The most likely

returned value for the network program is (bv #b1111 4), which denotes a successful traversal.

Note that the program is written without contortions, using ordinary language features that would

be familiar to Racket or Scheme programmers: conditionals, functions, and lists. Crucially, despite

being written in a high-level style, Roulette efficiently and exactly calculates the above PMF—even

for large networks. See Section 6 for details.

2.2 Recursion and Interoperability for Bayesian Networks
A Bayesian network is a probabilistic graphical model that represents a set of variables and the

causal relationships between them [46]. Bayesian networks are widely used probabilistic models

with well-studied inference algorithms, so theymake a good baseline for measuring the performance

of PPLs. Bayesian network nodes are random variables and directed edges indicate dependencies.

Every node is associated with a table of probabilities enumerating the probability of each possible

value, conditioned on all dependent variables. Querying a Bayesian network may, for example,

amount to computing the marginal probability of some variable.

Consider the Cancer network shown graphically in Figure 2a. There are four variables shown

as nodes: Pollution, Smoking, Cancer, X-ray, and Dyspnoea. Each variable has a directed edge to

variables that it may influence. So, lung cancer is directly influenced by whether someone smokes

and is exposed to pollution. In turn, an individual’s X-ray result and the presence of dyspnoea

(shortness of breath) are affected by lung cancer. Each variable is associated with a table that lists

the probability of every possible value conditioned on some assignment to dependent variables.

For example, there are three levels of Pollution: Low (0), Medium (1), and High (2). The table for

the Cancer variable is also shown in Figure 2a, where the first row states that the probability of

lung cancer is 0.03 conditional on low pollution and smoking.

Roulette can interpret Bayesian networks by generating categorical random variables for each

node, conditioned on all causal dependencies. The code for doing so is provided in Figure 2b. Given

an s-expression representation of a Bayesian network, the make-network function produces a hash

table that maps variables to nodes. Each node contains a random variable associated with that
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Pollution Smoking

Cancer

X-ray Dyspnoea

Pollution Smoking Cancer (True)

Low True 0.03

Low False 0.001

Medium True 0.03

Medium False 0.001

High True 0.05

High False 0.02

(a) Definition

(struct node (value size))

(define (make-network data)
(for/fold ([acc (hash)])

([elem (in-list data)])
(match-define (list name deps rows ...) elem)
(hash-set acc name (make-node acc deps rows))))

(define (make-node acc deps rows)
(match deps

[(list)
(match-define (list row) rows)
(node (categorical row) (length row))]
[(cons dep deps*)
(match-define (node var size) (hash-ref acc dep))
(define rows* (list-ref (slice-at rows size) var))
(make-node acc deps* rows*)]))

(b) Builder

Fig. 2. Bayesian Network Example

node. Exactly how make-network works is not so important, just note that the code is short and

idiomatic—using features such as recursion, hash tables, pattern matching, and for comprehensions.

The expectation function can be used to compute the expected value of a random variable

from the Bayesian network:

> (define net (make-network (read-bif)))
> (expectation (node-value (hash-ref net 'Pollution)))
0.6

First, net is defined by parsing a Bayesian network in the Bayesian Interchange Format (BIF) from

STDIN. The BIF parser is written in Racket and uses its lexing and parsing facilities—Roulette can

seamlessly interoperate with Racket so long as concrete values, and not probabilistic quantities,

cross the language boundary. For instance, an ordinary Racket function should not be applied to

(flip 0.5), but certainly can be applied to the constant value #true. Next, the expectation of a

variable is computed: given a random variable that always takes on a numeric value, expectation
computes its weighted average. Expectation is an example of top-level inference, where a program
can perform inference at any point during execution and use the result in subsequent computations.

Expectation can be combined with other probabilistic operations such as conditioning:

> (observe! (equal? (node-value (hash-ref net 'Cancer)) 1))
> (expectation (node-value (hash-ref net 'Pollution)))
0.83233. . .

Observation lies at the heart of Bayesian reasoning. In the standard Bayesian workflow, a program-

mer: (1) defines a prior probability distribution, (2) conditions on some evidence, and (3) computes

a posterior probability distribution. To accommodate this style of reasoning, PPLs often provide an

observe! construct that conditions on evidence. For a discrete language, observe! takes a value
and eliminates all worlds in which that value is #false. So, the above code calculates the expected
level of pollution given that an individual has lung cancer. Intuitively, if a patient is diagnosed

with lung cancer, then the expected amount of pollution that patient has been exposed to should

increase. This intuition is borne out by the data since 0.83233 is greater than 0.6.
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(define BIT-WIDTH 16)
(define MEMORY-SIZE 2)

(define (blank-memory)
(list->vector

(build-list MEMORY-SIZE
(𝜆 _ (bv-zero BIT-WIDTH)))))

(define (load mem a)
(define i (bv->number a))
(mem-perturb mem i)
(vector-ref mem i))

(define (store mem a v)
(define i (bv->number a))
(mem-perturb mem i)
(vector-set! mem i v)
mem)

(define (mem-perturb mem i)
(define v

(if (flip 0.0001)
(bv 0 BIT-WIDTH)
(vector-ref mem i)))

(vector-set! mem i v))

(a) Memory Model

(define ((read e) m) (load m (e m)))
(define ((int i) _) (bv i BIT-WIDTH))
(define ((add e1 e2) m) (bvadd (e1 m) (e2 m)))
(define (skip k m) m)
(define ((seq c1 c2) k m) (c2 k (c1 k m)))
(define ((asgn e1 e2) k m) (store m (e1 m) (e2 m)))
(define ((ite e c1 c2) k m)

(if (bv-nonzero? (e m)) (c1 k m) (c2 k m)))
(define ((while e c) k m)

(cond
[(= k 0) #false]
[(bv-nonzero? (e m)) ((seq c (while e c)) (- k 1) m)]
[else m]))

(b) Definitional Interpreter

(define (tri n)
(define total (int 0))
(define i (int 1))
(seq (asgn i (int n))

(while (read i)
(seq (asgn total (add (read total) (read i)))

(asgn i (add (read i) (int -1)))))))

(define (read-total m)
(if m (vector-ref m 0) #false))

(c) Test Program

Fig. 3. Unreliable Hardware Example

2.3 First-Class Functions and Mutation for Unreliable Hardware
This subsection demonstrates how higher-order functions and mutable state can be used in

tandem to analyze the behavior of imperative programs under a low-level execution model where

loads and stores from memory are unreliable. The implementation is shown in Figures 3a and 3b.

Figure 3a defines the execution model as a machine with 16-bit words and two cells of addressable

memory.
1
The memory is represented as a mutable vector of length MEMORY-SIZE, and each item in

the vector is a bitvector of length BIT-WIDTH. The functions load and storemodel loads and stores

from an unreliable memory. These functions are defined in terms of vector-ref and vector-set!,
which read from andwrite to entries of a vector, and the mem-perturb function. Using mem-perturb
introduces unreliability: every load and store from memory cell 𝑖 has a 0.0001 chance of corrupting

it, zeroing out its contents.

Figure 3b builds on this model of unreliable memory with a definitional interpreter for a simple

imperative language with arithmetic, assignment statements, conditional branching, and while

loops. Since Roulette supports higher-order functions and recursion, the interpreter is completely

standard, following the usual semantics of while programs. Arithmetic expressions are modelled

as functions that take in a memory and produce a bitvector: (read e) loads the contents of the
address denoted by e from memory, (int i) produces the two’s-complement representation of

the integer i, and (add e1 e2) adds the results produced by e1 and e2. Commands are modelled

by functions that receive a fuel parameter k and a memory m, and produce either an updated

memory or the constant #false signalling that the interpreter ran out of fuel. Augmenting an

interpreter with fuel is a standard technique for ensuring termination [42]. The functions skip and

1
Two cells suffice for the example (Figure 3c); it is easy to add more.
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seq interpret sequencing of commands, asgn interprets assignment, ite interprets branching, and

while interprets while loops.
Finally, Figure 3c uses the interpreter from Figure 3b to define a simple while program (tri n)

that computes the sum 1 + · · · + 𝑛 and stores the answer at address 0. Due to the unreliability of

memory, there is a chance (tri n) produces the wrong result. Nonetheless, since the probability
of hardware failure is small, the correct result should be computed with high probability:

> (bv->number (read-total ((tri 10) 12 (blank-memory))))
(pmf | 55 : 0.996107 | 45 : 0.000199 | . . . | #false : 0.001996)

Shown in the output is the distribution over possible values stored at address 0 after running

the program (tri 10) with twelve units of fuel. The (abbreviated) probability mass function

for this distribution looks as expected: the correct result (55) has the highest probability, some

erroneous results (e.g., 45) caused by hardware failure have small probabilities, and some execution

traces do not terminate within the amount of fuel provided. This example is challenging due to

the high-dimensional state space. Section 6 shows that Roulette significantly outperforms naive

exhaustive enumeration on these programs.

2.4 Macros and Laziness for Geometric Distributions
The geometric distribution models the number of failed Bernoulli trials before the first success. An

example of a geometric distribution involves flipping a coin repeatedly until it lands heads up for

the first time, then counting how many times the coin previously landed tails up. This experiment

can be expressed as a recursive program:

(define (geom p)
(if (flip p) 0 (+ 1 (geom p))))

Unfortunately, any program that applies geom will not surely terminate. As mentioned previously,

Roulette works only with finitely supported discrete random variables and programs that surely

terminate. At first glance, it seems geometric distributions are out of reach.

However, programmers in conventional languages can employ laziness to transform some non-

terminating programs into terminating ones. That insight is applicable here too, by leveraging the

expressiveness of Roulette. If the recursive call is placed inside a thunk, only as many levels of

recursion as needed to answer finite queries about the distribution have to be computed.

This insight implies that the expression (+ 1 (geom p)) cannot be eagerly evaluated. Instead,

lazy Peano numbers [54] can encode partially evaluated natural numbers.
2
A program can redefine

the + operator as a macro that thunks the second argument by using the delaymacro from Racket’s

promise library and then use Peano addition:

(define-syntax-rule (+ n m)
(peano-add n (delay m)))

The geom function, without modifying its source code, can now terminate under this new

definition of + (assuming a suitable implementation of Peano numerals). Well-known properties of

the geometric distribution, such as its probability mass and cumulative distribution functions, can

be computed using = and <=, respectively:

> (= (geom 0.5) 3)
(pmf | #true : 0.0625 | #false : 0.9375)
> (<= (geom 0.2) 5)
(pmf | #true : 0.7379 | #false : 0.2621)

2
Peano numerals are not an efficient representation, but there are suitable alternatives [28] that may perform better.
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(define e1 (flip 0.6))
(define e2 (flip 0.1))
(define e3 (flip 0.4))
(define e4 (flip 0.3))

(define-relation (edgeo x y)
(disj

(if e1 (== (cons x y) (cons 'A 'B)) fail)
(if e2 (== (cons x y) (cons 'A 'C)) fail)
(if e3 (== (cons x y) (cons 'B 'D)) fail)
(if e4 (== (cons x y) (cons 'C 'D)) fail)))

(a) An Example Network

> (define-relation (patho x z)
(disj

(edgeo x z)
(fresh (y)

(conj (edgeo x y)
(patho y z)))))

> (run* x (patho 'A 'D))
(pmf | (list) : 0.7372

| (list '_.0) : 0.2556
| (list '_.0 '_.0) : 0.0072)

(b) Definition and Example of patho

Fig. 4. 𝜇Kanren Example

The sum of geometric distributions has a closed form, but the product of geometric distributions

does not. Exact inference is often more challenging in situations where there is no closed form

solution. Since Roulette’s inference strategy does not rely on the existence of closed form solutions,

it can handle products just fine:

> (<= (* (geom 0.5) (geom 0.2)) 8)
(pmf | #true : 0.8572 | #false : 0.1428)

In short, non-probabilistic expressiveness can increase probabilistic expressiveness by allowing

programmers to describe non-finitely supported random variables via laziness.

2.5 Embedded Relational Programming
As shown in Section 2.3, Roulette is expressive enough to embed interpreters for other lan-

guages. Going one step further, Roulette can be turned into a probabilistic logic programming
language [16, 20, 40] by embedding a traditional logic programming language implementation.

Probabilistic logic programming mixes traditional logic programming and probabilistic program-

ming by making rules or atoms uncertain. Querying in this setting involves not only determining

whether a goal unifies but also the probability it does so. Traditionally, implementing probabilistic

logic programming languages has involved custom solutions for translating programs into a logical

formula for inference: for instance, a state-of-the-art implementation of ProbLog compiles programs

into weighted Boolean formulae for inference [17]. In Roulette, it is easy to get a probabilistic logic

programming language by embedding a non-probabilistic interpreter for a relational language.

A good candidate for such an exercise is 𝜇Kanren [26, 27]. The Scheme community has for many

years developed relational programming languages, the most well known being miniKanren [4, 19].

Relational programming differs from traditional logic programming in a few ways. For instance,

the interleaving search strategy of miniKanren differs from Prolog’s depth-first search. Another

difference, and the one most relevant here, is that miniKanren and its various flavors are often

embedded—frequently in Scheme. In particular, one small relational language called 𝜇Kanren falls

neatly within the features Roulette supports. Therefore, the implementation of 𝜇Kanren can quite

literally be copy-and-pasted into a Roulette program and run unmodified.
Consider a network reliability problem, similar to the one from Section 2.1 but without noisy

packets. Determining whether a packet successfully traverses a network requires encoding the

network as a relation on edges. Figure 4a defines a relation edgeo that succeeds if the given

nodes have an edge between them. Given two inputs, edgeo unifies if any of the goals inside the

disjunction operation disj unify. Each goal inside disj corresponds to an edge and unifies, via ==,
with the given edge probability.
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(define (search xs v)
(cond

[(empty? xs) (list)]
[(equal? (first xs) v) xs]
[else (search (rest xs) v)]))

(a) Definition

> (search 3 (list 2 3 4 3))
(list 3 4 3)

> (search 1 (list 2 3 4 3))
(list)

(b) Example

Fig. 5. The search Function

Here is an example 𝜇Kanren query evaluated using Roulette:

> (run* x (edgeo 'A x))
(pmf | (list) : 0.36 | (list 'B) : 0.54

| (list 'C) : 0.04 | (list 'B 'C) : 0.06)

The run* form returns all possible substitutions for x that unify (edgeo 'A x). Running in Roulette

yields a distribution over substitutions. Note how this example freely mixes features of Roulette

with 𝜇Kanren: first, it uses Roulette’s built-in flip construct to introduce random variables. Then,

it uses 𝜇Kanren’s built-in define-relation construct to relate these random variables and run*
to query them as normal. From the perspective of the embedded 𝜇Kanren implementation, it is as

if the edge variables are regular Racket Booleans.

Continuing with the example in Figure 4b, reachability is defined to be the transitive closure

of edgeo, and then run* is used to determine the probability that two nodes are reachable. Here,

(patho x z) unifies if either there is an edge between x and z or there is some intermediate node y
connecting x to z. Defining this second goal involves two 𝜇Kanren forms: fresh, which generates a

new logic variable, and conj, which unifies if all its goals do too. The results contain '_.0 because

the logic variable x remains unconstrained after the goal unifies. There are three substitutions in

the final distribution: the empty list (unreachable), the singleton list (only one path from A to D),

and the two-element list (two paths from A to D). So, node A reaches node D with probability

0.2556 + 0.0072 = 0.2628.

This example is not intended to demonstrate that embedding 𝜇Kanren yields a state-of-the-art

probabilistic logic programming language. The 𝜇Kanren implementation is fewer than 40 lines of

code and is intended for pedagogic purposes. There should be no expectation that this implementa-

tion competes with a specialized compiler. However, it does showcase Roulette’s expressivity and

suggests further experimentation with high-performance miniKanren compilers [1].

3 How Roulette Performs Scalable Inference, by Example
Roulette derives its expressivity from Rosette’s symbolic semantics and its performance from a

weighted model counting backend based on binary decision diagrams (BDDs), similar to Dice [29].

This section informally summarizes (1) how Rosette symbolically evaluates programs into formulae,

and then (2) how Roulette adapts Rosette to generate weighted Boolean formulae for inference.

3.1 How Rosette Efficiently Symbolically Evaluates Racket Programs
Consider the Racket definition of search in Figure 5a. Given a list and an element to look for,

search returns either a suffix of the input list starting with the desired element or an empty list

if the element is not present. An example REPL interaction is given in Figure 5b. Rosette can

symbolically evaluate this program to check that it satisfies various correctness properties: for

instance, Rosette can verify that for an input list of length 𝑛, search always returns another list of

length at most 𝑛.
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> (define-symbolic x0 integer?)
> (define-symbolic x1 integer?)
> (define-symbolic x2 integer?)
> (define result (search (list x0 x1) x2))
(union

[𝑥0 = 𝑥2 (list x0 x1)]
[𝑥0 ≠ 𝑥2 ∧ 𝑥1 = 𝑥2 (list x1)]
[𝑥0 ≠ 𝑥2 ∧ 𝑥1 ≠ 𝑥2 (list)])

> (verify (assert (<= (length result) 2)))
(unsat)

> (verify (assert (< (length result) 2)))
(model [𝑥0 0] [𝑥1 1] [𝑥2 0])

(a) REPL Example

(search (list x0 x1) x2)
𝑥0 = 𝑥2 : (list x0 x1)
𝑥0 ≠ 𝑥2 ∧ 𝑥1 = 𝑥2 : (list x1)
𝑥0 ≠ 𝑥2 ∧ 𝑥1 ≠ 𝑥2 : (list)

(list x0 x1)

𝑥0 = 𝑥2

(search (list x1) x2)
𝑥1 = 𝑥2 : (list x1)
𝑥1 ≠ 𝑥2 : (list)

(list x1)

𝑥1 = 𝑥2

(list)

𝑥1 ≠ 𝑥2

𝑥0 ≠ 𝑥2

(b) Visualizing the Symbolic Union

Fig. 6. Verification of search in Rosette

Figure 6a shows how Rosette verifies this fact for lists of length 2. First, three fresh symbolic

integers are created using the Rosette form define-symbolic. Next, search is called using these

symbolic integers as arguments. The value returned by search, stored in result, is a symbolic
union that represents all possible behaviors of search on the given inputs. Symbolic unions are

sequences of formula–value pairs representing possible values and the conditions under which

each value is produced. The result symbolic union in this example is a list where each element

captures one of the three possible symbolic return values of the search program. For example, for

the first element, if the guard 𝑥0 = 𝑥2 is true, then search evaluates to (list x0 x1).
One can now check that search does not return a list that is longer than its input list by calling

verify with the assertion that the length of the result is less than or equal to 2. Rosette outputs

(unsat), meaning that no counterexample to this assertion was found. If <= is changed to < instead,
then the program outputs a model describing instantiations of the symbolic variables that produce

a counterexample.

Rosette is designed to efficiently generate symbolic unions without suffering from path explosion.

This process is visualized in Figure 6b, which gives an abstract view of how the symbolic union

placed in result is calculated. If the guard of a cond depends on a symbolic value, Rosette executes

both branches. For example, in (search (list x0 x1) x2) the first such guard is (equal?
(first xs) v) which can be either true or false depending on the instantiation of the symbolic

values 𝑥0 and 𝑥2. Thus, both branches are executed, and the results are merged. Symbolic unions

are merged by conjoining the guard formula to each component of the union. Merging avoids

the path explosion that is common in traditional symbolic execution. By exploiting the logical

structure present in the symbolic unions, Rosette can scale to programs with many paths. Often,

the bottleneck is the SMT solver rather than Rosette itself [10, 60]. For this example, the formula

𝑥0 = 𝑥2 is conjoined in the success branch, and 𝑥0 ≠ 𝑥2 is conjoined in the failure branch.

Rosette’s symbolic evaluation strategy is able to directly reuse host language functions, such

as length, by lifting functions to work over symbolic unions. Roughly speaking, lifting involves

mapping the operation over all elements of the union. Only primitive operations on symbolic

values, such as equal?, must be modified to encode formulae. As such, most language features

from the host, i.e. Racket, are automatically available.
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3.2 How Roulette Generalizes Rosette to Probabilities
Getting Rosette to perform probabilistic inference requires two additional steps: (1) convert formulae

to a representation that is appropriate for an external inference engine based on weighted model

counting and (2) query the engine for probabilities. Roulette extends Rosette with an infer function
that takes a symbolic value and returns a PMF mapping concrete values to probabilities. Rosette’s

existing compilation pipeline can otherwise stay exactly the same. Hence, Roulette benefits from the

significant engineering effort put into Rosette’s formula simplification and related optimizations.

The following is an example Roulette program that looks quite similar to the Rosette example in

Figure 6a, but makes use of probabilistic rather than symbolic quantities:

> (define-symbolic x0 (bern 0.5))
> (define-symbolic x1 (bern 0.5))
> (define result (+ (if x0 2 3) (if x1 3 4)))
(union [𝑥0 ∧ 𝑥1 5] [(¬𝑥0 ∧ 𝑥1) ∨ (𝑥0 ∧ ¬𝑥1) 6] [¬𝑥0 ∧ ¬𝑥1 7])

> (infer result)
(pmf | 5 : 0.25 | 6 : 0.50 | 7 : 0.25)

First, two symbolic Booleans are created and associated with a probability distribution. Here, x0
and x1 are fair and independent coin flips. Next, the integer result is formed depending on the

outcome of these two coin flips. Notice that the result symbolic union is exactly the same as

it would be in Rosette if x0 and x1 were ordinary symbolic Booleans. Finally, infer is given

result, and the PMF is displayed in tabular format. The examples in Section 2 work with more

high-level language constructs than define-symbolic; these are desugared away using Racket

macros, described further in Appendix A. To evaluate infer, Roulette computes the probability

that the guard of each symbolic union is true. For example, the probability that result evaluates to
5 is given by the probability that 𝑥0 ∧ 𝑥1 is true, where 𝑥0 and 𝑥1 are independent Bernoulli random

variables that are each true with probability 0.5. The correct answer is 0.25, which is indeed the

probability printed in the REPL that corresponds to this outcome.

Roulette performs weighted model counting to calculate probabilities. So, to compute the

probability that result evaluates to 6 in the above example, one must compute the probabil-

ity that the symbolic union guard 𝜑 = (¬𝑥0 ∧ 𝑥1) ∨ (𝑥0 ∧ ¬𝑥1) is true. Given a weight map

𝑤 (𝑥0) =𝑤 (¬𝑥0) =𝑤 (𝑥1) =𝑤 (¬𝑥1), the following holds:

Pr(𝜑) = WMC(𝜑,𝑤) =𝑤 (¬𝑥0)𝑤 (𝑥1) +𝑤 (𝑥0)𝑤 (¬𝑥1) = 0.5,

𝑥00.5

𝑥1 𝑥10.5 0.5

T F1 0

Fig. 7. Example BDD

which matches the probability in the above PMF. Efficiently computing this

weighted model count relies on knowledge compilation: these Boolean formu-

lae are compiled into binary decision diagrams, which admit a straightforward

linear-time weighted model counting procedure using dynamic program-

ming. Figure 7 shows the BDD that represents the formula 𝜑 . Each node

is annotated with a Boolean variable. Solid edges denote true assignments,

and dashed edges denote false assignments. The WMC is computed using a

single bottom-up pass where each node is annotated with its weighted model

count. The WMC at each node is computed as the weighted sum of the WMC of

its children. For instance, the WMC at node 𝑥0 is computed as 0.5 × 0.5 + 0.5 × 0.5. It is well known

that BDDs exploit program structure and, in practice, can scale to large probabilistic inference

tasks [17, 29].
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4 Rosette: Formal Semantics
Section 5 gives a proof that Roulette’s probabilistic adaptation of Rosette’s symbolic evaluation

strategy correctly implements probabilistic inference. Stating this correctness property first requires

a formal model of Rosette-style symbolic evaluation to build upon. However, no existing formalism

of Rosette contains a description of its symbolic evaluation strategy that is complete enough to

serve as a foundation for Roulette’s correctness theorem. Torlak and Bodík [61] give only sketches

of an operational semantics and correctness proof. Porncharoenwase et al. [51] give a mechanized

semantics, but it does not account for programs that dynamically generate symbolic variables or

mutable references.

This section presents a model of Rosette that differs from prior work in a few ways. On the

one hand, it supports dynamically generated symbolic values and mutable references, and the

main theorem establishes correctness of Rosette-style symbolic evaluation in the presence of these

features. On the other hand, it has a coarse-grained model of symbolic values and state-merging, and

does not account for other features of Rosette such as assume statements and queries to the solver.

This tradeoff is sensible given that the precise implementation details of symbolic state-merging and

other solver-aided features of Rosette are not as relevant for Roulette, while dynamically generated

symbolic values and mutable references are crucial for explaining the correctness of Roulette on

the examples in Section 2.

The structure of this section parallels prior formalisms of Rosette. Section 4.1 presents a Scheme-

like 𝜆-calculus of idealized Rosette programs. We then give two operational semantics for it: a

concrete semantics that defines standard call-by-value evaluation (Section 4.2) and an abstract
semantics that defines the behavior of the symbolic evaluator (Section 4.3). Correctness of symbolic

evaluation boils down to a soundness and completeness theorem linking these two semantics

(Theorem 4.1). Soundness states that every concrete outcome of a given program is covered by its

abstract semantics, and completeness states that every possible outcome covered by the abstract

semantics of a program is reachable by concrete execution.

4.1 Syntax of Idealized Rosette
Figure 8 contains the syntax of idealized Rosette. On the left is the surface syntax, i.e., the syntax

a programmer would write down. On the right is the evaluation syntax, i.e., the syntax needed

solely to define an evaluation function. Idealized Rosette supports many standard features from

functional languages: 𝜆-expressions, conditionals, ML-style mutable references, pairs, arithmetic

operations, and errors (fail).
There is one feature unique to symbolic evaluation: sym, a language form that models Rosette’s

define-symbolic*. This language form is treated differently in the concrete and abstract semantics.

In the concrete semantics, programs are run with an infinite stream of Booleans that supplies a

concrete Boolean in place of each sym. This is similar to the semantics of random for a pseudorandom
number generator, where the return value comes from some infinite sequence of random numbers

determined by a seed. In the abstract semantics, programs are not run with a stream but are instead

lifted to operate on symbolic values, and sym generates a fresh symbolic value of Boolean type.

4.2 Concrete Semantics of Idealized Rosette
Figure 9 displays the environment-based natural semantics [31] for concrete execution. In addition

to the usual environment 𝜌 and store 𝜎 , the evaluation judgment also includes a stream 𝑠 . The first

element of 𝑠 is used to evaluate sym expressions via the rules SymTrue and SymFalse. The remaining

rules define a standard call-by-value semantics that additionally threads the stream throughout.

Selected rules are shown in Figure 9. When encountering a syntactic form with two subexpressions
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Surface Syntax

𝑒 ∈ ExprF 𝑥 | let 𝑥 = 𝑒 in 𝑒 | 𝜆𝑥.𝑒 | 𝑥 𝑦

| 𝑏 | if 𝑥 𝑒 𝑒 | 𝑟 | 𝑥 + 𝑦 | 𝑥 − 𝑦 | 𝑥 × 𝑦

| ( ) | (𝑥, 𝑦) | fst𝑥 | snd𝑥
| ref𝑥 | !𝑦 | 𝑥 ≔ 𝑦 | sym | fail

𝑏 ∈ BoolF true | false
𝑟 ∈ Num ≔ Q

𝑥, 𝑦 ∈ Var

Evaluation Syntax

𝑣, 𝑤 ∈ ValF 𝑏 | 𝑟 | ( ) | (𝑣, 𝑤 ) | 𝑐 | ℓ
𝑐 ∈ ClosureF clo(𝜆𝑥.𝑒, 𝜌 )

𝜌 ∈ Env ≔ Var ⇀
fin

Val

𝜎 ∈ Store ≔ Loc ⇀
fin

Val

𝑠 ∈ Stream ≔ N → B where B = {T, F}
ℓ ∈ Loc

Fig. 8. Syntax of Idealized Rosette

𝜌, 𝑠 ⊢ (𝑒, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )

Let

𝑠 { 𝑠1, 𝑠2 𝜌, 𝑠1 ⊢ (𝑒1, 𝜎 ) ⇓ (𝑣1, 𝜎1 )
𝜌 [𝑥 ↦→ 𝑣1 ], 𝑠2 ⊢ (𝑒2, 𝜎1 ) ⇓ (𝑣2, 𝜎2 )

𝜌, 𝑠 ⊢ (let 𝑥 = 𝑒1 in 𝑒2, 𝜎 ) ⇓ (𝑣2, 𝜎2 )

App

𝜌 (𝑥 ) = clo(𝜆𝑥 ′. 𝑒′, 𝜌 ′ )
𝜌 ′ [𝑥 ′ ↦→ 𝜌 (𝑦) ], 𝑠 ⊢ (𝑒′, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )

𝜌, 𝑠 ⊢ (𝑥 𝑦, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )

Ref

ℓ ∉ locs(𝜌, 𝜎 )
𝜌, 𝑠 ⊢ (ref𝑥, 𝜎 ) ⇓ (ℓ, 𝜎 [ℓ ↦→ 𝜌 (𝑥 ) ] )

Set

𝜌 (𝑥 ) ∈ dom(𝜎 )
𝜌, 𝑠 ⊢ (𝑥 ≔ 𝑦, 𝜎 ) ⇓ ( (), 𝜎 [𝜌 (𝑥 ) ↦→ 𝜌 (𝑦) ] )

Get

𝜌 (𝑥 ) ∈ dom(𝜎 )
𝜌, 𝑠 ⊢ (!𝑥, 𝜎 ) ⇓ (𝜎 (𝜌 (𝑥 ) ), 𝜎 )

SymTrue

𝜌, T :: 𝑠 ⊢ (sym, 𝜎 ) ⇓ (true, 𝜎 )

SymFalse

𝜌, F :: 𝑠 ⊢ (sym, 𝜎 ) ⇓ (false, 𝜎 )

Fig. 9. Concrete Semantics of Idealized Rosette (Selected Rules)

(e.g., let), the stream is split into two independent pieces via the judgment 𝑠 { 𝑠1, 𝑠2, which holds

if and only if 𝑠1 contains the even-indexed elements of 𝑠 and 𝑠2 contains the odd-indexed elements.

Note that there is no rule for fail, so all traces that encounter fail are pruned from the concrete

execution. The remaining rules are standard; for details, see Appendix B.

4.3 Abstract Semantics of Idealized Rosette
Defining the abstract semantics of Rosette involves lifting all the evaluation syntax to its symbolic

counterpart. For example, values 𝑣 are lifted to symbolic values �̂� . Specifying this lifting requires
notions of symbolic variables, symbolic propositions, and symbolic unions.

A symbolic variable is a Boolean variable that gives meaning to symbolic values generated by

sym. Unlike ordinary Booleans, a symbolic variable can stand in for either T or F. Assuming the

existence of an infinite supply of symbolic variables 𝛼, 𝛽, · · · ∈ SymVar, a model is an assignment

of Boolean values to each symbolic variable. LetModel = SymVar → B be the set of models. For

any set of symbolic variables 𝑆 , letModel𝑆 = 𝑆 → B be the set of models over the variables in 𝑆 .

Symbolic execution allocates a finite set of symbolic variables 𝑆 and produces a symbolic value,
which is a functionModel𝑆 → Val. More generally, the symbolic elements of type 𝐴, written 𝐴, is

the set of functionsModel → 𝐴⊥ where 𝐴⊥ = 𝐴 ⊎ {⊥}. For example, symbolic environments are

written 𝜌 ∈ Ênv. The support of a symbolic element 𝑎 ∈ 𝐴, denoted symvars(𝑎), is the smallest

subset 𝑆 of SymVar such that 𝑎 restricted to the domainModel
symvars(𝑎) is equivalent to 𝑎.
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𝜌 ⊢ (𝑒, 𝜎 ) ⇚ (�̂�, 𝜎 ′,𝜓 )
Let

𝜌 ⊢ (𝑒1, 𝜎 ) ⇚ (�̂�1, 𝜎1,𝜓1 )
𝜌 [𝑥 ↦→ �̂�1 ] ⊢ (𝑒2, 𝜎1 ) ⇚ (�̂�2, 𝜎2,𝜓2 )

𝜌 ⊢ (let 𝑥 = 𝑒1 in 𝑒2, 𝜎 ) ⇚ ( [𝜓1 : �̂�2 ], [𝜓1 : 𝜎2 ],𝜓1 ∧𝜓2 )

App

𝜌 (𝑥 ) = [𝜑𝑖 : clo(𝜆𝑥𝑖 .𝑒𝑖 , 𝜌𝑖 ) ]𝑖∈𝐼 ⊎Closure
�̂�

∀𝑖 ∈ 𝐼 . 𝜌𝑖 [𝑥𝑖 ↦→ 𝜌 (𝑦) ] ⊢ (𝑒𝑖 , 𝜎 ) ⇚ (�̂�𝑖 , 𝜎𝑖 ,𝜓𝑖 )
𝜌 ⊢ (𝑥 𝑦, 𝜎 ) ⇚ ( [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 , [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 ,

∨
𝑖 (𝜑𝑖 ∧𝜓𝑖 ) )

If

𝜌 (𝑥 ) = [𝜑1 : true, 𝜑2 : false] ⊎Bool
�̂� 𝜌 ⊢ (𝑒1, 𝜎 ) ⇚ (�̂�1, 𝜎1,𝜓1 ) 𝜌 ⊢ (𝑒2, 𝜎 ) ⇚ (�̂�2, 𝜎2,𝜓2 )

𝜌 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎 ) ⇚ ( [𝜑1 : �̂�1, 𝜑2 : �̂�2 ], [𝜑1 : 𝜎1, 𝜑2 : 𝜎2 ], (𝜑1 ∧𝜓1 ) ∨ (𝜑2 ∧𝜓2 ) )

Fail

𝜌 ⊢ (fail, 𝜎 ) ⇚ (∅,∅, F)

Ref

ℓ smallest not in locs(𝜌, 𝜎 )
𝜌 ⊢ (ref𝑥, 𝜎 ) ⇚ ( [T : ℓ ], 𝜎 [ℓ ↦→ 𝜌 (𝑥 ) ], T)

Get

𝜌 (𝑥 ) = [𝜑𝑖 : ℓ𝑖 ]𝑖∈𝐼 ⊎Loc �̂�

𝜌 ⊢ (!𝑥, 𝜎 ) ⇚ ( [𝜑𝑖 : 𝜎 (ℓ𝑖 ) ]𝑖∈𝐼 , 𝜎,
∨

𝑖 𝜑𝑖 )

Set

𝜌 (𝑥 ) = [𝜑𝑖 : ℓ𝑖 ]𝑖∈𝐼 ⊎Loc �̂�

𝜌 ⊢ (𝑥 ≔ 𝑦, 𝜎 ) ⇚ ( [ (
∨

𝑖 𝜑𝑖 ) : ( ) ], [𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦) ] ]𝑖∈𝐼 ,
∨

𝑖 𝜑𝑖 )

Sym

𝛼 smallest not in symvars(𝜌, 𝜎 )
𝜌 ⊢ (sym, 𝜎 ) ⇚ ( [𝛼 : true,¬𝛼 : false], 𝜎, T)

Fig. 10. Abstract Semantics of Idealized Rosette (Selected Rules)

A symbolic proposition is an element of the set 𝜑,𝜓 ∈ Model → B. Two symbolic propositions

𝜑,𝜓 are disjoint if and only if 𝜑 (𝑚) ∧ 𝜓 (𝑚) = F for all 𝑚 ∈ Model. For a finite family (𝜑𝑖 )𝑖∈𝐼
of pairwise-disjoint symbolic propositions and a finite family of symbolic elements (𝑎𝑖 )𝑖∈𝐼 , their
symbolic union [𝜑𝑖 : 𝑎𝑖 ]𝑖∈𝐼 ∈ 𝐴 is the symbolic proposition defined by ( [𝜑𝑖 : 𝑎𝑖 ]𝑖∈𝐼 ) (𝑚) = 𝑎𝑖 (𝑚)
when 𝜑𝑖 (𝑚) = T for some 𝑖 ∈ 𝐼 , and ( [𝜑𝑖 : 𝑎𝑖 ]𝑖∈𝐼 ) (𝑚) = ⊥ when 𝜑𝑖 (𝑚) = F for all 𝑖 ∈ 𝐼 .

Symbolic unions are functions out of the space of models, so symbolic quantities are automatically

equal up to “nesting” of symbolic unions. This model of symbolic unions has been chosen specifically

to facilitate reasoning about Rosette’s symbolic evaluation strategy while abstracting over particular

details of its implementation. Other Rosette models also abstract over the details of symbolic

unions [51].

Figure 10 displays selected rules for defining the abstract semantics. As alluded to earlier, the

abstract semantics lifts the input environment 𝜌 and input store 𝜎 from the concrete semantics

to a symbolic environment 𝜌 and symbolic store 𝜎 ; accordingly, it produces symbolic values �̂� .

The rules are mostly analogous to the concrete ones, but there are a few important differences.

Most notably, the ⇚ relation does not include a stream. This difference is due to the fundamental

distinction between concrete and abstract execution: a symbolic evaluator computes all branches
of execution simultaneously while a concrete evaluator does not.

For instance, consider the rule Sym. Instead of producing a particular Boolean value, the abstract

semantics of sym generates a fresh symbolic variable and produces a symbolic union whose value

is determined by the symbolic variable.

Also note the difference in the semantics of if, defined by the If rule. When encountering an if,
the abstract semantics first evaluates the guard expression and determines the conditions 𝜑1 and 𝜑2

under which the guard expression produces the values true or false, respectively. The operator
⊎Bool indicates that the remainder of the symbolic union �̂� does not contain any Booleans—formally,

img( �̂� ) ∩ Bool = ∅. Both branches are evaluated, and the result is placed under a symbolic union

with the corresponding guards. An additional output component𝜓 encodes the assertion proposition.
This formula specifies models under which the output of the abstract semantics is defined. So, in

models where the guard is not a Boolean, i.e., those mapped by �̂� , the assertion proposition is not

satisfied. The remaining rules can be found in Appendix B.
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Answers

𝑎 ∈ AnsF ( ) | 𝑏 | 𝑟 | (𝑎, 𝑎) | opaque
⌊ ·⌋ : Value → Ans

⌊𝑣⌋ =

𝑣 if 𝑣 ∈ Bool ∪ Num ∪ { () }
(⌊𝑣1 ⌋, ⌊𝑣2 ⌋ ) if 𝑣 = (𝑣1, 𝑣2 )
opaque otherwise

eval : Expr → (Stream → Ans⊥ )

eval(𝑒 ) (𝑠 ) =
{
⌊𝑣⌋ if ∅, 𝑠 ⊢ (𝑒,∅) ⇓ (𝑣, 𝜎 )
⊥ otherwise

ans :
�
Value × �Store → Âns

ans(�̂�, 𝜎 ) (𝑚) =
{
⌊ �̂� (𝑚) ⌋ if �̂� (𝑚) ≠ ⊥, 𝜎 (𝑚) ≠ ⊥
⊥ otherwise

Fig. 11. Idealized Rosette Evaluation Functions

4.4 Correctness
The primary correctness property of a precise symbolic evaluator is that it produces a representation

of all and only those results that can be produced by concrete execution. In idealized Rosette, answers
are the result of computation. The left side of Figure 11 explicitly defines the set of answers Ans

and the function ⌊·⌋ for converting values to answers.

The right side of Figure 11 defines the meaning of concrete and abstract execution in terms of

answers. Given a closed term 𝑒 , the function eval(𝑒) says which answers can be feasibly produced

by 𝑒 via concrete execution. Given an abstract value �̂� and an abstract store 𝜎 produced by the

abstract execution of 𝑒 , the function ans(�̂�, 𝜎) says which answers abstract execution considers

feasible. Theorem 4.1 shows that these two results coincide and additionally that the assertion

proposition produced by abstract execution is true exactly when concrete execution produces a

well-defined value.

Theorem 4.1 (Correctness of Idealized Rosette). Let 𝑒 be a closed term where ∅ ⊢ (𝑒,∅) ⇚ (�̂�, 𝜎,𝜓 ).
Then img(eval(𝑒)) = img(ans(�̂�, 𝜎)), and for all𝑚 ∈ Model

symvars(�̂�,𝜎 ) it holds that 𝜓 (𝑚) = T if

and only if �̂� (𝑚) ≠ ⊥ and 𝜎 (𝑚) ≠ ⊥.

Proof sketch. The proof is by induction, after generalizing the theorem statement to open

terms. To systematically work up to renaming of store locations, the proof contains a nontrivial

use of nominal techniques [49]. For details, see Appendix B. □

5 Roulette: Formal Semantics
Given the semantics of Rosette, only a few small changes are needed to model Roulette. Specifically,

each symbolic variable in the abstract semantics is additionally associated with a weight, which
intuitively corresponds to the probability of that variable taking on the value T. Everything else

can be adapted in a straightforward way. This section follows the same structure as the previous

one, showing only the changes needed to turn Rosette into Roulette.

5.1 Syntax of Roulette
In the syntax of Roulette, the sym expression for generating symbolic Booleans is replaced by the

expression flip𝑥 for generating a random Boolean with bias 𝑥 . For concrete execution, the value

of flip𝑥 is determined by the first element in a stream of real numbers 𝑠 ∈ Stream ≔ N → [0, 1] .
This new stream, also known as an entropy source [11], provides a pool of uniform randomness for

sampling. For abstract execution, flip returns a symbolic variable that is associated with a weight.

This association is stored in a weight map 𝑤 ∈ WeightMap ≔ SymVar →fin [0, 1] .
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𝜌, 𝑠 ⊢ (𝑒, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )

FlipTrue

𝑥 ∈ dom(𝜌 ) 𝑟 < 𝜌 (𝑥 )
𝜌, 𝑟 :: 𝑠 ⊢ (flip𝑥, 𝜎 ) ⇓ (true, 𝜎 )

FlipFalse

𝑥 ∈ dom(𝜌 ) 𝑟 ≥ 𝜌 (𝑥 )
𝜌, 𝑟 :: 𝑠 ⊢ (flip𝑥, 𝜎 ) ⇓ (false, 𝜎 )

Fig. 12. Concrete Semantics

𝜌 ⊢ (𝑒, 𝜎, 𝑤 ) ⇚ (�̂�, 𝜎 ′, 𝑤′ ,𝜓 )

Flip

𝜌 (𝑥 ) = [𝜑𝑖 : 𝑟𝑖 ]1≤𝑖≤𝑛 ⊎Num �̂� ∀1 ≤ 𝑖 ≤ 𝑛. 𝑠𝑖 =max(min(𝑟𝑖 , 1), 0) 𝛼1, . . . , 𝛼𝑛 smallest not in dom(𝑤 )
𝜌 ⊢ (flip𝑥, 𝜎, 𝑤 ) ⇚ ( [𝜑𝑖 ∧ 𝛼𝑖 ↦→ T, 𝜑𝑖 ∧ ¬𝛼𝑖 ↦→ F]𝑖∈𝐼 , 𝜎, 𝑤 ⊎ {𝛼𝑖 ↦→ 𝑠𝑖 }𝑖∈𝐼 ,

∨
𝑖 𝜑𝑖 )

Fig. 13. Abstract Semantics

5.2 Concrete Semantics of Roulette
The concrete semantics of Roulette is given in Figure 12. There are two rules here intended to

replace SymTrue and SymFalse. The flip form uses the first element of the entropy source to

determine if true or false should be returned, based on the probability given to flip. This is
exactly how flip is implemented in a sampling semantics where the entropy determines the values

returned by the random-number generator.

5.3 Abstract Semantics of Roulette
The abstract semantics of Roulette is given in Figure 13. At a high-level, the Flip rule in the abstract

semantics returns a fresh symbolic variable and a new weight map that associates the new variable

with its probability. If the input probability is a concrete number, then only one symbolic variable is

generated. Supporting symbolic arguments to flip takes some extra work and requires generating

more symbolic variables. For each number in the symbolic union given to flip, the semantics

generates a fresh symbolic variable and associates it with the given number. Since each 𝑟𝑖 can be

an arbitrary rational number, not just a probability, every 𝑟𝑖 must be clamped to the interval. As in

idealized Rosette, this rule is made deterministic by requiring 𝛼1, . . . , 𝛼𝑛 to be the smallest sequence

of symbolic variables that is fresh for the variables currently in use.

5.4 Correctness
Theorem 4.1 generalizes smoothly from Rosette to Roulette. For Rosette, correctness amounted to

showing that the abstract and concrete semantics compute the same set of possible answers. For

Roulette, it is not only the set of possible answers that must be identical, but also the probability of

each answer.

More precisely, the correctness theorem for Rosette required eval(𝑒) : Stream → Ans⊥ and

ans(�̂�, 𝜎) : Model𝑉 → Ans⊥ to have the same image. In the analogous theorem for Roulette,

these functions become random variables out of the sample spaces Stream = N → [0, 1] and
Modeldom(𝜔 ) , respectively, where 𝜔 is the weight map assigning probabilities to each symbolic

variable generated during symbolic evaluation. These sample spaces naturally comewith probability

measures: Stream comes with the uniform Lebesgue measure following Culpepper and Cobb [11],

and Modeldom(𝜔 ) comes with the measure that assigns a given model𝑚 ∈ Modeldom(𝜔 ) its weight:
weight𝑤 (𝑚) =

∏
(𝑥 ↦→𝑏 ) ∈𝑚 (if 𝑏 then 𝑤 (𝑥) else 1 − 𝑤 (𝑥)). For example, under the weight map
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𝑤 = [𝛼0 ↦→ 0.1, 𝛼1 ↦→ 0.2], the model𝑚 = [𝛼0 ↦→ T, 𝛼1 ↦→ F] has weight𝑤 (𝑚) = 0.1 · 0.8 = 0.08.

Correctness of Roulette states that the random variables eval(𝑒) and ans(�̂�, 𝜎) have the same

distribution under these probability measures, and that the assertion proposition captures when

these random variables are not equal to ⊥. The proof follows the same structure as Theorem 4.1.

Theorem 5.1 (Correctness of Roulette). Let 𝑒 be a closed term such that ∅ ⊢ (𝑒,∅,∅) ⇚ (�̂�, 𝜎,𝑤,𝜓 ).
Then the random variables eval(𝑒) : Stream → Ans⊥ and ans(�̂�, 𝜎) : Modeldom(𝑤 ) → Ans⊥ have

the same distribution, where the entropy source Stream is given the uniform Lebesgue measure

andModeldom(𝑤 ) is given the measure weight𝑤 . Moreover, for all𝑚 ∈ Modeldom(𝑤 ) it holds that
𝜓 (𝑚) = T if and only if �̂� (𝑚) ≠ ⊥ and 𝜎 (𝑚) ≠ ⊥.

Proof. The proof is by induction, after generalizing to open terms. For details, see Appendix C. □

6 Evaluation
The examples in Section 2 demonstrate that Roulette is expressive, but to be useful, a probabilistic

programming language must support efficient inference. This section confirms that Roulette is

capable of scaling better than enumeration, and in general its performance is competitive with

Dice [29], a state-of-the-art PPL for performing exact discrete inference. Unlike Roulette, Dice is

extremely restricted: it has no support for recursion, mutable state, or many of the other features

supported by Roulette.

The evaluation consists of three sets of programs. First is a series of small baseline programs

commonly used to test PPLs in the literature. These programs are small enough that they finish

nearly instantly. Second is a selection of discrete Bayesian networks intended to exercise the limits

of efficient inference. These benchmarks come from the Bayesian Network Repository, a collection

of Bayesian networks taken from real-world scenarios. All the networks are run on a program

similar to the one described in Section 2.2. The final set of programs measures how well Roulette

scales on the unreliable hardware example from Section 2.3, hidden Markov model queries, and the

scaling experiments from Holtzen et al. [29].

Experimental Setup. We ran the experiments on a 16-core AMD EPYC 7543 CPU with 128GB of

RAM using Racket 8.13 and Rosette 4.1. The benchmarks compare against two versions of Dice: a

recent build (Git commit ed86716), referred to as Dice (2025), and the original version from Holtzen

et al. [29], referred to as Dice (2020). All experiments were performed on a best-effort basis where

an attempt was made to find the optimal encoding for the program in each language. Additionally,

BDD performance is significantly impacted by variable order, and changing the variable order can

increase the size of a BDD from linear to exponential [34]. To the extent possible, the experiments

control for variable order: both Dice and Roulette use the program order heuristic (i.e., random

variables generated earlier during execution come earlier in the variable order) and the programs

are written such that the variable order is consistent between each system.

6.1 Results
The main aim in these experiments is to establish that Roulette is competitive with existing high-

performance exact inference strategies while gaining expressivity. In general, there should be no

expectation that Roulette significantly outperforms existing knowledge-compilation-based PPLs

such as Dice. However, Roulette should also not exhibit a significant performance penalty as a

price for its expanded expressivity. The remainder of this section presents the experimental results

in brief and states their consequences. Then, Section 6.2 gives a higher-level discussion about

performance that examines cross-cutting trends across the experiments. Some experimental results

are truncated in the main body; see Appendix D for the full experimental results.
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Table 1. Simple Baselines

Roulette Dice (2025) Dice (2020) PSI
Benchmark BDD Size Time (ms) BDD Size Time (ms) BDD Size Time (ms) Time (ms)

alarm 11 0 11 19 11 16 71

evidence1 3 0 5 24 5 17 22

evidence2 4 0 6 21 6 18 34

grass 13 0 15 30 15 19 80

murder-mystery 4 0 6 28 6 20 46

noisy-or 33 0 35 23 35 19 328

two-coins 3 0 5 25 5 22 20

Table 2. Bayesian Networks

Roulette Dice (2025) Dice (2020)
Benchmark BDD Size Time (ms) BDD Size Time (ms) BDD Size Time (ms)

cancer 13 2 15 49 28 19

survey 46 4 48 29 73 18

alarm 981 42 672 308 1,366 30
insurance 75,594 395 44,846 643 101,047 148
hepar2 1,967 140 1,969 230 3,936 32
hailfinder 33,211 596 – – 65,386 428
pigs 19 255 25 417 35 48
water 39,146 200 33,226 454 51,952 16,083

munin 10,307 2,400 3,704 24,839 11,977 1,605

6.1.1 Simple baselines. Table 1 shows the results of the benchmarks introduced by Gehr et al. [23].

The time taken by Roulette and Dice to solve these problems is nearly instant in all cases. PSI [23]

is included as a comparison point in this experiment, which lags behind the performance of the

knowledge-compilation-based approaches. The table additionally reports the BDD size (in number

of nodes) to show the degree to which the different encoding schemes of Roulette, Dice (2020), and

Dice (2025) impact performance. Roulette achieves the smallest BDD in all cases.

6.1.2 Bayesian networks. Table 2 shows the results for single-marginal inference on the nine

discrete Bayesian networks evaluated in the original Dice paper [29]. The “–” symbol indicates a

timeout after one minute. Single-marginal inference calculates the marginal probability for a single

leaf node in a network. These results are for a Bayesian network interpreter that is almost identical

to the one in Section 2.2.

Overall, Roulette is competitive with both versions of Dice on these examples, with similar

overall BDD size and execution time. In the table, networks are roughly ordered by difficulty:

• Small networks. cancer and survey are small and therefore inference is relatively easy. Roulette

has the best performance on these.

• Medium networks. alarm, insurance, hepar2, and hailfinder are medium-sized Bayesian

networks. In general, Dice (2020) has the smallest execution time on these networks, but Roulette

is close in performance. Roulette compiles to the smallest final BDD in most of these examples,

suggesting that its encoding is quite efficient. There were some performance regressions in Dice

(2025), and it failed to complete hailfinder.

• Large networks. pigs,water, andmunin are large and challenging networks with many thousands

of parameters. Roulette is significantly faster than both versions of Dice on the water network.

On the munin network, Roulette generates the smallest BDD, but its performance is marginally

inferior to Dice (2020) and lags by about 800 milliseconds.
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Fig. 14. Plots (a), (b), (c), and (d) parallel Figure 10 from Holtzen et al. [29]. Plot (e) is a hidden Markov model

example. These five plots compare against Dice. Plot (f) is the network reliability program from Section 2.1, and

Plot (g) is the unreliable hardware program from Section 2.3. These benchmarks compare against enumeration.

An × shows the last trial to finish within a one-minute timeout.

Overall, these experiments show that Roulette is not giving up significant performance to attain

its expressivity. Roulette can complete all the Bayesian network tasks within a reasonable amount

of time and in some cases outperforms Dice on challenging examples such as water.

6.1.3 Scaling benchmarks. Figure 14 shows the results of experiments that examine how Roulette

and Dice scale as parameters grow in size. Some of these plots reproduce benchmarks from the

original performance evaluation of Dice, while other benchmarks are new. Here is a detailed

analysis of these experiments:

• Figure 14a is the Caesar cipher example from Figure 3 of Holtzen et al. [29]. The program performs

frequency analysis to decrypt text that is encrypted using a Caesar cipher. The scaling parameter

is the length of the ciphertext. Roulette and Dice (2020) achieve nearly identical performance on

this example.

• Figure 14b and Figure 14c examine the probabilistic network reliability benchmarks from Holtzen

et al. [29]. The following shows diamond and ladder on the left and right, respectively:

The scaling parameter is the number of repeated subnetworks (boxed). The task is a simplified

version of the example from Figure 1: for a particular network topology where each edge has

some chance of dropping a packet and each router forwards uniformly at random, determine

whether a packet successfully traverses the network. Here, Roulette and Dice (2020) both scale
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linearly, with Dice (2020) having overall superior constant factors. Dice (2025) scales surprisingly

poorly on ladder despite using the same BDD backend as Roulette. Overall, these experiments

demonstrate that Roulette and Dice (2020) have similar asymptotic behavior, with Dice (2020)

having superior constant factors. This performance difference is not likely to be an inherent

limitation of Roulette but is more likely due to confounding factors, such as Dice (2020) using a

different BDD backend.

• Figure 14d is the simple Markov chain example from Holtzen et al. [29, Figure 1]. Again, all tools

achieve linear-time performance with Dice (2020) having superior constant factors.

• Figure 14e shows the scaling behavior for querying the following hidden Markov model (HMM):

𝑋0 𝑋1 𝑋2
. . .

𝑂1 𝑂2
. . .

The scaling parameter is the length of the HMM. The inference task is, for an HMM of length 𝑛,

to compute the probability that all the𝑂𝑖 are true (each node in the network is a Boolean random

variable). In addition to these automated approaches (Roulette and Dice), we implemented a

specialized inference algorithm that performs linear-time exact inference on HMMs [52]. These

results are detailed in Appendix D, along with the performance of several other HMM queries.

The automated approaches exhibit super-linear scaling behavior, with Dice (2020) having the best

performance. Scaling is quadratic for Roulette andDice due to theway that the BDD is constructed:

each additional layer in an HMM requires traversing the entire previously-constructed (linear-

size) BDD once, which scales quadratically in 𝑛.

• Finally, Figure 14f and Figure 14g examine how Roulette scales on some of the examples from

Section 2. The baseline for comparison is enumeration since these programs are not easily

representable in Dice. Figure 14f shows how the network reliability example from Section 2.1

scales in the SIZE parameter, and Figure 14g shows how the unreliable hardware example from

Section 2.3 scales as (tri (max 0 (- fuel 2))) is evaluated on varying values of fuel.
Enumeration times out quickly and exhibits exponential growth, while Roulette is able to scale

comfortably. A comparison of least-squares regressions shows that, along all metrics, a quadratic

model fits the data better than an exponential model for both the network reliability and unreliable

hardware examples.

6.2 Performance Discussion
The experiments demonstrate that Roulette and Dice have similar scaling characteristics but exhibit

constant-factor performance differences on some examples. While Roulette, Dice (2025), and Dice

(2020) all use knowledge compilation for probabilistic inference, there are differences that impact the

performance of these languages on the benchmarks. First, Roulette and Dice (2025) use the RSDD

library [30] for managing BDDs, while Dice (2020) uses the CUDD library [58]. Second, Roulette is a

DSL hosted in Racket, while Dice has a special-purpose compiler. As such, Dice generally has lower

constant-time factors than Roulette. The Rosette runtime also performs formula simplification,

caching, and other tasks that increase overhead.

Nonetheless, it is possible to achieve strong performance in Roulette by leveraging the host

language’s expressivity to control the way in which knowledge compilation is performed. This

is similar to programming in Rosette, where changes to the structure of a program can have a

significant influence on the resulting encoding and subsequently on the performance of queries

to the underlying solver [50]. The expressivity afforded by Roulette allows developers to tune

programs in this way. For example, a recursive function may be written in tail form or not, affecting

the order in which variables are generated and hence affecting the compactness of BDD encoding.
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Roulette’s expressivity can help developers write optimized programs in the following ways:

• Variable order. The variable order in Roulette is controlled by the order in which random variables

are allocated using flip. Hence, it is occasionally necessary for the programmer to pre-allocate

random variables in order to satisfy some ordering constraint for optimal compilation.

• Encoding strategy. The way that data is represented as Boolean formulae is a critical component in

the scalability of knowledge compilation strategies [5]. For instance, a number can be represented

in binary or with a one-hot encoding. The choice of representation can greatly impact the

performance of certain operations. Unlike Dice, Roulette is expressive enough to give this power

to users. The Caesar cipher example in Figure 14a uses ordinary functional programming to

implement a binary encoding of numbers, which is critical to being competitive with Dice.

• Compilation order. Roulette works by generating a Boolean formula that is shipped to a knowledge

compiler. The performance of a knowledge compiler is sensitive to the formula it is given. Hence,

control over formula structure is critical for achieving linear-time performance on the benchmarks

shown in Figures 14b to 14d. In particular, it is necessary to compile the chain “from back to

front.” This strategy differs from the more naive implementation approach; see Appendix E for a

concrete comparison of these two approaches.

These optimizations are available to programmers and can be considered “design patterns” for

scalable inference. They follow the general guidance of aiming to (1) have related variables close to

each other in the variable order and (2) compile related parts of the program together.

Beyond these guidelines there are additional Roulette-specific low-level optimizations, needed

to obtain competitive performance with Dice, that are not available to the programmer for cus-

tomization. Roulette has to work around some limitations of Rosette that do not occur in Dice. For

instance, conditionals in Dice are compiled to ite operations on BDDs (which are more efficient),

but Rosette does not have a Boolean-valued ite node in its formula representation. Therefore,

places where conditionals occur have to be inferred, perhaps imperfectly, from the formulae.

Despite these optimizations, it is still the case that Dice outperforms Roulette on some examples.

The remaining performance gap is likely due to a combination of (1) inherent overhead of Roulette

being hosted in Racket, (2) differing knowledge compilation backends exhibiting different perfor-

mance on the same examples, and (3) additional optimizations that are available in Dice due to the

particularly constrained language.

7 Related Work
Probabilistic Programming Languages. The most closely related probabilistic programming lan-

guages to Roulette are those that rely on weighted model counting for exact inference such as

Dice [29] and ProbLog [17]. Both Dice and ProbLog rely on a laborious and manual translation

of the program structure into weighted Boolean formulae. Roulette vastly simplifies the imple-

mentation of these languages and increases expressivity, as demonstrated in Section 2. The exact

performance of WMC-based inference is sensitive to how constraints are generated. As shown

by Cao et al. [5], subtle choices about how to encode integers can result in different performance

characteristics. It is somewhat surprising that Roulette performs as well as it does despite minimal

manual optimization beyond what is provided by Rosette; this is a testament to the quality of the

formula simplification provided already by the Rosette symbolic evaluator. Nonetheless, it would

be interesting future work to integrate the optimizations explored by Cao et al. [5] into Roulette.

Garg et al. [21] bit blast continuous random variables in order to use exact WMC-based inference

for reasoning about continuous probability distributions; it would also be potentially fruitful to

integrate these compilation strategies into Roulette.
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While Roulette is expressive for a PPL, it nonetheless omits two useful features: continuous

random variables and almost-sure termination. These features are found in many PPLs, but their

presence makes exact inference challenging because they require integration. Hakaru [38] and

PSI [23] support exact inference in the presence of continuous random variables, and their inference

strategies consequently rely on expensive exact integration performed by computer algebra systems.

SPPL [55] also supports exact inference in the presence of continuity, but it is a restricted language

that lacks mutable state, higher-order functions, and general recursion. Approaches to handling

almost-sure termination rely on fix-point solving [8] or generating functions [33]; it would be

interesting to adapt these approaches to work with Roulette programs.

Solver-aided Programming. Solver-aided programming was introduced by Rosette [60, 61] and

has since been applied in variety of domains. Rosette has been used to verify JIT compilers within

the Linux kernel [39], develop a policy specification language for router configuration [64], create

an instruction set architecture (ISA) emulator for building correct superoptimizers [48], and even

verify safety properties of medical devices [47].

Porncharoenwase et al. [51] present a formally verified semantics of Rosette. Specifically, their

S𝑐 semantics is parameterized by a symbolic factory that abstracts the implementation details of

symbolic values. Section 4 does not build on S𝑐 primarily because it lacks support for dynamically

generating symbolic variables and mutable state.

Symbolic Execution for Probabilistic Programming. Applying techniques in symbolic execution to

probabilistic programming is not a new idea. Geldenhuys et al. [25] repurpose a symbolic execution

framework for verifying Java programs to determine the probability that a function under test

encounters a bug. This system relies on model counting, which weights all possible test inputs

uniformly to determine the probability of failure and lacks Bayesian conditioning. Susag et al.

[59] propose probabilistic symbolic variables for the Plinko language. Plinko is limited to finite

loops, variable assignment, conditionals, and drawing symbolic variables from discrete probability

distributions. Voogd et al. [62] present a full run-time semantics for probabilistic programming

inspired by symbolic execution, called symProb, which performs bounded symbolic execution.

However, symProb lacks higher-order functions and higher-order mutable state.

8 Conclusion
Roulette is an expressive discrete probabilistic programming language with exact inference built on

top of Rosette. The key idea of Roulette is to adapt the symbolic compilation strategy of Rosette to

generate symbolic constraints that can be given to a WMC-based inference backend. This strategy

yields both an expressive and efficient probabilistic programming environment. To prove Roulette

sound, we first gave a correctness theorem for an idealized version of Rosette that generalizes

prior Rosette formalisms by including dynamically introduced symbolic values and mutable state.

Idealized Rosette then served as the foundation for an analogous correctness theorem of Roulette.

Finally, a suite of experiments showed that Roulette can achieve competitive performance on

discrete exact inference for several challenging tasks.

In the future, we hope to make Roulette more usable and scalable by further connecting ideas

from knowledge-compilation-based inference and Rosette. There are a variety of high-quality WMC

solvers that would be interesting to explore as alternatives to BDDs as backends for Roulette [9,

12, 13, 35, 36]. Since Roulette is as expressive as Rosette, future work may also explore the extent

to which the numerous existing Rosette examples benefit from a probabilistic interpretation. And

finally, Rosette has benefited from many years of usability improvements, including symbolic

profiling [3], performance repair [50], and typed lenient symbolic evaluation [6]. The extent to

which these can be generalized and applied to Roulette is also exciting future work.
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A Syntactic Sugar for Roulette
Roulette alone can be used to perform inference, but there is a gap between the high-level proba-

bilistic programs from Section 2 and the low-level operations, like define-symbolic and infer,
shown in Section 3. This section closes that gap by constructing a thin layer of syntactic sugar for

Roulette, fully realizing it as a high-level PPL. Racket’s advanced macro system more than suffices

to build this layer.

A.1 Flip
The most basic operation for a discrete PPL is flip, which can be written as a simple function:

(define (flip pr)
(for/all ([pr* pr])
(define-symbolic* x (bern pr*))
x))

Given a probability, flip returns fresh symbolic values associated with a Bernoulli distribution

parameterized by the input probability. Two aspects of flip deserve mention. First, flip uses

define-symbolic* instead of define-symbolic. With define-symbolic*, a new symbolic value

is created each call. With define-symbolic, a new symbolic value is created for each lexical

occurrence of the form. Second, flip uses Rosette’s for/all construct to support symbolic input

probabilities. The distribution given to bern must be a concrete value, not a symbolic union.

Therefore, flip unpacks the symbolic union using for/all which maps over a symbolic union by

binding each concrete value in the union to pr* and evaluating the body, placing the result in a

new symbolic union under the same guards.

Consider the following program, a hierarchical model:

(define p (if (flip 1/2) 1/4 3/4)) (if (flip p) 'a 'b)

Here, flip generates two new symbolic values (𝑥1 and 𝑥2) and produces this symbolic union:[
(𝑥0 ∧ 𝑥1) ∨ (¬𝑥0 ∧ 𝑥2) : 'a, (𝑥0 ∧ ¬𝑥1) ∨ (¬𝑥0 ∧ ¬𝑥2) : 'b

]
.

A.2 Observation
From a programming-language perspective, observe! is like assert.3 In a language like C, asser-

tions raise an error when given false. In a PPL, observe! prunes all branches of computation

where the given random variable is false. Consider the following implementation of observation

and delimited observation:

(define evidence #true)

(define (observe! v)
(set! evidence (and evidence v)))

(define (query e)
(define unnormalized (infer (if evidence e '⊥)))
(define normalizer (- 1 (unnormalized '⊥)))
(for/pmf ([(value weight) (in-pmf unnormalized)]

#:unless (eq? value '⊥))
(values value (/ weight normalizer))))

3
Indeed, Rosette’s built-in assert form can be used to implement observation. The code in this section does not do so since

it makes delimited observation trickier.
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A global mutable variable named evidence stores the random variable used for conditioning.

Applying observe! to a random variable mutably conjoins it to the existing evidence. When

querying the probability of a random variable, the given value is conditioned on the evidence

using an if. Probability mass that does not satisfy the evidence is sent to '⊥.4 After computing the

result, the query function renormalizes the PMF with a for/pmf form that divides probabilities

by a normalizing constant. Because Roulette soundly handles mutation, unusual cases such as

observation under a conditional work correctly by default.

Using macros, it is easy to implement advanced language features. For example, delimited obser-

vation, where observed evidence is contained within a particular dynamic extent, can implemented

as such:

(define-syntax-rule (with-observe body ...+)
(let ([old evidence])
(begin0
(begin body ...+)
(set! evidence old))))

Before the body expressions are evaluated, evidence is saved to a local variable. During evaluation
of the body expressions, observations are recorded in evidence. Afterwards, evidence is reset

to its original value and the value of the last body expression is returned using a combination of

begin and begin0.5

A.3 Expectation
Expectation uses the result of query to compute the expected value of a random variable:

(define (expectation v)
(for/sum ([(val prob) (in-pmf (query v))])
(* val prob)))

Using Racket’s for/sum form makes it simple to compute a weighted sum. Because expectation
uses query and not infer, the expected value works in the presence of observation and delimited

observation.

4
In the actual implementation, this is a not the symbol '⊥ but a symbol generated using gensym.

5
A robust implementation of delimited forms in Scheme or Racket would use dynamic-wind to properly handle control

effects. Rosette does not support dynamic-wind, but this alternative is good enough for practical purposes.
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𝜌, 𝑠 ⊢ (𝑒, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )

Var

𝜌, 𝑠 ⊢ (𝑥, 𝜎 ) ⇓ (𝜌 (𝑥 ), 𝜎 )

Let

𝑠 { 𝑠1, 𝑠2 𝜌, 𝑠1 ⊢ (𝑒1, 𝜎 ) ⇓ (𝑣1, 𝜎1 ) 𝜌 [𝑥 ↦→ 𝑣1 ], 𝑠2 ⊢ (𝑒2, 𝜎1 ) ⇓ (𝑣2, 𝜎2 )
𝜌, 𝑠 ⊢ (let 𝑥 = 𝑒1 in 𝑒2, 𝜎 ) ⇓ (𝑣2, 𝜎2 )

Lam

𝜌, 𝑠 ⊢ (𝜆𝑥.𝑒, 𝜎 ) ⇓ (clo(𝜆𝑥.𝑒, 𝜌 ), 𝜎 )

App

𝜌 (𝑥 ) = clo(𝜆𝑥 ′. 𝑒′, 𝜌 ′ ) 𝜌 ′ [𝑥 ′ ↦→ 𝜌 (𝑦) ], 𝑠 ⊢ (𝑒′, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )
𝜌, 𝑠 ⊢ (𝑥 𝑦, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )

True

𝜌, 𝑠 ⊢ (true, 𝜎 ) ⇓ (true, 𝜎 )

False

𝜌, 𝑠 ⊢ (false, 𝜎 ) ⇓ (false, 𝜎 )

IfTrue

𝜌 (𝑥 ) = true 𝜌, 𝑠 ⊢ (𝑒1, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )
𝜌, 𝑠 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )

IfFalse

𝜌 (𝑥 ) = false 𝜌, 𝑠 ⊢ (𝑒2, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )
𝜌, 𝑠 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )

Num

𝑟 ∈ Q

𝜌, 𝑠 ⊢ (𝑟, 𝜎 ) ⇓ (𝑟, 𝜎 )

Arith

𝜌 (𝑥 ), 𝜌 (𝑦) ∈ Q ⊕ ∈ {+, −, ×}
𝜌, 𝑠 ⊢ (𝑥 ⊕ 𝑦, 𝜎 ) ⇓ (𝜌 (𝑥 ) ⟦⊕⟧ 𝜌 (𝑦), 𝜎 )

Pair

𝜌, 𝑠 ⊢ ( (𝑥, 𝑦), 𝜎 ) ⇓ ( (𝜌 (𝑥 ), 𝜌 (𝑦) ), 𝜎 )

Fst

𝜌 (𝑥 ) = (𝑣, 𝑤 )
𝜌, 𝑠 ⊢ (fst𝑥, 𝜎 ) ⇓ (𝑣, 𝜎 )

Snd

𝜌 (𝑥 ) = (𝑣, 𝑤 )
𝜌, 𝑠 ⊢ (snd𝑥, 𝜎 ) ⇓ (𝑤,𝜎 )

Ref

ℓ ∉ locs(𝜌, 𝜎 )
𝜌, 𝑠 ⊢ (ref𝑥, 𝜎 ) ⇓ (ℓ, 𝜎 [ℓ ↦→ 𝜌 (𝑥 ) ] )

Get

𝜌 (𝑥 ) ∈ dom(𝜎 )
𝜌, 𝑠 ⊢ (!𝑥, 𝜎 ) ⇓ (𝜎 (𝜌 (𝑥 ) ), 𝜎 )

Set

𝜌 (𝑥 ) ∈ dom(𝜎 )
𝜌, 𝑠 ⊢ (𝑥 ≔ 𝑦, 𝜎 ) ⇓ ( (), 𝜎 [𝜌 (𝑥 ) ↦→ 𝜌 (𝑦) ] )

SymTrue

𝜌, T :: 𝑠 ⊢ (sym, 𝜎 ) ⇓ (true, 𝜎 )

SymFalse

𝜌, F :: 𝑠 ⊢ (sym, 𝜎 ) ⇓ (false, 𝜎 )

Fig. 15. Concrete semantics of idealized Rosette.

B Idealized Rosette
B.1 Syntax

𝑒 ∈ Expr ::= 𝑥 | let 𝑥 = 𝑒 in 𝑒 | 𝜆𝑥 .𝑒 | 𝑥 𝑦

| true | false | if 𝑥 𝑒 𝑒

| 𝑟 | 𝑥 + 𝑦 | 𝑥 − 𝑦 | 𝑥 × 𝑦

| () | (𝑥,𝑦) | fst𝑥 | snd𝑥
| ref𝑥 | !𝑦 | 𝑥 ≔ 𝑦

| sym | fail
𝜌 ∈ Env = Var →fin Val

𝑣 ∈ Val ::= true | false | clo(𝜆𝑥.𝑒, 𝜌) | 𝑟 | () | (𝑣, 𝑣) | ℓ ∈ Loc

𝜎 ∈ Store = Loc →fin Val

𝑟 ∈ Q

𝑠 ∈ BitStream = [0, 1]N

B.2 Concrete semantics
Figure 15 contains the evaluation rules. Notably, there is no rule for fail.
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B.3 Abstract semantics
Figure 16 contains the evaluation rules.

Definition B.1. Given an infinite supply of symbolic variables, 𝛼, 𝛽, . . . ∈ SymVar, let Model =

SymVar → Bool.

Definition B.2. For 𝑆 a subset of SymVar, letModel𝑆 be the set 𝑆 → Bool.

Definition B.3. For a set 𝐴, the set of symbolic values of type 𝐴, written 𝐴, is the set of functions

Model → 𝐴⊥ with finite image and finite support.

Definition B.4. A symbolic proposition is an element of B̂ool. Two symbolic propositions 𝜑,𝜓 are

disjoint if ¬(𝜑 (𝑚) ∧𝜓 (𝑚)) for all𝑚 ∈ Model.

Definition B.5. For a finite family (𝜑𝑖 )𝑖∈𝐼 of pairwise-disjoint symbolic propositions, and a family

of symbolic values (𝑎𝑖 )𝑖∈𝐼 , their symbolic union [𝜑𝑖 : 𝑎𝑖 ]𝑖∈𝐼 is the function defined by:

[𝜑𝑖 : 𝑎𝑖 ]𝑖∈𝐼 (𝑚) =
{
𝑎𝑖 (𝑚), 𝜑𝑖 (𝑚) for some 𝑖

⊥, otherwise

Lemma B.6 (Determinism). If 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�1, 𝜎 ′
1
,𝜓1) and 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�2, 𝜎 ′

2
,𝜓2) then (�̂�1, 𝜎 ′

1
,𝜓1) =

(�̂�2, �̂� ′
2
,𝜓2).

Proof. By induction on 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�1, 𝜎 ′
1
,𝜓1) and inversion on 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�2, 𝜎 ′

2
,𝜓2). □

B.4 Correctness
Definition B.7. Let Autfin (Loc) be the group of finite permutations of locations — that is, bijective

functions 𝜋 : Loc → Loc with {ℓ | 𝜋 (ℓ) ≠ ℓ} finite — under function composition.

Definition B.8. A nominal set [49] is a set 𝑋 with a left action (·) : Autfin (Loc) × 𝑋 → 𝑋 by

Autfin (Loc) such that for every 𝑥 ∈ 𝑋 there exists a finite set of locations 𝐿, called a support for 𝑥 ,
such that 𝜋 · 𝑥 = 𝑥 for every 𝜋 ∈ Autfin (Loc) with {ℓ | 𝜋 (ℓ) = ℓ} ⊆ 𝐿.

Definition B.9. Given a nominal set 𝑋 , let ⟨Locs⟩𝑋 be the set {(𝐿, 𝑥) | 𝑥 ∈ 𝑋, 𝐿 ⊆ locs(𝑥)}
quotiented by the equivalence relation ({ℓ1, . . . , ℓ𝑛}, 𝑥) ∼ ({ℓ ′

1
, . . . , ℓ ′𝑛}, 𝑥 ′) iff there exist locations

𝑓1, . . . , 𝑓𝑛 disjoint from locs(𝑥, 𝑥 ′) such that (ℓ1 𝑓1) . . . (ℓ𝑛 𝑓𝑛) · 𝑥 = (ℓ ′
1
𝑓1) . . . (ℓ ′𝑛 𝑓𝑛) · 𝑥 ′. Elements

of the quotient will be written ⟨𝐿⟩𝑥 . This forms a nominal set, with action 𝜋 · ⟨𝐿⟩𝑥 = ⟨𝜋 (𝐿)⟩(𝜋 · 𝑥).

Proof. This construction mirrors Pitts [49, Definition 4.2], generalized from binding a single loca-

tion to binding a set of locations. The relation (∼) is equivariant because swapping is equivariant,

so that if (ℓ1 𝑓1) . . . (ℓ𝑛 𝑓𝑛) · 𝑥 = (ℓ ′
1
𝑓1) . . . (ℓ ′𝑛 𝑓𝑛) · 𝑥 ′ witnesses ({ℓ1, . . . , ℓ𝑛}, 𝑥) ∼ ({ℓ ′

1
, . . . , ℓ ′𝑛}, 𝑥 ′)

then (𝜋 (ℓ1) 𝜋 (𝑓1)) . . . (𝜋 (ℓ𝑛) 𝜋 (𝑓𝑛)) · (𝜋 · 𝑥) = (𝜋 (ℓ ′
1
) 𝜋 (𝑓1)) . . . (𝜋 (ℓ ′𝑛) 𝜋 (𝑓𝑛)) · (𝜋 · 𝑥 ′) witnesses

({𝜋 (ℓ1), . . . , 𝜋 (ℓ𝑛)}, 𝜋 · 𝑥) ∼ ({𝜋 (ℓ ′
1
), . . . , 𝜋 (ℓ ′𝑛)}, 𝜋 (𝑥 ′)). The relation (∼) is an equivalence: reflex-

ivity and symmetry are straightforward; for transitivity,

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 231. Publication date: June 2025.



231:30 Cameron Moy, Jack Czenszak, John M. Li, Brianna Marshall, and Steven Holtzen

𝜌 ⊢ (𝑒, 𝜎 ) ⇚ (�̂�, 𝜎 ′,𝜓 )

Var

𝜌 ⊢ (𝑥, 𝜎 ) ⇚ (𝜌 (𝑥 ), 𝜎, T)

Let

𝜌 ⊢ (𝑒1, 𝜎 ) ⇚ (�̂�1, 𝜎1,𝜓1 )
𝜌 [𝑥 ↦→ �̂�1 ] ⊢ (𝑒2, 𝜎1 ) ⇚ (�̂�2, 𝜎2,𝜓2 )

𝜌 ⊢ (let 𝑥 = 𝑒1 in 𝑒2, 𝜎 ) ⇚ ( [𝜓1 : �̂�2 ], [𝜓1 : 𝜎2 ],𝜓1 ∧𝜓2 )

Lam

𝜌 ⊢ (𝜆𝑥.𝑒, 𝜎 ) ⇚ ( [T : clo(𝜆𝑥.𝑒, 𝜌 ) ], 𝜎, T)

App

𝜌 (𝑥 ) = [𝜑𝑖 : clo(𝜆𝑥𝑖 .𝑒𝑖 , 𝜌𝑖 ) ]𝑖∈𝐼 ⊎Closure
�̂�

∀𝑖 ∈ 𝐼 . 𝜌𝑖 [𝑥𝑖 ↦→ 𝜌 (𝑦) ] ⊢ (𝑒𝑖 , 𝜎 ) ⇚ (�̂�𝑖 , 𝜎𝑖 ,𝜓𝑖 )
𝜌 ⊢ (𝑥 𝑦, 𝜎 ) ⇚ ( [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 , [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 ,

∨
𝑖 (𝜑𝑖 ∧𝜓𝑖 ) )

True

𝜌 ⊢ (true, 𝜎 ) ⇚ ( [T : true], 𝜎, T)

False

𝜌 ⊢ (false, 𝜎 ) ⇚ ( [T : false], 𝜎, T)

If

𝜌 (𝑥 ) = [𝜑1 : true, 𝜑2 : false] ⊎Bool
�̂�

𝜌 ⊢ (𝑒1, 𝜎 ) ⇚ (�̂�1, 𝜎1,𝜓1 ) 𝜌 ⊢ (𝑒2, 𝜎 ) ⇚ (�̂�2, 𝜎2,𝜓2 )
𝜌 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎 ) ⇚ ( [𝜑1 : �̂�1, 𝜑2 : �̂�2 ], [𝜑1 : 𝜎1, 𝜑2 : 𝜎2 ], (𝜑1 ∧𝜓1 ) ∨ (𝜑2 ∧𝜓2 ) )

Num

𝑟 ∈ Q

𝜌 ⊢ (𝑟, 𝜎 ) ⇚ ( [T : 𝑟 ], 𝜎, T)

Arith

𝜌 (𝑥 ) = [𝜑𝑖 : 𝑟𝑖 ]𝑖∈𝐼 ⊎Num �̂�1 𝜌 (𝑦) = [𝜑 𝑗 : 𝑟 𝑗 ] 𝑗 ∈ 𝐽 ⊎Num �̂�2

∀ 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 . 𝑟𝑖 , 𝑟 𝑗 ∈ Q ⊕ ∈ {+, −, ×}
𝜌 ⊢ (𝑥 ⊕ 𝑦, 𝜎 ) ⇚ ( [𝜑𝑖 ∧ 𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 ,𝑗 ∈ 𝐽 , 𝜎,

∨
𝑖,𝑗 (𝜑𝑖 ∧ 𝜑 𝑗 ) )

Pair

𝜌 ⊢ ( (𝑥, 𝑦), 𝜎 ) ⇚ ( (𝜌 (𝑥 ), 𝜌 (𝑦) ), 𝜎, T)

Fst

𝜌 (𝑥 ) = [𝜑𝑖 : (𝑣𝑖 , 𝑤𝑖 ) ]𝑖∈𝐼 ⊎Pair �̂�

𝜌 ⊢ (fst𝑥, 𝜎 ) ⇚ ( [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 , 𝜎,
∨

𝑖∈𝐼 𝜑𝑖 )

Snd

𝜌 (𝑥 ) = [𝜑𝑖 : (𝑣𝑖 , 𝑤𝑖 ) ]𝑖∈𝐼 ⊎Pair �̂�

𝜌 ⊢ (snd𝑥, 𝜎 ) ⇚ ( [𝜑𝑖 : 𝑤𝑖 ]𝑖∈𝐼 , 𝜎,
∨

𝑖∈𝐼 𝜑𝑖 )

Ref

ℓ smallest not in locs(𝜌, 𝜎 )
𝜌 ⊢ (ref𝑥, 𝜎 ) ⇚ ( [T : ℓ ], 𝜎 [ℓ ↦→ 𝜌 (𝑥 ) ], T)

Get

𝜌 (𝑥 ) = [𝜑𝑖 : ℓ𝑖 ]𝑖∈𝐼 ⊎Loc �̂�

𝜌 ⊢ (!𝑥, 𝜎 ) ⇚ ( [𝜑𝑖 : 𝜎 (ℓ𝑖 ) ]𝑖∈𝐼 , 𝜎,
∨

𝑖 𝜑𝑖 )

Set

𝜌 (𝑥 ) = [𝜑𝑖 : ℓ𝑖 ]𝑖∈𝐼 ⊎Loc �̂�

𝜌 ⊢ (𝑥 ≔ 𝑦, 𝜎 ) ⇚ ( [ (
∨

𝑖 𝜑𝑖 ) : ( ) ], [𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦) ] ]𝑖∈𝐼 ,
∨

𝑖 𝜑𝑖 )

Sym

𝛼 smallest not in symvars(𝜌, 𝜎 )
𝜌 ⊢ (sym, 𝜎 ) ⇚ ( [𝛼 : true,¬𝛼 : false], 𝜎, T)

Fail

𝜌 ⊢ (fail, 𝜎 ) ⇚ (∅,∅, F)

Fig. 16. Abstract semantics of idealized Rosette.

({ℓ1, . . . , ℓ𝑛}, 𝑥) ∼ ({ℓ ′
1
, . . . , ℓ ′𝑛}, 𝑥 ′) ∧ ({ℓ ′

1
, . . . , ℓ ′𝑛}, 𝑥) ∼ ({ℓ ′′

1
, . . . , ℓ ′′𝑛 }, 𝑥 ′)

⇐⇒
(
( N𝑓1 . . . N𝑓𝑛 . (ℓ1 𝑓1) . . . (ℓ𝑛 𝑓𝑛) · 𝑥 = (ℓ ′

1
𝑓1) . . . (ℓ ′𝑛 𝑓𝑛) · 𝑥 ′)

∧ ( N𝑓1 . . . N𝑓𝑛 . (ℓ ′1 𝑓1) . . . (ℓ ′𝑛 𝑓𝑛) · 𝑥 ′ = (ℓ ′′
1
𝑓1) . . . (ℓ ′′𝑛 𝑓𝑛) · 𝑥 ′′)

)
Pitts [49, Proposition 3.10]

⇐⇒
©«

N𝑓1 . . . N𝑓𝑛 .

(ℓ1 𝑓1) . . . (ℓ𝑛 𝑓𝑛) · 𝑥 = (ℓ ′
1
𝑓1) . . . (ℓ ′𝑛 𝑓𝑛) · 𝑥 ′∧

(ℓ ′
1
𝑓1) . . . (ℓ ′𝑛 𝑓𝑛) · 𝑥 ′ = (ℓ ′′

1
𝑓1) . . . (ℓ ′′𝑛 𝑓𝑛) · 𝑥 ′′

ª®®¬
=⇒ N𝑓1 . . . N𝑓𝑛 .(ℓ1 𝑓1) . . . (ℓ𝑛 𝑓𝑛) · 𝑥 = (ℓ ′′

1
𝑓1) . . . (ℓ ′′𝑛 𝑓𝑛) · 𝑥 ′′

⇐⇒ ({ℓ1, . . . , ℓ𝑛}, 𝑥) ∼ ({ℓ ′′
1
, . . . , ℓ ′′𝑛 }, 𝑥 ′).
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This shows (∼) is an equivariant equivalence relation, so the quotient nominal set is well-defined,

with action as claimed. □

Definition B.10. The sets Env and Val form nominal sets via the following group action:

𝜋 · 𝜌 = {𝑥 ↦→ 𝜋 · 𝜌 (𝑥) | 𝑥 ∈ dom(𝜌)}
𝜋 · true = true

𝜋 · false = false

𝜋 · clo(𝜆𝑥.𝑒, 𝜌 ′) = clo(𝜆𝑥.𝑒, 𝜋 · 𝜌 ′)
𝜋 · 𝑟 = 𝑟 𝑟 ∈ Q

𝜋 · () = ()
𝜋 · (𝑣,𝑤) = (𝜋 · 𝑣, 𝜋 ·𝑤)

𝜋 · ℓ = 𝜋 (ℓ)

Definition B.11. The set Store forms a nominal set via the following group action:

𝜋 · 𝜎 = {𝜋 · ℓ ↦→ 𝜋 · 𝑣 | ℓ ↦→ 𝑣 ∈ 𝜎}

Definition B.12. Let Result be the nominal set ⟨Locs⟩(Val × Store).

Definition B.13. A tuple (𝜌, 𝑒, 𝜎) ∈ Env×Exp×Store iswell-formed if locs(𝜌)∪ locs(𝜎) ⊆ dom(𝜎),
FV(𝑒) ⊆ dom(𝜌), and FV(𝜌 (𝑥)) = ∅ for all 𝑥 ∈ dom(𝜌). Let Config be the nominal set of well-

formed tuples.

Proof. The well-formedness condition is equivariant, so this indeed forms a nominal set. □

Lemma B.14 (Invariant of the concrete semantics). If (𝜌, 𝑒, 𝜎) ∈ Config and 𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′),
then 𝜎 ′ = 𝜎old ⊎ 𝜎new for some 𝜎old, 𝜎new with dom(𝜎 ′) = dom(𝜎old).

Proof. By induction on 𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′). □

Lemma B.15 (Equivariance). Let 𝜋 : Loc → Loc be a permutation on store locations. Then

𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′) implies that 𝜋 · 𝜌, 𝑠 ⊢ (𝑒, 𝜋 · 𝜎) ⇓ (𝜋 · 𝑣, 𝜋 · 𝜎).

Proof. Let 𝜋 : Loc → Loc, 𝜌 ∈ Env, 𝑠 ∈ BN
, 𝑒 ∈ Expr, 𝜎, 𝜎 ′ ∈ Store, and 𝑣 ∈ Value such that

𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′)

We will show that

𝜋 · 𝜌, 𝑠 ⊢ (𝑒, 𝜋 · 𝜎) ⇓ (𝜋 · 𝑣, 𝜋 · 𝜎 ′)
by structural induction on 𝜌 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′). We have several cases:

(Var) Consider 𝑒 = 𝑥 . The only concrete big-step rule that matches 𝑒 = 𝑥 is Var. Hence, by inversion

of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′), we get

𝜌, 𝑠 ⊢ (𝑥, 𝜎) ⇓ (𝜌 (𝑥), 𝜎)

where 𝑥 ∈ dom(𝜌). Clearly, then, we also have that 𝑥 ∈ dom(𝜋 · 𝜌). Hence, we can prove

𝜋 · 𝜌, 𝑠 ⊢ (𝑥, 𝜋 · 𝜎) ⇓ (𝜋 · 𝜌 (𝑥), 𝜋 · 𝜎)

using the concrete big-step judgement Var.
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(Lam) Consider 𝑒 = 𝜆𝑥 .𝑒′. The only concrete rule that matches 𝑒 = 𝜆𝑥 .𝑒′ is Lam. Hence, by inversion
of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′), we get

𝜌, 𝑠 ⊢ (𝜆𝑥 .𝑒′, 𝜎) ⇓ (clo(𝜆𝑥 .𝑒′, 𝜌), 𝜎)

Clearly, then, we can also prove that

𝜋 · 𝜌, 𝑠 ⊢ (𝜆𝑥 .𝑒′, 𝜋 · 𝜎) ⇓ (clo(𝜆𝑥 .𝑒′, 𝜋 · 𝜌), 𝜋 · 𝜎)

using the concrete big-step judgement Lam. Note, we have 𝜋 ·clo(𝜆𝑥 .𝑒′, 𝜌) = clo(𝜆𝑥.𝑒′, 𝜋 ·𝜌)
by definition, so we are done.

(True) Consider 𝑒 = true. The only concrete rule that matches 𝑒 = true is True. Hence, by inversion
of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′), we get

𝜌, 𝑠 ⊢ (true, 𝜎) ⇓ (true, 𝜎)

Clearly, then we can also prove that

𝜋 · 𝜌, 𝑠 ⊢ (true, 𝜋 · 𝜎) ⇓ (true, 𝜋 · 𝜎)

using the concrete big-step judgement True. Note, we have 𝜋 · true = true by definition, so

we are done.

(False) Consider 𝑒 = false. Apply identical reasoning as in the True case.

(Num) Consider 𝑒 = 𝑎 for 𝑎 ∈ Q. Apply identical reasoning as in the True case.

(Arith) Consider 𝑒 = 𝑥1 ⊕ 𝑥2 for ⊕ ∈ {+,−,×}. The only concrete rule that matches 𝑒 = 𝑥1 ⊕ 𝑥2 is

Arith. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′), we get

𝜌, 𝑠 ⊢ (𝑥1 ⊕ 𝑥2, 𝜎) ⇓ (𝜌 (𝑥1) ⟦⊕⟧ 𝜌 (𝑥2), 𝜎)

where 𝜌 (𝑥1), 𝜌 (𝑥2) ∈ Q. Since 𝑥,𝑦 ∈ dom(𝜌), we have that 𝑥,𝑦 ∈ dom(𝜋 · 𝜌) by definition.

Moreover, because 𝜌 (𝑥1), 𝜌 (𝑥2) ∈ Q, we get that 𝜋 · 𝜌 (𝑥1), 𝜋 · 𝜌 (𝑥2) ∈ Q by definition. Thus,

we can prove that

𝜋 · 𝜌, 𝑠 ⊢ (𝑥1 ⊕ 𝑥2, 𝜋 · 𝜎) ⇓ (𝜋 · 𝜌 (𝑥1) ⟦⊕⟧𝜋 · 𝜌 (𝑥2), 𝜋 · 𝜎)

using the concrete big-step judgement Arith. Note,

𝜋 · (𝜌 (𝑥1) ⟦⊕⟧ 𝜌 (𝑥2)) = 𝜌 (𝑥1) ⟦⊕⟧ 𝜌 (𝑥2) = 𝜋 · 𝜌 (𝑥1) ⟦⊕⟧𝜋 · 𝜌 (𝑥2)

by definition. Hence, we are done.

(Pair) Consider 𝑒 = (𝑥,𝑦). The only concrete rule that matches 𝑒 = (𝑥,𝑦) is Pair. Hence, by inversion
of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′), we get

𝜌, 𝑠 ⊢ ((𝑥,𝑦), 𝜎) ⇓ ((𝜌 (𝑥), 𝜌 (𝑦)), 𝜎)

where 𝑥,𝑦 ∈ dom(𝜌). Clearly, because 𝑥,𝑦 ∈ dom(𝜌), we also have that 𝑥,𝑦 ∈ dom(𝜋 · 𝜌) by
definition. Hence, we can prove that

𝜋 · 𝜌, 𝑠 ⊢ ((𝑥,𝑦), 𝜋 · 𝜎) ⇓ ((𝜋 · 𝜌 (𝑥), 𝜋 · 𝜌 (𝑦)), 𝜋 · 𝜎)

using the concrete big-step judgement Pair. Note,

𝜋 · (𝜌 (𝑥), 𝜌 (𝑦)) = (𝜋 · 𝜌 (𝑥), 𝜋 · 𝜌 (𝑦))

by definition, so we are done.

(Fst) Consider 𝑒 = fst𝑥 . The only concrete rule that matches 𝑒 = fst𝑥 is Fst. Hence, by inversion

of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′), we get

𝜌, 𝑠 ⊢ (fst𝑥, 𝜎) ⇓ (𝑣, 𝜎)
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where 𝜌 (𝑥) = (𝑣,𝑤). Clearly, because 𝑥 ∈ dom(𝜌), we have that 𝑥 ∈ dom(𝜋 · 𝜌) by definition.
Moreover, we know that 𝜋 · 𝜌 (𝑥) = 𝜋 · (𝑣,𝑤) = (𝜋 · 𝑣, 𝜋 ·𝑤) by definition. Hence, we can

prove that

𝜋 · 𝜌, 𝑠 ⊢ (fst𝑥, 𝜋 · 𝜎) ⇓ (𝜋 · 𝑣, 𝜋 · 𝜎)
using the concrete big-step judgement Fst, so we are done.

(Snd) Consider 𝑒 = snd𝑥 . Apply identical reasoning as in the Fst case.

(Ref) Consider 𝑒 = ref𝑥 . The only concrete rule that matches 𝑒 = ref𝑥 is Ref. Hence, by inversion

of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′), we get
𝜌, 𝑠 ⊢ (ref𝑥, 𝜎) ⇓ (ℓ, 𝜎 [ℓ ↦→ 𝜌 (𝑥)])

where 𝑥 ∈ dom(𝜌) and ℓ is not in locs(𝜌, 𝜎). Clearly, because 𝑥 ∈ dom(𝜌), we have that
𝑥 ∈ dom(𝜋 · 𝜌) by definition. Now, consider ℓ ′ = 𝜋 (ℓ). Notice, because ℓ is not in locs(𝜌, 𝜎),
it must be the case that ℓ ′ is not in locs(𝜋 · 𝜌, 𝜋 · 𝜎). To see why, suppose, for the purposes of

contradiction, that ℓ ′ is in locs(𝜋 · 𝜌, 𝜋 · 𝜎). There are two sub-cases:

(a) If ℓ ′ ∈ im(𝜋 · 𝜌), then there must exist some mapping 𝑦 ↦→ ℓ ′ ∈ 𝜋 · 𝜌 . This implies that the

mapping 𝑦 ↦→ 𝜋−1 (ℓ ′), which is equivalently 𝑦 ↦→ ℓ , is in 𝜌 , which is a contradiction.

(b) Similarly, if ℓ ′ ∈ dom(𝜋 · 𝜎), then there must exist some mapping ℓ ′ ↦→ 𝑣 ∈ 𝜋 · 𝜎 . Again,
by definition, this means that 𝜋−1 (ℓ ′) ↦→ 𝜋−1 (𝑣), which is equivalently ℓ ↦→ 𝜋−1 (𝑣), is in
𝜎 , which is a contradiction.

Thus, ℓ ′ is not in locs(𝜋 · 𝜌, 𝜋 · 𝜎). This allows us to prove

𝜋 · 𝜌, 𝑠 ⊢ (ref𝑥, 𝜋 · 𝜎) ⇓ (ℓ ′, (𝜋 · 𝜎) [ℓ ′ ↦→ 𝜋 · 𝜌 (𝑥)])
using the concrete big-step judgement Ref. Note, we have, as previously mentioned, that

𝜋 · ℓ = 𝜋 (ℓ) = ℓ ′ and that

𝜋 · (𝜎 [ℓ ↦→ 𝜌 (𝑥)]) = 𝜋 · (𝜎 ⊎ {ℓ ↦→ 𝜌 (𝑥)})
= (𝜋 · 𝜎) ⊎ (𝜋 · {ℓ ↦→ 𝜌 (𝑥)})
= (𝜋 · 𝜎) ⊎ {ℓ ′ ↦→ 𝜋 · 𝜌 (𝑥)}
= (𝜋 · 𝜎) [ℓ ′ ↦→ 𝜋 · 𝜌 (𝑥)]

so we are done.

(Get) Consider 𝑒 = !𝑥 . The only concrete rule that matches 𝑒 = !𝑥 is Get. Hence, by inversion of

our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′), we get
𝜌, 𝑠 ⊢ (!𝑥, 𝜎) ⇓ (𝜎 (𝜌 (𝑥)), 𝜎)

where 𝜌 (𝑥) ∈ dom(𝜎). As highlighted earlier, 𝑥 ∈ dom(𝜌) implies that 𝑥 ∈ dom(𝜋 · 𝜌)
by definition. Now, say that 𝜎 (𝜌 (𝑥)) = 𝑣 for some 𝑣 ∈ Value. Then, if 𝜌 (𝑥) ∈ dom(𝜎), we
have 𝜌 (𝑥) ↦→ 𝑣 ∈ 𝜎 . By definition, we then get (𝜋 · 𝜌 (𝑥)) ↦→ (𝜋 · 𝑣) ∈ 𝜋 · 𝜎 , meaning

𝜋 · 𝜌 (𝑥) ∈ dom(𝜋 · 𝜎). Hence, we can prove

𝜋 · 𝜌, 𝑠 ⊢ (!𝑥, 𝜋 · 𝜎) ⇓ ((𝜋 · 𝜎) (𝜋 · 𝜌 (𝑥)), 𝜋 · 𝜎)
using the concrete big-step judgement Get, noting that

𝜋 · 𝜎 (𝜌 (𝑥)) = 𝜋 · 𝑣 = (𝜋 · 𝜎) (𝜋 · 𝜌 (𝑥))
by the reasoning above. Thus, we are done.

(Set) Consider 𝑒 = 𝑥≔𝑦. The only concrete rule that matches 𝑒 = 𝑥≔𝑦 is Set. Hence, by inversion

of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′), we get
𝜌, 𝑠 ⊢ (𝑥 ≔ 𝑦, 𝜎) ⇓ ((), 𝜎 [𝜌 (𝑥) ↦→ 𝜌 (𝑦)])
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where 𝑦 ∈ dom(𝜌) and 𝜌 (𝑥) ∈ dom(𝜎). Clearly, 𝑦 ∈ dom(𝜌) implies that 𝑦 ∈ dom(𝜋 · 𝜌).
Moreover, as highlighted in the Get case, 𝜋 · 𝜌 (𝑥) ∈ dom(𝜋 · 𝜎). Therefore, we can prove

𝜋 · 𝜌, 𝑠 ⊢ (𝑥 ≔ 𝑦, 𝜋 · 𝜎) ⇓ ((), (𝜋 · 𝜎) [𝜋 · 𝜌 (𝑥) ↦→ 𝜋 · 𝜌 (𝑦)])
using the concrete big-step judgement Set. Note, we have that 𝜋 · () = () and that

𝜋 · 𝜎 [𝜌 (𝑥) ↦→ 𝜌 (𝑦)] = 𝜋 · (𝜎 ⊎ {𝜌 (𝑥) ↦→ 𝜌 (𝑦)})
= (𝜋 · 𝜎) ⊎ (𝜋 · {𝜌 (𝑥) ↦→ 𝜌 (𝑦)})
= (𝜋 · 𝜎) ⊎ {𝜋 · 𝜌 (𝑥) ↦→ 𝜋 · 𝜌 (𝑦)}
= (𝜋 · 𝜎) [𝜋 · 𝜌 (𝑥) ↦→ 𝜋 · 𝜌 (𝑦)]

so we are done.

(SymTrue) Consider 𝑒 = sym and 𝑏 :: 𝑠 with 𝑏 = T. The only concrete rule that matches 𝑒 = sym and

𝑏 :: 𝑠 with 𝑏 = T is SymTrue. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′),
we get

𝜌, 𝑠 ⊢ (sym, 𝜎) ⇓ (true, 𝜎)
Because 𝑏 = T, we can immediately prove that

𝜋 · 𝜌, 𝑏 :: 𝑠 ⊢ (sym, 𝜋 · 𝜎) ⇓ (true, 𝜋 · 𝜎)
using the concrete big-step judgement IfTrue. Note, 𝜋 · true = true, so we are done.

(SymFalse) Consider 𝑒 = sym and 𝑏 :: 𝑠 with 𝑏 = F. Apply identical reasoning as in the SymTrue case.

(IfTrue) Consider 𝑒 = if 𝑥 𝑒1 𝑒2 with 𝜌 (𝑥) = true. The only concrete rule that matches 𝑒 = if 𝑥 𝑒1 𝑒2
with 𝜌 (𝑥) = true is IfTrue. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′),
we get

𝜌, 𝑠 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎) ⇓ (𝑣, 𝜎 ′)
with

𝑝, 𝑠 ⊢ (𝑒1, 𝜎) ⇓ (𝑣, 𝜎 ′)
By the inductive hypothesis, we have that

𝜋 · 𝜌, 𝑠 ⊢ (𝑒1, 𝜋 · 𝜎) ⇓ (𝜋 · 𝑣, 𝜋 · 𝜎 ′)
Additionally, we know that, because 𝜋 · 𝜌 (𝑥) = 𝜋 · true = true. Hence, we can prove

𝜋 · 𝜌, 𝑠 ⊢ (𝑒1, 𝜋 · 𝜎) ⇓ (𝜋 · 𝑣, 𝜋 · 𝜎 ′)
using the concrete big-step judgement IfTrue, so we are done.

(IfFalse) Consider 𝑒 = if 𝑥 𝑒1 𝑒2 with 𝜌 (𝑥) = false. Apply identical reasoning as in the IfFalse case.

(App) Consider 𝑒 = 𝑥1𝑥2. The only concrete rule that matches 𝑒 = 𝑥1𝑥2 is App. Hence, by inversion

of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′), we get
𝜌, 𝑠 ⊢ (𝑥1𝑥2, 𝜎) ⇓ (𝑣, 𝜎 ′)

with 𝜌 (𝑥1) = clo(𝜆𝑥 ′ .𝑒′, 𝜌 ′) and
𝜌 ′ [𝑥 ′ ↦→ 𝜌 (𝑥2)], 𝑠 ⊢ (𝑒′, 𝜎) ⇓ (𝑣, 𝜎 ′)

By the inductive hypothesis, we have that

𝜋 · 𝜌 ′ [𝑥 ′ ↦→ 𝜌 (𝑥2)], 𝑠 ⊢ (𝑒′, 𝜋 · 𝜎) ⇓ (𝜋 · 𝑣, 𝜋 · 𝜎 ′)
We are able to rewrite 𝜋 · 𝜌 ′ [𝑥 ′ ↦→ 𝜌 (𝑥2)] = (𝜋 · 𝜌 ′) [𝑥 ′ ↦→ 𝜋 · 𝜌 (𝑥2)] by definition. Notice,

because 𝑥1 ∈ dom(𝜌), we know that 𝑥1 ∈ dom(𝜋 · 𝜌). Moreover, we have that 𝜋 · 𝜌 (𝑥1) =
𝜋 · clo(𝜆𝑥 ′ .𝑒′, 𝜌 ′) = clo(𝜆𝑥 ′ .𝑒′, 𝜋 · 𝜌 ′). Thus, because
𝜋 · 𝜌 (𝑥1) = clo(𝜆𝑥 ′ .𝑒′, 𝜋 · 𝜌 ′) and (𝜋 · 𝜌 ′) [𝑥 ↦→ 𝜋 · 𝜌 (𝑥2)], 𝑠 ⊢ (𝑒′, 𝜋 · 𝜎) ⇓ (𝜋 · 𝑣, 𝜋 · 𝜎 ′)
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we can prove that

𝜋 · 𝜌, 𝑠 ⊢ (𝑥1𝑥2, 𝜋 · 𝜎) ⇓ (𝜋 · 𝑣, 𝜋 · 𝜎 ′)
Thus, we are done.

(Let) Let 𝑒 = let 𝑥 = 𝑒1 in 𝑒2. The only concrete rule that matches 𝑒 = let 𝑥 = 𝑒1 in 𝑒2 is Let.
Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′), we get

𝜌, 𝑠 ⊢ (let 𝑥 = 𝑒1 in 𝑒2, 𝜎) ⇓ (𝑣2, 𝜎2)
where, for 𝑠 { 𝑠1, 𝑠2, we have

𝜌, 𝑠1 ⊢ (𝑒1, 𝜎) ⇓ (𝑣1, 𝜎1)
and

𝜌 [𝑥 ↦→ 𝑣1], 𝑠2 ⊢ (𝑒2, 𝜎1) ⇓ (𝑣2, 𝜎2)
By the inductive hypothesis, we have that

𝜋 · 𝜌, 𝑠1 ⊢ (𝑒1, 𝜋 · 𝜎) ⇓ (𝜋 · 𝑣1, 𝜋 · 𝜎1)
and

𝜋 · 𝜌 [𝑥 ↦→ 𝑣1], 𝑠2 ⊢ (𝑒2, 𝜋 · 𝜎1) ⇓ (𝜋 · 𝑣2, 𝜋 · 𝜎2)
We can rewrite

𝜋 · 𝜌 [𝑥 ↦→ 𝑣1] = 𝜋 ·
(
𝜌 ⊎ {𝑥 ↦→ 𝑣1}

)
= (𝜋 · 𝜌) ⊎ (𝜋 · {𝑥 ↦→ 𝑣1})
= (𝜋 · 𝜌) ⊎ {𝑥 ↦→ 𝜋 · 𝑣1}
= (𝜋 · 𝜌) [𝑥 ↦→ 𝜋 · 𝑣1]

Hence, because 𝑠 { 𝑠1, 𝑠2 and

𝜋 · 𝜌, 𝑠1 ⊢ (𝑒1, 𝜋 · 𝜎) ⇓ (𝜋 · 𝑣1, 𝜋 · 𝜎1) and (𝜋 · 𝜌) [𝑥 ↦→ 𝜋 · 𝑣1] ⊢ (𝑒2, 𝜋 · 𝜎1) ⇓ (𝜋 · 𝑣2, 𝜋 · 𝜎2)
we can prove that

𝜋 · 𝜌, 𝑠 ⊢ (let 𝑥 = 𝑒1 in 𝑒2, 𝜋 · 𝜎) ⇓ (𝜋 · 𝑣2, 𝜋 · 𝜎2)
Hence, we are done.

This completes our proof by induction. □

Corollary B.16. The function run : Config → Result⊥ is a map of nominal sets.

Proof. It suffices to show 𝜋 · run(𝜌, 𝑒, 𝜎) (𝑠) = run(𝜋 · 𝜌, 𝑒, 𝜋 · 𝜎) (𝑠) for all 𝜋 : Autfin (Loc). Let
𝜌 ∈ Env, 𝑒 ∈ Expr, 𝜎 ∈ Store, 𝑠 ∈ BN

, and 𝜋 : Loc → Loc such that 𝜋 (ℓ) ≠ ℓ for a finite number of

elements ℓ ∈ Loc. We have two cases:

(1) Suppose that run(𝜌, 𝑒, 𝜎) (𝑠) = ⊥. Then it suffices to show that run(𝜋 · 𝜌, 𝑒, 𝜋 · 𝜎) (𝑠) = ⊥.
Assume, for the purposes of contradiction, that

run(𝜋 · 𝜌, 𝑒, 𝜋 · 𝜎) (𝑠) = ⟨dom(𝜎 ′) \dom(𝜋 · 𝜎)⟩(𝑣, 𝜎 ′)
This implies, by the definition of run, that

𝜋 · 𝜌, 𝑠 ⊢ (𝑒, 𝜋 · 𝜎) ⇓ (𝑣, 𝜎 ′)
Now, consider 𝜋−1

: Loc → Loc. By Theorem B.15, we have that

𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝜋−1 · 𝑣, 𝜋−1 · 𝜎 ′)
since 𝜋−1 · 𝜋 · 𝜌 = 𝜌 and 𝜋−1 · 𝜋 · 𝜎 = 𝜎 . Thus, by definition of run, we have that

run(𝜌, 𝑒, 𝜎) (𝑠) = ⟨dom(𝜋−1 · 𝜎 ′) \dom(𝜎)⟩(𝜋−1 · 𝑣, 𝜋−1 · 𝜎 ′)
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This is a contradiction, since we assumed run(𝜌, 𝑒, 𝜎) (𝑠) = ⊥. Therefore, our assumption that

run(𝜋 · 𝜌, 𝑒, 𝜋 · 𝜎) (𝑠) = ⟨dom(𝜎 ′) \ dom(𝜋 · 𝜎)⟩(𝑣, 𝜎 ′) was wrong, and we conclude run(𝜋 ·
𝜌, 𝑒, 𝜋 · 𝜎) (𝑠) = ⊥.
This shows 𝜋 · run(𝜌, 𝑒, 𝜎) (𝑠) = 𝜋 · ⊥ = ⊥ = run(𝜋 · 𝜌, 𝑒, 𝜋 · 𝜎) (𝑠), as desired.

(2) Suppose that run(𝜌, 𝑒, 𝜎) = ⟨dom(𝜎 ′) \dom(𝜎)⟩(𝑣, 𝜎 ′). Then, by the definition of run, we have

𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′)

By Theorem B.15, we then get

𝜋 · 𝜌, 𝑠 ⊢ (𝑒, 𝜋 · 𝜎) (𝑠) ⇓ (𝜋 · 𝑣, 𝜋 · 𝜎 ′)

This implies, by the definition of run, that

run(𝜋 · 𝜌, 𝑒, 𝜋 · 𝜎) (𝑠) = ⟨dom(𝜋 · 𝜎 ′) \dom(𝜋 · 𝜎)⟩(𝜋 · 𝑣, 𝜋 · 𝜎 ′)

It now suffices to show that

𝜋 · ⟨dom(𝜎 ′) \dom(𝜎)⟩(𝑣, 𝜎 ′) = ⟨dom(𝜋 · 𝜎 ′) \dom(𝜋 · 𝜎)⟩(𝜋 · 𝑣, 𝜋 · 𝜎 ′)

But we also have, by Theorem B.9, that

𝜋 · ⟨dom(𝜎 ′) \dom(𝜎)⟩(𝑣, 𝜎 ′) = ⟨𝜋 · (dom(𝜎 ′) \dom(𝜎))⟩(𝜋 · 𝑣, 𝜋 · 𝜎 ′)

So it is enough to show that 𝜋 · (dom(𝜎 ′) \dom(𝜎)) = dom(𝜋 · 𝜎 ′) \dom(𝜋 · 𝜎). We will break

this proof into two steps:

(a) (⊆) Take ℓ ∈ 𝜋 · (dom(𝜎 ′) \ dom(𝜎)). Then ℓ = 𝜋 (ℓ ′) for some ℓ ′ ∈ dom(𝜎 ′) \ dom(𝜎).
Moreover, we have ℓ ′ ↦→ 𝑣 ∈ 𝜎 ′\𝜎 for some 𝑣 ∈ Value. This implies both that ℓ ′ ↦→ 𝑣 ∈ 𝜎 ′

and

ℓ ′ ↦→ 𝑣 ∉ 𝜎 . Thus, by definition, ℓ ↦→ 𝜋 · 𝑣 ∈ 𝜋 · 𝜎 ′
. To see why ℓ ↦→ 𝜋 · 𝑣 ∉ 𝜋 · 𝜎 , assume that

ℓ ↦→ 𝜋 ·𝑣 ∈ 𝜋 ·𝜎 : because 𝜋−1 (ℓ) = ℓ ′, this would directly imply ℓ ′ ↦→ 𝑣 ∈ 𝜎 , which is impossible.

We then have that ℓ ↦→ 𝜋 · 𝑣 ∈ (𝜋 · 𝜎 ′) \ (𝜋 · 𝜎), meaning that ℓ ∈ dom(𝜋 · 𝜎 ′) \dom(𝜋 · 𝜎).
Therefore, 𝜋 · (dom(𝜎 ′) \dom(𝜎)) ⊆ dom(𝜋 · 𝜎 ′) \dom(𝜋 · 𝜎).

(b) (⊇) Take ℓ ∈ dom(𝜋 · 𝜎 ′) \dom(𝜋 · 𝜎). Then ℓ ↦→ 𝑣 ∈ (𝜋 · 𝜎 ′) \ (𝜋 · 𝜎) for some 𝑣 ∈ Value.

This directly implies that ℓ ↦→ 𝑣 ∈ (𝜋 · 𝜎 ′) and ℓ ↦→ 𝑣 ∉ (𝜋 · 𝜎). Say that ℓ ′ = 𝜋−1 (ℓ). Then, by
definition ℓ ′ ↦→ 𝜋−1 · 𝑣 ∈ 𝜎 ′

. To see why ℓ ′ ↦→ 𝜋−1 · 𝑣 ∉ 𝜎 , notice that, like the previous case,

ℓ ′ ↦→ 𝜋−1 · 𝑣 ∈ 𝜎 would imply a contradiction. Therefore, we have that ℓ ′ ↦→ 𝜋−1 · 𝑣 ∈ 𝜎 ′ \𝜎 ,
meaning ℓ ′ ∈ dom(𝜎 ′) \ dom(𝜎). Hence, ℓ ∈ 𝜋 · (dom(𝜎 ′) \ dom(𝜎)), and we conclude

𝜋 · (dom(𝜎 ′) \dom(𝜎)) ⊇ dom(𝜋 · 𝜎 ′) \dom(𝜋 · 𝜎).
Therefore, 𝜋 · (dom(𝜎 ′) \dom(𝜎)) = dom(𝜋 · 𝜎 ′) \dom(𝜋 · 𝜎), and we are done.

Therefore, 𝜋 · run(𝜌, 𝑒, 𝜎) = run(𝜋 · 𝜌, 𝑒, 𝜋 · 𝜎). □

Lemma B.17 (Nominal determinism). If (𝜌, 𝑒, 𝜎) ∈ Config and 𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝑣1, 𝜎1) and 𝜌, 𝑠 ⊢
(𝑒, 𝜎) ⇓ (𝑣2, 𝜎2) then ⟨dom(𝜎1) \dom(𝜎)⟩(𝑣1, 𝜎1) = ⟨dom(𝜎2) \dom(𝜎)⟩(𝑣2, 𝜎2).

Proof. By induction on 𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝑣1, 𝜎1) and inversion on 𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝑣2, 𝜎2). We show

selected cases:

• (Ref) Suppose 𝜌, 𝑠 ⊢ (ref𝑥, 𝜎) ⇓ (ℓ, 𝜎⊎{ℓ ↦→ 𝜌 (𝑥)}) and 𝜌, 𝑠 ⊢ (ref𝑥, 𝜎) ⇓ (ℓ ′, 𝜎⊎{ℓ ′ ↦→ 𝜌 (𝑥)}).
Then ⟨ℓ⟩(ℓ, 𝜎 ⊎ {ℓ ↦→ 𝜌 (𝑥)}) = ⟨ℓ ′⟩(ℓ ′, 𝜎 ⊎ {ℓ ′ ↦→ 𝜌 (𝑥)}).

• (Let) Suppose

(1) 𝜌, 𝑠1 ⊢ (𝑒1, 𝜎) ⇓ (𝑣1, 𝜎1)
(2) 𝜌 [𝑥 ↦→ 𝑣1], 𝑠2 ⊢ (𝑒2, 𝜎1) ⇓ (𝑣2, 𝜎2)
(3) 𝜌, 𝑠1 ⊢ (𝑒1, 𝜎) ⇓ (𝑣 ′

1
, 𝜎 ′

1
)

(4) 𝜌 [𝑥 ↦→ 𝑣 ′
1
], 𝑠2 ⊢ (𝑒2, 𝜎 ′

1
) ⇓ (𝑣 ′

2
, 𝜎 ′

2
)
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By IH on (1) and (3), ⟨𝜎1 \𝜎⟩(𝑣1, 𝜎1) = ⟨𝜎 ′
1
\𝜎⟩(𝑣 ′

1
, 𝜎 ′

1
), so there are products of transpositions

𝜋, 𝜋 ′
swapping 𝜎1 \𝜎 and 𝜎 ′

1
\𝜎 with some fresh set of locations 𝐹 respectively such that 𝜋 ·

(𝑣1, 𝜎1) = 𝜋 ′ · (𝑣 ′
1
, 𝜎 ′

1
). (Note we have abused notation and written things like 𝜎2 \𝜎1 instead of

dom(𝜎2) \dom(𝜎1) inside of ⟨−⟩; we will continue to do this throughout for legibility’s sake.)

By Theorem B.15, (4) implies 𝜌 [𝑥 ↦→ 𝑣1], 𝑠2 ⊢ (𝑒2, 𝜎1) ⇓ 𝜋−1𝜋 ′ · (𝑣 ′
2
, 𝜎 ′

2
), which by IH with (2)

implies ⟨𝜎2 \𝜎1⟩(𝑣2, 𝜎2) = ⟨𝜋−1𝜋 ′𝜎 ′
2
\𝜎1⟩(𝜋−1𝜋 ′ · (𝑣 ′

2
, 𝜎 ′

2
)) = 𝜋−1𝜋 ′ · ⟨𝜎 ′

2
\𝜎 ′

1
⟩(𝑣 ′

2
, 𝜎 ′

2
). Rearranging

gives ⟨𝜎2 \𝜎1⟩(𝜋 · (𝑣2, 𝜎2)) = ⟨𝜎 ′
2
\𝜎 ′

1
⟩(𝜋 ′ · (𝑣 ′

2
, 𝜎 ′

2
)), where 𝜋, 𝜋 ′

are allowed to be brought under

⟨−⟩ because (𝜎1 \𝜎) ∪ 𝐹 is disjoint from 𝜎2 \𝜎1 and (𝜎 ′
1
\𝜎) ∪ 𝐹 is disjoint from 𝜎 ′

2
\𝜎 ′

1
. This

implies there exist products of transpositions 𝑝, 𝑝′ swapping 𝜎2 \𝜎1, 𝜎 ′
2
\𝜎 ′

1
with some fresh set of

locations 𝐹 ′ respectively such that 𝑝 ·𝜋 · (𝑣2, 𝜎2) = 𝑝′ ·𝜋 ′ · (𝑣 ′
2
, 𝜎 ′

2
). Since 𝑝, 𝜋 are disjoint products

of transpositions, 𝑝𝜋 is itself a product of transpositions swapping 𝜎2\𝜎 with 𝐹 ⊎ 𝐹 ′; analogously,
𝑝′𝜋 ′

swaps 𝜎 ′
2
\𝜎 with 𝐹 ⊎ 𝐹 ′. This establishes ⟨𝜎2 \𝜎⟩(𝑣2, 𝜎2) = ⟨𝜎 ′

2
\𝜎⟩(𝑣 ′

2
, 𝜎 ′

2
), as needed.

All other cases are standard. □

Definition B.18. For 𝑆 ⊆fin SymVar, let𝐴𝑆
be the set of functionsModel𝑆 → 𝐴⊥ with finite image.

We will implicitly coerce elements of 𝐴𝑆
into elements of 𝐴, and into elements of 𝐴𝑇

for 𝑇 ⊇ 𝑆 .

Definition B.19. For 𝑎 ∈ 𝐴𝑆⊎𝑇
and𝑚 ∈ Model𝑆 , define 𝑎 |𝑚 ∈ 𝐴𝑇

by 𝑎 |𝑚 (𝑚′) = 𝑎(𝑚 ⊎𝑚′).

Definition B.20. For a store 𝜎 , symbolic value �̂� , and symbolic store 𝜎 ′
with symvars(�̂�, 𝜎 ′) ⊆ 𝑉 ,

let result𝑉 (𝜎, �̂�, 𝜎 ′) be the function
result𝑉 (𝜎, �̂�, 𝜎 ′) : Model𝑉 → Result⊥

result𝑉 (𝜎, �̂�, 𝜎 ′) (𝑚) =
{
⟨dom(𝜎 ′ (𝑚)) \dom(𝜎)⟩(�̂� (𝑚), 𝜎 ′ (𝑚)) if �̂� (𝑚) ≠ ⊥, 𝜎 ′ (𝑚) ≠ ⊥
⊥ otherwise

Theorem B.21 (Correctness of Idealized Rosette). Suppose that 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ). Then, for
every𝑚 ∈ Model(symvars 𝜌,𝜎 ) with (𝜌 (𝑚), 𝑒, 𝜎 (𝑚)) ∈ Config and𝑉 = symvars(�̂�, 𝜎 ′)\symvars(𝜌, 𝜎):
(1) The following functions have the same image:

run(𝜌 (𝑚), 𝑒, 𝜎 (𝑚)) : BoolN → Result⊥

result𝑉 (𝜎 (𝑚), �̂� |𝑚, 𝜎 ′ |𝑚) : Model𝑉 → Result⊥

(2) 𝜓 (𝑚 ⊎𝑚′) = T if and only if �̂� (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 ′ (𝑚 ⊎𝑚′) ≠ ⊥ for all𝑚′ ∈ Model𝑉

Proof. Let 𝜌 ∈ Ênv, 𝑒 ∈ Expr, and 𝜎 ∈ �Store. Additionally, let �̂� ∈ �
Value, 𝜎 ′ ∈ �Store, and

𝜓 : Model𝑉 → B for 𝑉 = symvars(�̂�, 𝜎 ′) \ symvars(𝜌, 𝜎) such that

𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 )
We will first prove (1) and (2) simulatenously by structural induction on 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ).
Let the inductive hypothesis 𝑃 (𝜌, 𝑒, 𝜎, �̂�, 𝜎 ′,𝜓 ) be that, if 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ), the following two

functions have the same image for all𝑚 ∈ Model
symvars(𝜌,𝜎 ) with (𝜌 (𝑚), 𝑒, 𝜎 (𝑚)) ∈ Config:

run(𝜌 (𝑚), 𝑒, 𝜎 (𝑚)) : BN → Result⊥

result𝑉 (𝜎 (𝑚), �̂� |𝑚, 𝜎 ′ |𝑚) : Model𝑉 → Result⊥

and

𝜓 (𝑚 ⊎𝑚′) = T ⇐⇒ �̂� (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 ′ (𝑚 ⊎𝑚′) ≠ ⊥
for all𝑚′ ∈ Model𝑉 .

Let𝑚 ∈ Model
symvars 𝜌,𝜎 with (𝜌 (𝑚), 𝑒, 𝜎 (𝑚)) ∈ Config. We have several cases:
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(Var) Consider 𝑒 = 𝑥 . The only abstract big-step judgement whose conclusion matches 𝑒 = 𝑥 is Var.

Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ), we get

𝜌 ⊢ (𝑥, 𝜎) ⇚ (𝜌 (𝑥), 𝜎, T)

We will begin by showing (1). It suffices to show that the following two functions have the

same image

run(𝜌 (𝑚), 𝑥, 𝜎 (𝑚)) : BN → Result⊥

result𝑉 (𝜎 (𝑚), 𝜌 (𝑥) |𝑚, 𝜎 |𝑚) : Model𝑉 → Result⊥

By the assumption that (𝜌 (𝑚), 𝑥, 𝜎 (𝑚)) ∈ Config, we have that locs(𝜌 (𝑚)) ∪ locs(𝜎 (𝑚)) ⊆
dom(𝜎 (𝑚)), FV(𝜌 (𝑚) (𝑦)) = ∅ for all 𝑦 ∈ dom(𝜌 (𝑚)), and FV(𝑒) ⊆ dom(𝜌 (𝑚)). This implies

that 𝑥 ∈ dom(𝜌 (𝑚)), meaning further that 𝜌 (𝑚) (𝑥) ≠ ⊥. These facts allow us to prove, for any

𝑠 ∈ BN
, that

𝜌 (𝑚), 𝑠 ⊢ (𝑥, 𝜎 (𝑚)) ⇓ (𝜌 (𝑚) (𝑥), 𝜎 (𝑚))
using the concrete big-step judgement Var. Then, by definition of run, we have that

run(𝜌 (𝑚), 𝑥, 𝜎 (𝑚)) (𝑠) = ⟨∅⟩(𝜌 (𝑚) (𝑥), 𝜎 (𝑚))

for any 𝑠 ∈ BN
due to the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅. Thus,

img(run(𝜌 (𝑚), 𝑥, 𝜎 (𝑚))) = {⟨∅⟩(𝜌 (𝑚) (𝑥), 𝜎 (𝑚))}

Now, observe that 𝑉 = symvars(𝜌 (𝑚) (𝑥), 𝜎) \ symvars(𝜌, 𝜎) = ∅. Thus, we get that Model𝑉 =

{∅}. Note the following two equivalences:

𝜌 (𝑥) |𝑚 (∅) = 𝜌 (𝑚 ⊎ ∅)(𝑥) = 𝜌 (𝑚) (𝑥)
𝜎 |𝑚 (∅) = 𝜎 (𝑚 ⊎ ∅) = 𝜎 (𝑚)

Hence, we have, by definition, that

result𝑉 (𝜎 (𝑚), 𝜌 (𝑥) |𝑚, 𝜎 |𝑚) (∅) = ⟨∅⟩(𝜌 (𝑚) (𝑥), 𝜎 (𝑚))

due to the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅. This means that

img(result𝑉 (𝜎 (𝑚), 𝜌 (𝑥) |𝑚, 𝜎 |𝑚)) = {⟨∅⟩(𝜌 (𝑚) (𝑥), 𝜎 (𝑚))}

Thus, img(run(𝜌 (𝑚), 𝑥, 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), 𝜌 (𝑥) |𝑚, 𝜎 |𝑚)), completing our proof of

(1).

To prove (2), it suffices to show that

T(𝑚 ⊎𝑚′) = T ⇐⇒ 𝜌 (𝑚 ⊎𝑚′) (𝑥) ≠ ⊥ and 𝜎 (𝑚 ⊎𝑚′) ≠ ⊥

for all𝑚′ ∈ Model𝑉 . Notice first that

T(𝑚 ⊎𝑚′) = T

for any𝑚′ ∈ Model𝑉 . Likewise, because ⊥ ∉ img(result𝑉 (𝜎 (𝑚), 𝜌 (𝑥) |𝑚, 𝜎 |𝑚)) (shown in the

proof of (1)), we know that 𝜌 (𝑥) |𝑚 (𝑚′) ≠ ⊥ and 𝜎 |𝑚 (𝑚′) ≠ ⊥ for all𝑚′ ∈ Model𝑉 by definition

of result𝑉 . Hence, in all cases, T(𝑚 ⊎𝑚′) = T, 𝜌 (𝑚 ⊎𝑚′) (𝑥) ≠ ⊥, and 𝜎 (𝑚 ⊎𝑚′) ≠ ⊥. This
completes our proof of (2).

(True) Consider 𝑒 = true. The only abstract big-step judgement whose conclusion matches 𝑒 = true
is True. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ), we get

𝜌 ⊢ (true, 𝜎) ⇚ ( [T : true], 𝜎, T)
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We will begin by showing (1). It suffices to show that the following two functions have the

same image

run(𝜌 (𝑚), true, 𝜎 (𝑚)) : BN → Result⊥

result𝑉 (𝜎 (𝑚), [T : true] |𝑚, 𝜎 |𝑚) : Model𝑉 → Result⊥

By the assumption that (𝜌 (𝑚), 𝑒, 𝜎 (𝑚)) ∈ Config, we know that 𝜌 (𝑚) ≠ ⊥ and 𝜎 (𝑚) ≠ ⊥.
Hence, we can prove, for any 𝑠 ∈ BN

, that

𝜌 (𝑚), 𝑠 ⊢ (true, 𝜎 (𝑚)) ⇓ (true, 𝜎 (𝑚))
using the concrete big-step judgement True. Then, by definition of run, we have that

run(𝜌 (𝑚), true, 𝜎 (𝑚)) (𝑠) = ⟨∅⟩(true, 𝜎 (𝑚))
for any 𝑠 ∈ BN

due to the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅. Thus,
img(run(𝜌 (𝑚), true, 𝜎 (𝑚))) = {⟨∅⟩(true, 𝜎 (𝑚))}

Now, observe that𝑉 = symvars( [T : true], 𝜎) \symvars(𝜌, 𝜎) = ∅. Thus,Model𝑉 = {∅}. Note
the following two equivalences:

[T : true] |𝑚 (∅) = [T : true] (𝑚 ⊎ ∅) = [T : true] (𝑚) = true

𝜎 |𝑚 (∅) = 𝜎 (𝑚 ⊎ ∅) = 𝜎 (𝑚)
Hence, we have, by definition, that

result𝑉 (𝜎 (𝑚), [T : true] |𝑚, 𝜎 |𝑚) (∅) = ⟨∅⟩(true, 𝜎 (𝑚))
due to the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅. This means

img(result𝑉 (𝜎 (𝑚), [T : true] |𝑚, 𝜎 |𝑚)) = {⟨∅⟩(true, 𝜎 (𝑚))}
Thus, img(run(𝜌 (𝑚), true, 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), [T : true] |𝑚, 𝜎 |𝑚)). This completes

our proof of (1).

To prove (2), it suffices to show that

T(𝑚 ⊎𝑚′) = T ⇐⇒ [T : true] (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 (𝑚 ⊎𝑚′) ≠ ⊥
for all𝑚′ ∈ Model𝑉 . Notice first that

T(𝑚 ⊎𝑚′) = T

for any𝑚′ ∈ Model𝑉 . Likewise, because ⊥ ∉ img(result𝑉 (𝜎 (𝑚), [T : true] |𝑚, 𝜎 |𝑚)) (shown in

the proof of (1)), we know that [T : true] |𝑚 (𝑚′) ≠ ⊥ and 𝜎 |𝑚 (𝑚′) ≠ ⊥ for all𝑚′ ∈ Model𝑉

by definition of result𝑉 . Hence, in all cases, T(𝑚 ⊎𝑚′) = T, [T : true] (𝑚 ⊎𝑚′) ≠ ⊥, and
𝜎 (𝑚 ⊎𝑚′) ≠ ⊥. This completes our proof of (2).

(False) Consider 𝑒 = false. Apply identical reasoning as in the previous case.

(Num) Consider 𝑒 = 𝑟 for 𝑟 ∈ Q. The only abstract big-step judgement whose conclusion matches 𝑒 = 𝑟

for 𝑟 ∈ Q is Num. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ), we get
𝜌 ⊢ (𝑟, 𝜎) ⇚ ( [T : 𝑟 ], 𝜎, T)

We will begin by showing (1). It suffices to show that the following two functions have the

same image

run(𝜌 (𝑚), 𝑟 , 𝜎 (𝑚)) : BN → Result⊥

result𝑉 (𝜎 (𝑚), [T : 𝑟 ] |𝑚, 𝜎 |𝑚) : Model𝑉 → Result⊥
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By the assumption that (𝜌 (𝑚), 𝑒, 𝜎 (𝑚)) ∈ Config, we know that 𝜌 (𝑚) ≠ ⊥ and 𝜎 (𝑚) ≠ ⊥.
Hence, we can prove, for any 𝑠 ∈ BN

, that

𝜌 (𝑚), 𝑠 ⊢ (𝑟, 𝜎 (𝑚)) ⇓ (𝑟, 𝜎 (𝑚))
using the concrete big-step judgement Num. Then, by the definition of run, we have that

run(𝜌 (𝑚), 𝑟 , 𝜎 (𝑚)) (𝑠) = ⟨∅⟩(𝑟, 𝜎 (𝑚))
for any 𝑠 ∈ BN

due to the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅. Thus,
img(run(𝜌 (𝑚), 𝑟 , 𝜎 (𝑚))) = {⟨∅⟩(𝑟, 𝜎 (𝑚))}

Now, observe that 𝑉 = symvars( [T : 𝑟 ], 𝜎) \symvars(𝜌, 𝜎) = ∅. Thus, Model𝑉 = {∅}. Note the
following two equivalences:

[T : 𝑟 ] |𝑚 (∅) = [T : 𝑟 ] (𝑚 ⊎ ∅) = [T : 𝑟 ] (𝑚) = 𝑟

𝜎 |𝑚 (∅) = 𝜎 (𝑚 ⊎ ∅) = 𝜎 (𝑚)
Hence, we have, by definition, that

result𝑉 (𝜎 (𝑚), [T : 𝑟 ] |𝑚, 𝜎 |𝑚) (∅) = ⟨∅⟩(𝑟, 𝜎 (𝑚))
due to the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅. This means

img(result𝑉 (𝜎 (𝑚), [T : 𝑟 ] |𝑚, �̂� |𝑚)) = {⟨∅⟩(𝑟, 𝜎 (𝑚))}
Thus, img(run(𝜌 (𝑚), 𝑟 , 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), [T : 𝑟 ] |𝑚, 𝜎 |𝑚)). This completes our proof

of (1).

To prove (2), it suffices to show that

T(𝑚 ⊎𝑚′) = T ⇐⇒ [T : 𝑟 ] (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 (𝑚 ⊎𝑚′) ≠ ⊥
for all𝑚′ ∈ Model𝑉 . Notice first that

T(𝑚 ⊎𝑚′) = T

for any 𝑚′ ∈ Model𝑉 . Likewise, because ⊥ ∉ img(result𝑉 (𝜎 (𝑚), [T : 𝑟 ] |𝑚, 𝜎 |𝑚)) (shown in

the proof of (1)), we know that [T : 𝑟 ] |𝑚 (𝑚′) ≠ ⊥ and 𝜎 |𝑚 (𝑚′) ≠ ⊥ for all𝑚′ ∈ Model𝑉 by

definition of result𝑉 . Hence, in all cases, T(𝑚⊎𝑚′) = T, [T : 𝑟 ] (𝑚⊎𝑚′) ≠ ⊥, and 𝜎 (𝑚⊎𝑚′) ≠ ⊥.
This completes our proof of (2).

(Lam) Consider 𝑒 = 𝜆𝑥 .𝑒′ for 𝑒′ ∈ Expr. The only abstract big-step judgement whose conclusion

matches 𝑒 = 𝜆𝑥 .𝑒′ is Lam. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ), we
get

𝜌 ⊢ (𝜆𝑥.𝑒′, 𝜎) ⇚ ( [T : clo(𝜆𝑥.𝑒′, 𝜌)], 𝜎, T)
We will begin by showing (1). It suffices to show that the following two functions have the

same image

run(𝜌 (𝑚), 𝜆𝑥 .𝑒′, 𝜎 (𝑚)) : BN → Result⊥

result𝑉 (𝜎 (𝑚), [T : clo(𝜆𝑥 .𝑒′, 𝜌)] |𝑚, 𝜎 |𝑚) : Model𝑉 → Result⊥

By the assumption that (𝜌 (𝑚), 𝑒, 𝜎 (𝑚)) ∈ Config, we know that 𝜌 (𝑚) ≠ ⊥ and 𝜎 (𝑚) ≠ ⊥.
Hence, we can prove, for any 𝑠 ∈ BN

, that

𝜌 (𝑚), 𝑠 ⊢ (𝜆𝑥.𝑒′, 𝜎 (𝑚)) ⇓ (clo(𝜆𝑥 .𝑒′, 𝜌 (𝑚)), 𝜎 (𝑚))
using the concrete big-step judgement Lam. Then, by definition of run, we have that

run(𝜌 (𝑚), 𝜆𝑥 .𝑒′, 𝜎 (𝑚)) (𝑠) = ⟨∅⟩(clo(𝜆𝑥.𝑒′, 𝜌 (𝑚)), 𝜎 (𝑚))
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for any 𝑠 ∈ BN
due to the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅. Thus,

img(run(𝜌 (𝑚), 𝜆𝑥 .𝑒′, 𝜎 (𝑚))) = {⟨∅⟩(clo(𝜆𝑥 .𝑒′, 𝜌 (𝑚)), 𝜎 (𝑚))}

Now, observe that 𝑉 = symvars( [T : clo(𝜆𝑥.𝑒′, 𝜌)], 𝜎) \ symvars(𝜌, 𝜎) = ∅. Thus, we get

Model𝑉 = {∅}. Note the following two equivalences:

[T : clo(𝜆𝑥.𝑒′, 𝜌)] |𝑚 (∅) = [T : clo(𝜆𝑥 .𝑒′, 𝜌)] (𝑚 ⊎ ∅) = clo(𝜆𝑥 .𝑒′, 𝜌 (𝑚))
𝜎 |𝑚 (∅) = 𝜎 (𝑚 ⊎ ∅) = �̂� (𝑚)

noting that clo(𝜆𝑥.𝑒′, 𝜌) (𝑚) = clo(𝜆𝑥 .𝑒′, 𝜌 (𝑚)) because 𝜌 (𝑚) ≠ ⊥. Hence, we have, by

defintion, that

img(result𝑉 (𝜎 (𝑚), [T : clo(𝜆𝑥 .𝑒′, 𝜌)] |𝑚, 𝜎 |𝑚)) = {⟨∅⟩(clo(𝜆𝑥.𝑒′, 𝜌 (𝑚)), 𝜎 (𝑚))}

Thus, img(run(𝜌 (𝑚), 𝜆𝑥 .𝑒′, 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), [T : clo(𝜆𝑥 .𝑒′, 𝜌)] |𝑚, 𝜎 |𝑚)). This com-

pletes our proof of (1).

To prove (2), it suffices to show that

T(𝑚 ⊎𝑚′) = T ⇐⇒ [T : clo(𝜆𝑥.𝑒′, 𝜌)] (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 (𝑚 ⊎𝑚′) ≠ ⊥

for all𝑚′ ∈ Model𝑉 . Notice first that

T(𝑚 ⊎𝑚′) = T

for any𝑚′ ∈ Model𝑉 . Likewise, because ⊥ ∉ img(result𝑉 (𝜎 (𝑚), [T : clo(𝜆𝑥 .𝑒′, 𝜌)] |𝑚, 𝜎 |𝑚))
(shown in the proof of (1)), we know that [T : clo(𝜆𝑥.𝑒′, 𝜌)] |𝑚 (𝑚′) ≠ ⊥ and 𝜎 |𝑚 (𝑚′) ≠ ⊥ for all

𝑚′ ∈ Model𝑉 by definition of result𝑉 . Hence, in all cases, T(𝑚⊎𝑚′) = T, [T : clo(𝜆𝑥 .𝑒′, 𝜌)] (𝑚⊎
𝑚′) ≠ ⊥, and 𝜎 (𝑚 ⊎𝑚′) ≠ ⊥. This completes our proof of (2).

(Arith) Consider 𝑒 = 𝑥 ⊕ 𝑦 for ⊕ ∈ {+,−,×}. The only abstract big-step judgement whose conclusion

matches 𝑒 = 𝑥 ⊕ 𝑦 is Arith. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ),
we get

𝜌 ⊢ ((𝑥 ⊕ 𝑦), 𝜎) ⇚ ( [𝜑𝑖 ∧ 𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 , 𝑗∈ 𝐽 , 𝜎,
∨

𝑖∈𝐼 , 𝑗∈ 𝐽
(𝜑𝑖 ∧ 𝜑 𝑗 ))

such that

𝜌 (𝑥) = [𝜑𝑖 : 𝑟𝑖 ]𝑖∈𝐼 ⊎Num �̂�1

𝜌 (𝑦) = [𝜑 𝑗 : 𝑟 𝑗 ] 𝑗∈ 𝐽 ⊎Num �̂�2

where 𝑟𝑖 , 𝑟 𝑗 ∈ Q for all 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 .

We will begin by showing (1). It suffices to show that the following two functions have the

same image

run(𝜌 (𝑚), 𝑥 ⊕ 𝑦, 𝜎 (𝑚)) : BN → Result⊥

result𝑉 (𝜎 (𝑚), [𝜑𝑖 ∧ 𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 , 𝑗∈ 𝐽 |𝑚, 𝜎 |𝑚) : Model𝑉 → Result⊥

There are two cases:

(a) Suppose 𝜑𝑖 (𝑚) = T for some 𝑖 ∈ 𝐼 and 𝜑 𝑗 (𝑚) = T for some 𝑗 ∈ 𝐽 . Then we get that

𝜌 (𝑚) (𝑥) = ( [𝜑𝑖 : 𝑟𝑖 ]𝑖∈𝐼 ⊎Num �̂�1) (𝑚) = 𝑟𝑖

𝜌 (𝑚) (𝑦) = ( [𝜑𝑖 : 𝑟 𝑗 ] 𝑗∈ 𝐽 ⊎Num �̂�2) (𝑚) = 𝑟 𝑗

where 𝑟𝑖 , 𝑟 𝑗 ∈ Q. Hence, we can prove, for all 𝑠 ∈ BN
, that

𝜌 (𝑚), 𝑠 ⊢ (𝑥 ⊕ 𝑦, 𝜎 (𝑚)) ⇓ (𝜌 (𝑚) (𝑥) ⟦⊕⟧ 𝜌 (𝑚) (𝑦), 𝜎 (𝑚))
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using the concrete big-step judgement Arith. Therefore, for all 𝑠 ∈ BN
, we have

run(𝜌 (𝑚), 𝑥 ⊕ 𝑦, 𝜎 (𝑚)) (𝑠) = ⟨∅⟩(𝜌 (𝑚) (𝑥) ⟦⊕⟧ 𝜌 (𝑚) (𝑦), 𝜎 (𝑚))
= ⟨∅⟩(𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 , 𝜎 (𝑚))

using the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅. Therefore, we have that

img(run(𝜌 (𝑚), 𝑥 ⊕ 𝑦, 𝜎 (𝑚))) = {⟨∅⟩(𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 , 𝜎 (𝑚))}

Now, observe that, for all𝑚′ ∈ Model𝑉 ,

[𝜑𝑖 ∧ 𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 , 𝑗∈ 𝐽 |𝑚 (𝑚′) = [𝜑𝑖 ∧ 𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 , 𝑗∈ 𝐽 (𝑚 ⊎𝑚′) = 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗
meaning that, for all𝑚′ ∈ Model𝑉 ,

result𝑉 (𝜎 (𝑚), [𝜑𝑖 ∧ 𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 , 𝑗∈ 𝐽 |𝑚, 𝜎 |𝑚) (𝑚′) = ⟨∅⟩(𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 , 𝜎 (𝑚))

due to the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅. Therefore, we have that

img(result𝑉 (𝜎 (𝑚), [𝜑𝑖 ∧ 𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 , 𝑗∈ 𝐽 |𝑚, 𝜎 |𝑚)) = {⟨∅⟩(𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 , 𝜎 (𝑚))}

Hence,

img(run(𝜌 (𝑚), 𝑥 ⊕ 𝑦, 𝜎 (𝑚))) = img(result𝑉 (�̂� (𝑚), [𝜑𝑖 ∧ 𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 , 𝑗∈ 𝐽 |𝑚, 𝜎 |𝑚))

(b) Suppose that at least one of (i) 𝜑𝑖 (𝑚) = F for all 𝑖 ∈ 𝐼 or (ii) 𝜑 𝑗 (𝑚) = F for all 𝑗 ∈ 𝐽 . It follows

that run(𝜌 (𝑚), 𝑥 ⊕ 𝑦, 𝜎 (𝑚)) (𝑠) = ⊥ for all 𝑠 ∈ BN
.

To make this argument precise, assume for the purposes of contradiction that

run(𝜌 (𝑚), 𝑥 ⊕ 𝑦, 𝜎 (𝑚)) (𝑠) ≠ ⊥

for some 𝑠 ∈ BN
. Then it must be the case that

run(𝜌 (𝑚), 𝑥 ⊕ 𝑦, 𝜎 (𝑚)) (𝑠) = ⟨𝐿⟩(𝑣, 𝜎)

for some (𝑣, 𝜎) ∈ Value × Store. This immediately implies that 𝜌 (𝑚) (𝑥), 𝜌 (𝑚) (𝑦) ∈ Q, which
is impossible. If 𝜑𝑖 (𝑚) = F for all 𝑖 ∈ 𝐼 , then 𝜌 (𝑚) (𝑥) ∉ Q by construction. Likewise, if

𝜑 𝑗 (𝑚) = F for all 𝑗 ∈ 𝐽 , then 𝜌 (𝑚) (𝑦) ∉ Q by construction. We conclude that

run(𝜌 (𝑚), 𝑥 ⊕ 𝑦, 𝜎 (𝑚)) (𝑠) = ⊥

for all 𝑠 ∈ BN
. Hence,

img(run(𝜌 (𝑚), 𝑥 ⊕ 𝑦, 𝜎 (𝑚))) = {⊥}

Now, following from our assumption that at least one of (i) 𝜑𝑖 (𝑚) = F for all 𝑖 ∈ 𝐼 or (ii)

𝜑 𝑗 (𝑚) = F for all 𝑗 ∈ 𝐽 , we have that

[𝜑𝑖 ∧ 𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 , 𝑗∈ 𝐽 |𝑚 (𝑚′) = [𝜑𝑖 ∧ 𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 , 𝑗∈ 𝐽 (𝑚 ⊎𝑚′) = ⊥

for all𝑚′ ∈ Model𝑉 . Therefore, for all𝑚
′ ∈ Model𝑉 , we have that

result𝑉 (𝜎 (𝑚), [𝜑𝑖 ∧ 𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 , 𝑗∈ 𝐽 |𝑚, 𝜎 |𝑚) (𝑚′) = ⊥

meaning that

img(result𝑉 (𝜎 (𝑚), [𝜑𝑖 ∧ 𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 , 𝑗∈ 𝐽 |𝑚, 𝜎 |𝑚)) = {⊥}

Hence,

img(run(𝜌 (𝑚), 𝑥 ⊕ 𝑦, 𝜎 (𝑚))) = img(result𝑉 (�̂� (𝑚), [𝜑𝑖 ∧ 𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 , 𝑗∈ 𝐽 |𝑚, 𝜎 |𝑚))
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Therefore, img(run(𝜌 (𝑚), 𝑥⊕𝑦, 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), [𝜑𝑖∧𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 , 𝑗∈ 𝐽 |𝑚, 𝜎 |𝑚)).
This completes our proof of (1).

To prove (2), it suffices to show that( ∨
𝑖∈𝐼 , 𝑗∈ 𝐽

(𝜑𝑖 ∧ 𝜑 𝑗 )
)
(𝑚 ⊎𝑚′) = T ⇐⇒ [𝜑𝑖 ∧ 𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 , 𝑗∈ 𝐽 (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 (𝑚 ⊎𝑚′) ≠ ⊥

for all𝑚′ ∈ Model𝑉 .

(=⇒) Suppose that ∨𝑖∈𝐼 , 𝑗∈ 𝐽 (𝜑𝑖 ∧𝜑 𝑗 ) (𝑚 ⊎𝑚′) = T. Then (𝜑𝑖 ∧𝜑 𝑗 ) (𝑚) = T for some 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 .

Thus,

[𝜑𝑖 ∧ 𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 , 𝑗∈ 𝐽 (𝑚 ⊎𝑚′) = 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗
𝜎 (𝑚 ⊎𝑚′) = 𝜎 (𝑚)

as desired.

(⇐=) Suppose that [𝜑𝑖 ∧ 𝜑 𝑗 : 𝑟𝑖 ⟦⊕⟧ 𝑟 𝑗 ]𝑖∈𝐼 , 𝑗∈ 𝐽 (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 (𝑚 ⊎𝑚′) ≠ ⊥. Then, by
construction, it must be the case that (𝜑𝑖 ∧𝜑 𝑗 ) (𝑚 ⊎𝑚′) = T for some 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐼 . Therefore,( ∨

𝑖∈𝐼 , 𝑗∈ 𝐽
(𝜑𝑖 ∧ 𝜑 𝑗 )

)
(𝑚 ⊎𝑚′) = T

as desired.

(Pair) Consider 𝑒 = (𝑥,𝑦). The only abstract big-step judgement whose conclusion matches 𝑒 = (𝑥,𝑦)
is Pair. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ), we get

𝜌 ⊢ ((𝑥,𝑦), 𝜎) ⇚ ((𝜌 (𝑥), 𝜌 (𝑦)), 𝜎, T)
We will begin by showing (1). It suffices to show that the following two functions have the

same image

run(𝜌 (𝑚), (𝑥,𝑦), 𝜎 (𝑚)) : BN → Result⊥

result𝑉 (𝜎 (𝑚), (𝜌 (𝑥), 𝜌 (𝑦)) |𝑚, �̂� |𝑚) : Model𝑉 → Result⊥

By the assumption that (𝜌 (𝑚), (𝑥,𝑦), 𝜎 (𝑚)) ∈ Config, we know that FV((𝑥,𝑦)) ∈ dom(𝜌 (𝑚)),
meaning that 𝜌 (𝑚) (𝑥) ≠ ⊥ and 𝜌 (𝑚) (𝑦) ≠ ⊥. Therefore, we can prove, for any 𝑠 ∈ BN

, that

𝜌 (𝑚), 𝑠 ⊢ ((𝑥,𝑦), 𝜎 (𝑚)) ⇓ ((𝜌 (𝑚) (𝑥), 𝜌 (𝑚) (𝑦)), 𝜎 (𝑚))
using the concrete big-step judgement Pair. This implies, for all 𝑠 ∈ BN

, that

run(𝜌 (𝑚), (𝑥,𝑦), 𝜎 (𝑚)) (𝑠) = ⟨∅⟩((𝜌 (𝑚) (𝑥), 𝜌 (𝑚) (𝑦)), 𝜎 (𝑚))
due to the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅. Hence,

img(run(𝜌 (𝑚), (𝑥,𝑦), 𝜎 (𝑚))) = {⟨∅⟩((𝜌 (𝑚) (𝑥), 𝜌 (𝑚) (𝑦)), 𝜎 (𝑚))}
Now, observe we have, for all𝑚′ ∈ Model𝑉 , that

(𝜌 (𝑥), 𝜌 (𝑦)) |𝑚 (𝑚′) = (𝜌 (𝑥), 𝜌 (𝑦)) (𝑚 ⊎𝑚′) = (𝜌 (𝑚) (𝑥), 𝜌 (𝑚) (𝑦)) ≠ ⊥
𝜎 |𝑚 (𝑚′) = 𝜎 (𝑚 ⊎𝑚′) = 𝜎 (𝑚) ≠ ⊥

meaning that

result𝑉 (𝜎 (𝑚), (𝜌 (𝑥), 𝜌 (𝑦)) |𝑚, 𝜎 |𝑚) (𝑚′) = ⟨∅⟩((𝜌 (𝑚) (𝑥), 𝜌 (𝑚) (𝑦)), 𝜎 (𝑚))
due to the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅. Thus,

img(result𝑉 (𝜎 (𝑚), (𝜌 (𝑥), 𝜌 (𝑦)) |𝑚, 𝜎 |𝑚)) = {⟨∅⟩((𝜌 (𝑚) (𝑥), 𝜌 (𝑚) (𝑦)), 𝜎 (𝑚))}
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so img(run(𝜌 (𝑚), (𝑥,𝑦), 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), (𝜌 (𝑥), 𝜌 (𝑦)) |𝑚, 𝜎 |𝑚)). This completes

our proof of (1).

We now turn our attention to (2). It suffices to show that

T(𝑚 ⊎𝑚′) = T ⇐⇒ (𝜌 (𝑥), 𝜌 (𝑦)) (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 (𝑚 ⊎𝑚′) ≠ ⊥
for all𝑚′ ∈ Model𝑉 . Take any𝑚

′ ∈ Model𝑉 . Clearly, T(𝑚 ⊎𝑚′) = T. We showed above that

(𝜌 (𝑥), 𝜌 (𝑦)) (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 (𝑚 ⊎𝑚′) ≠ ⊥ for all𝑚′ ∈ Model𝑉 . Therefore, we have that

T(𝑚⊎𝑚′) = T, that (𝜌 (𝑥), 𝜌 (𝑦)) (𝑚⊎𝑚′) ≠ ⊥, and that 𝜎 (𝑚⊎𝑚′) ≠ ⊥ in all cases. This proves

(2).

(Fst) Consider 𝑒 = fst𝑥 . The only abstract big-step judgement whose conclusion matches 𝑒 = fst𝑥
is Fst. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ), we get

𝜌 ⊢ (fst𝑥, 𝜎) ⇚ ( [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 , 𝜎,
∨
𝑖∈𝐼

𝜑𝑖 )

such that 𝜌 (𝑥) = [𝜑𝑖 : (𝑣𝑖 ,𝑤𝑖 )]𝑖∈𝐼 ⊎Pair �̂� .

We will begin by showing (1). It suffices to show that the following two functions have the

same image

run(𝜌 (𝑚), fst𝑥, 𝜎 (𝑚)) : BN → Result⊥

result𝑉 (𝜎 (𝑚), [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 |𝑚, 𝜎 |𝑚) : Model𝑉 → Result⊥

There are two cases:

(a) Suppose that 𝜑𝑖 (𝑚) = T for some 𝑖 ∈ 𝐼 . Then we have

𝜌 (𝑚) (𝑥) = ( [𝜑𝑖 : (𝑣𝑖 ,𝑤𝑖 )]𝑖∈𝐼 ⊎Pair �̂�) (𝑚) = (𝑣𝑖 ,𝑤𝑖 )
Hence, we can prove, for all 𝑠 ∈ BN

that

𝜌 (𝑚), 𝑠 ⊢ (fst𝑥, 𝜎 (𝑚)) ⇓ (𝑣𝑖 , 𝜎 (𝑚))
using the concrete big-step judgement Fst. This implies that

run(𝜌 (𝑚), fst𝑥, 𝜎 (𝑚)) (𝑠) = ⟨∅⟩(𝑣𝑖 , 𝜎 (𝑚))
for all 𝑠 ∈ BN

, using the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅. Hence,
img(run(𝜌 (𝑚), fst𝑥, 𝜎 (𝑚))) = {⟨∅⟩(𝑣𝑖 , 𝜎 (𝑚))}

Now, observe, for all𝑚′ ∈ Model𝑉 , we have that

[𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 |𝑚 (𝑚′) = [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 (𝑚 ⊎𝑚′) = 𝑣𝑖

𝜎 |𝑚 (𝑚′) = 𝜎 (𝑚 ⊎𝑚′) = 𝜎 (𝑚) ≠ ⊥
Hence, we have, for all𝑚′ ∈ Model𝑉 , that

result𝑉 (𝜎 (𝑚), [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 |𝑚, 𝜎 |𝑚) (𝑚′) = ⟨∅⟩(𝑣𝑖 , 𝜎 (𝑚))
due to the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)). This means that

img(result𝑉 (𝜎 (𝑚), [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 |𝑚, 𝜎 |𝑚)) = {⟨∅⟩(𝑣𝑖 , 𝜎 (𝑚))}
Therefore, img(run(𝜌 (𝑚), fst𝑥, 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 |𝑚, 𝜎 |𝑚)).

(b) Suppose that 𝜑𝑖 (𝑚) = F for all 𝑖 ∈ 𝐼 . It follows that run(𝜌 (𝑚), fst𝑥, 𝜎 (𝑚)) (𝑠) = ⊥ for all

𝑠 ∈ BN
.

To make this argument precise, assume that run(𝜌 (𝑚), fst𝑥, 𝜎 (𝑚)) (𝑠) ≠ ⊥ for some 𝑠 ∈ BN
.

Then

run(𝜌 (𝑚), fst𝑥, 𝜎 (𝑚)) (𝑠) = ⟨𝐿⟩(𝑣, 𝜎)

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 231. Publication date: June 2025.



Roulette: A Language for Expressive, Exact, and Efficient Discrete Probabilistic Programming (with Appendices) 231:45

for some (𝑣, 𝜎) ∈ Value × Store. This implies that there exists a derivation in the concrete

big-step operational semantics whose conclusion is

𝜌 (𝑚), 𝑠 ⊢ (fst𝑥, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎 (𝑚))
This proof tree implies that 𝜌 (𝑚) (𝑥) = (𝑣,𝑤) for some𝑤 ∈ Value. However, this is impossible

by construction of 𝜌 (𝑥) since𝜑𝑖 (𝑚) = F for all 𝑖 ∈ 𝐼 .We conclude that run(𝜌 (𝑚), fst𝑥, 𝜎 (𝑚)) (𝑠) =
⊥ for all 𝑠 ∈ BN

.

This implies that

img(run(𝜌 (𝑚), fst𝑥, 𝜎 (𝑚))) = {⊥}
Now, observe that

[𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 |𝑚 (𝑚′) = [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 (𝑚 ⊎𝑚′) = ⊥
for all𝑚′ ∈ Model𝑉 . Hence, we have, for all𝑚

′ ∈ Model𝑉 , that

result𝑉 (𝜎 (𝑚), [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 |𝑚, 𝜎 |𝑚) (𝑚′) = ⊥
meaning that

img(result𝑉 (𝜎 (𝑚), [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 |𝑚, 𝜎 |𝑚)) = {⊥}
Therefore, img(run(𝜌 (𝑚), fst𝑥, 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 |𝑚, 𝜎 |𝑚)).

This completes our proof of (1).

We now turn our attention to (2). It suffices to show that(∨
𝑖∈𝐼

𝜑𝑖

)
(𝑚 ⊎𝑚′) = T ⇐⇒ [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 (𝑚 ⊎𝑚′)

for all𝑚′ ∈ Model𝑉 . Take𝑚
′ ∈ Model𝑉 .

(=⇒) Suppose that (∨𝑖∈𝐼 𝜑𝑖 ) (𝑚 ⊎𝑚′) = T. Then it must be the case that 𝜑𝑖 (𝑚) = T for some

𝑖 ∈ 𝐼 . This implies that

[𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 (𝑚 ⊎𝑚′) = 𝑣𝑖

𝜎 (𝑚 ⊎𝑚′) = 𝜎 (𝑚) ≠ ⊥
as desired.

(⇐=) Suppose that [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 (𝑚 ⊎𝑚′). By construction, if [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 (𝑚 ⊎
𝑚′) ≠ ⊥, then [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 (𝑚 ⊎𝑚′) = 𝑣𝑖 for some 𝑖 ∈ 𝐼 . This means that 𝜑𝑖 (𝑚) = T for some

𝑖 ∈ 𝐼 . Hence (∨
𝑖∈𝐼

𝜑𝑖

)
(𝑚 ⊎𝑚′) = T

as desired.

This proves (2).

(Snd) Consider 𝑒 = snd𝑥 . Apply identical reasoning as in the previous case.

(Ref) Consider 𝑒 = ref𝑥 . The only abstract big-step judgement whose conclusion matches 𝑒 = ref𝑥
is Ref. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ), we get

𝜌 ⊢ (ref𝑥, 𝜎) ⇚ ( [T : ℓ], 𝜎 [ℓ ↦→ 𝜌 (𝑥)], T)
such that ℓ is the smallest not in locs(𝜌, 𝜎).
We will begin by showing (1). It suffices to show that the following two functions have the

same image

run(𝜌 (𝑚), ref𝑥, 𝜎 (𝑚)) : BN → Result⊥

result𝑉 (𝜎 (𝑚), [T : ℓ] |𝑚, 𝜎 [ℓ ↦→ 𝜌 (𝑥)] |𝑚) : Model𝑉 → Result⊥

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 231. Publication date: June 2025.



231:46 Cameron Moy, Jack Czenszak, John M. Li, Brianna Marshall, and Steven Holtzen

By the assumption (𝜌 (𝑚), ref𝑥, 𝜎 (𝑚)) ∈ Config, we have that FV(ref𝑥) ∈ dom(𝜌 (𝑚)). Thus,
we have that 𝜌 (𝑚) (𝑥) ≠ ⊥. Moreover, we know, because ℓ is not in locs(𝜌, 𝜎), that ℓ is not in
locs(𝜌 (𝑚), 𝜎 (𝑚)). These facts allow us to prove, for any 𝑠 ∈ BN

, that

𝜌 (𝑚), 𝑠 ⊢ (ref𝑥, 𝜎 (𝑚)) ⇓ (ℓ, 𝜎 (𝑚) [ℓ ↦→ 𝜌 (𝑚) (𝑥)])

using the concrete big-step judgement Ref. Now, consider any ℓ ′ ∉ locs(𝜌 (𝑚), 𝜎 (𝑚)). We can

show, for any 𝑠 ∈ BN
, that

𝜌 (𝑚), 𝑠 ⊢ (ref𝑥, 𝜎 (𝑚)) ⇓ (ℓ ′, 𝜎 (𝑚) [ℓ ′ ↦→ 𝜌 (𝑚) (𝑥)])

By Theorem B.17, we have that

⟨{ℓ}⟩(ℓ, 𝜎 (𝑚) [ℓ ↦→ 𝜌 (𝑚) (𝑥)]) = ⟨{ℓ ′}⟩(ℓ ′, 𝜎 (𝑚) [ℓ ′ ↦→ 𝜌 (𝑚) (𝑥)])

Hence, for any 𝑠 ∈ BN
, we get

run(𝜌 (𝑚), ref𝑥, 𝜎 (𝑚)) = ⟨{ℓ}⟩(ℓ, 𝜎 (𝑚) [ℓ ↦→ 𝜌 (𝑚) (𝑥)])

due to the fact that dom(𝜎 (𝑚) [ℓ ↦→ 𝜌 (𝑚) (𝑥)]) \dom(𝜎 (𝑚)) = {ℓ}. Therefore,

img(run(𝜌 (𝑚), ref𝑥, 𝜎 (𝑚))) = {⟨{ℓ}⟩(ℓ, 𝜎 (𝑚) [ℓ ↦→ 𝜌 (𝑚) (𝑥)])}

Now, observe that, for all𝑚′ ∈ Model𝑉 , we have

[T : ℓ] |𝑚 (𝑚′) = [T : ℓ] (𝑚 ⊎𝑚′) = ℓ

𝜎 [ℓ ↦→ 𝜌 (𝑥)] |𝑚 (𝑚′) = 𝜎 [ℓ ↦→ 𝜌 (𝑥)] (𝑚 ⊎𝑚′) = 𝜎 (𝑚) [ℓ ↦→ 𝜌 (𝑥) (𝑚)] ≠ ⊥

This means, for all𝑚′ ∈ Model𝑉 , that

result𝑉 (𝜎 (𝑚), [T : ℓ] |𝑚, 𝜎 [ℓ ↦→ 𝜌 (𝑥)] |𝑚) (𝑚′) = ⟨{ℓ}⟩(ℓ, 𝜎 (𝑚) [ℓ ↦→ 𝜌 (𝑥) (𝑚)])

due to the fact that dom(𝜎 (𝑚) [ℓ ↦→ 𝜌 (𝑥) (𝑚)]) \dom(𝜎 (𝑚)) = {ℓ}. Thus,

img(result𝑉 (𝜎 (𝑚), [T : ℓ] |𝑚, 𝜎 [ℓ ↦→ 𝜌 (𝑥)] |𝑚)) = {⟨{ℓ}⟩(ℓ, 𝜎 (𝑚) [ℓ ↦→ 𝜌 (𝑥) (𝑚)])}

Hence, img(run(𝜌 (𝑚), ref𝑥, 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), [T : ℓ] |𝑚, 𝜎 [ℓ ↦→ 𝜌 (𝑥)] |𝑚)). This com-

pletes our proof of (1).

We now turn our attention to (2). It suffices to show that

T(𝑚 ⊎𝑚′) = T ⇐⇒ [T : ℓ] (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 [ℓ ↦→ 𝜌 (𝑥)] (𝑚 ⊎𝑚′) ≠ ⊥

for all 𝑚′ ∈ Model𝑉 . Take 𝑚
′ ∈ Model𝑉 . Immediately notice that T(𝑚 ⊎ 𝑚′) = T for all

𝑚′ ∈ Model𝑉 . We showed above that [T : ℓ] (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 [ℓ ↦→ 𝜌 (𝑥)] (𝑚 ⊎𝑚′) ≠ ⊥ for

all𝑚′ ∈ Model𝑉 . Hence, in all cases, we have that T(𝑚 ⊎𝑚′) = T, that [T : ℓ] (𝑚 ⊎𝑚′) ≠ ⊥,
and that 𝜎 [ℓ ↦→ 𝜌 (𝑥)] (𝑚 ⊎𝑚′) ≠ ⊥. This proves (2).

(Get) Consider 𝑒 = !𝑥 . The only abstract big-step judgement whose conclusion matches 𝑒 = !𝑥 is

Get. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ), we get

𝜌 ⊢ (!𝑥, 𝜎) ⇚ ( [𝜑𝑖 : 𝜎 (ℓ𝑖 )]𝑖∈𝐼 , 𝜎,
∨
𝑖∈𝐼

𝜑𝑖 )

such that 𝜌 (𝑥) = [𝜑𝑖 : ℓ𝑖 ]𝑖∈𝐼 ⊎Loc �̂� .

We will begin by showing (1). It suffices to show that the following two functions have the

same image

run(𝜌 (𝑚), !𝑥, 𝜎 (𝑚)) : BN → Result⊥

result𝑉 (𝜎 (𝑚), [𝜑𝑖 : 𝜎 (ℓ𝑖 )]𝑖∈𝐼 |𝑚, �̂� |𝑚) : Model𝑉 → Result⊥
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By the assumption that (𝜌 (𝑚), !𝑥, 𝜎 (𝑚)) ∈ Config, we know that locs(𝜌 (𝑚)) ∪ locs(𝜎 (𝑚)) ⊆
dom(𝜎 (𝑚)), that FV(𝜌 (𝑥)) = ∅ for all 𝑥 ∈ dom(𝜌), and that FV(!𝑥) ⊆ dom(𝜌 (𝑚)). There are
now two cases:

(a) Suppose that 𝜑𝑖 (𝑚) = T for some 𝑖 ∈ 𝐼 . Then we have

𝜌 (𝑚) (𝑥) = ( [𝜑𝑖 : ℓ𝑖 ]𝑖∈𝐼 ⊎Loc �̂�) (𝑚) = ℓ𝑖

Because locs(𝜌 (𝑚) (𝑥)) ⊆ dom(𝜎 (𝑚)), we know that ℓ𝑖 ∈ dom(𝜎 (𝑚)). Moreover, because

FV(!𝑥) ⊆ dom(𝜌 (𝑚)), we know that 𝜌 (𝑚) (𝑥) ≠ ⊥. Hence, we can prove, for all 𝑠 ∈ BN
, that

𝜌 (𝑚), 𝑠 ⊢ (!𝑥, 𝜎 (𝑚)) ⇓ (𝜎 (𝑚) (𝜌 (𝑚) (𝑥)), 𝜎 (𝑚))
using the concrete big-step judgement Get. This implies, for all 𝑠 ∈ BN

, that

run(𝜌 (𝑚), !𝑥, 𝜎 (𝑚)) (𝑠) = ⟨∅⟩(𝜎 (𝑚) (𝜌 (𝑚) (𝑥)), 𝜎 (𝑚))
= ⟨∅⟩(𝜎 (𝑚) (ℓ𝑖 ), 𝜎 (𝑚))

due to the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅. Hence,
img(run(𝜌 (𝑚), !𝑥, 𝜎 (𝑚))) = {⟨∅⟩(𝜎 (𝑚) (ℓ𝑖 ), 𝜎 (𝑚))}

Observe now, for all𝑚′ ∈ Model𝑉 , that

[𝜑𝑖 : 𝜎 (ℓ𝑖 )]𝑖∈𝐼 |𝑚 (𝑚′) = [𝜑𝑖 : 𝜎 (ℓ𝑖 )]𝑖∈𝐼 (𝑚 ⊎𝑚′) = 𝜎 (ℓ𝑖 ) (𝑚 ⊎𝑚′) = 𝜎 (𝑚) (ℓ𝑖 ) ≠ ⊥
𝜎 |𝑚 (𝑚′) = 𝜎 (𝑚 ⊎𝑚′) = 𝜎 (𝑚) ≠ ⊥

Therefore, we have, for all𝑚′ ∈ Model𝑉 , that

result𝑉 (𝜎 (𝑚), [𝜑𝑖 : 𝜎 (ℓ𝑖 )]𝑖∈𝐼 |𝑚, 𝜎 |𝑚) (𝑚′) = ⟨∅⟩(𝜎 (𝑚) (ℓ𝑖 ), 𝜎 (𝑚))
due to the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅, meaning that

img(result𝑉 (𝜎 (𝑚), [𝜑𝑖 : 𝜎 (ℓ𝑖 )]𝑖∈𝐼 |𝑚, �̂� |𝑚)) = {⟨∅⟩(𝜎 (𝑚) (ℓ𝑖 ), 𝜎 (𝑚))}
Therefore, img(run(𝜌 (𝑚), !𝑥, 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), [𝜑𝑖 : 𝜎 (ℓ𝑖 )]𝑖∈𝐼 |𝑚, 𝜎 |𝑚)).

(b) Suppose that 𝜑𝑖 (𝑚) = F for all 𝑖 ∈ 𝐼 . It follows that run(𝜌 (𝑚), !𝑥, 𝜎 (𝑚)) (𝑠) = ⊥ for all 𝑠 ∈ BN
.

To make this argument explicit, assume for the purposes of contradiction that we have

run(𝜌 (𝑚), !𝑥, 𝜎 (𝑚)) (𝑠) ≠ ⊥ for some 𝑠 ∈ BN
. Then

run(𝜌 (𝑚), !𝑥, 𝜎 (𝑚)) (𝑠) = ⟨𝐿⟩(𝑣, 𝜎)
for some (𝑣, 𝜎) ∈ Value × Store. By definition of run, there must then exist a derivation in

the concrete big-step operational semantics whose conclusion is

𝜌 (𝑚), 𝑠 ⊢ (!𝑥, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎)
The existence of this proof tree implies that 𝜌 (𝑚) (𝑥) ∈ dom(𝜎 (𝑚)). In otherwords, 𝜌 (𝑚) (𝑥) ∈
Loc. This is impossible by the construction of 𝜌 (𝑥) as 𝜑𝑖 (𝑚) = F for all 𝑖 ∈ 𝐼 . We conclude

that run(𝜌 (𝑚), !𝑥, 𝜎 (𝑚)) (𝑠) = ⊥ for all 𝑠 ∈ BN
.

This implies that

img(run(𝜌 (𝑚), !𝑥, 𝜎 (𝑚))) = {⊥}
Observe also that, for all𝑚′ ∈ Model𝑉 , we have

[𝜑𝑖 : 𝜎 (ℓ𝑖 )]𝑖∈𝐼 |𝑚 (𝑚′) = [𝜑𝑖 : �̂� (ℓ𝑖 )]𝑖∈𝐼 (𝑚 ⊎𝑚′) = ⊥
meaning that

result𝑉 (𝜎 (𝑚), [𝜑𝑖 : 𝜎 (ℓ𝑖 )]𝑖∈𝐼 |𝑚, 𝜎 |𝑚) (𝑚′) = ⊥
This implies that

img(result𝑉 (𝜎 (𝑚), [𝜑𝑖 : 𝜎 (ℓ𝑖 )]𝑖∈𝐼 |𝑚, 𝜎 |𝑚)) = {⊥}
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Hence, img(run(𝜌 (𝑚), !𝑥, 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), [𝜑𝑖 : 𝜎 (ℓ𝑖 )]𝑖∈𝐼 |𝑚, 𝜎 |𝑚)).
This completes the proof for (1).

We now turn our attention to (2). It suffices to show that(∨
𝑖∈𝐼

𝜑𝑖

)
(𝑚 ⊎𝑚′) = T ⇐⇒ [𝜑𝑖 : 𝜎 (ℓ𝑖 )]𝑖∈𝐼 (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 (𝑚 ⊎𝑚′) ≠ ⊥

for all𝑚′ ∈ Model𝑉 . Take𝑚
′ ∈ Model𝑉 .

(=⇒) Suppose that (∨𝑖∈𝐼 𝜑𝑖 ) (𝑚 ⊎𝑚′) = T. Then it must be the case that 𝜑𝑖 (𝑚) = T for some

𝑖 ∈ 𝐼 . It immediately follows that

𝜌 (𝑚) (𝑥) = ( [𝜑𝑖 : ℓ𝑖 ]𝑖∈𝐼 ⊎Loc �̂�) (𝑚) = ℓ𝑖

[𝜑𝑖 : 𝜎 (ℓ𝑖 )]𝑖∈𝐼 (𝑚 ⊎𝑚′) = 𝜎 (ℓ𝑖 ) (𝑚 ⊎𝑚′) = 𝜎 (𝑚) (ℓ𝑖 ) ≠ ⊥
𝜎 (𝑚 ⊎𝑚′) = 𝜎 (𝑚) ≠ ⊥

We know that 𝜎 (𝑚) (ℓ𝑖 ) ≠ ⊥ due to the fact that locs(𝜌 (𝑚)) ⊆ dom(𝜎 (𝑚)) and 𝜌 (𝑚) (𝑥) = ℓ𝑖 .

This completes the claim.

(⇐=) Suppose that [𝜑𝑖 : 𝜎 (ℓ𝑖 )]𝑖∈𝐼 (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 (𝑚 ⊎𝑚′) ≠ ⊥. By construction, the fact

that [𝜑𝑖 : 𝜎 (ℓ𝑖 )]𝑖∈𝐼 (𝑚 ⊎𝑚′) ≠ ⊥ implies that [𝜑𝑖 : 𝜎 (ℓ𝑖 )]𝑖∈𝐼 (𝑚 ⊎𝑚′) = 𝜎 (𝑚) (ℓ𝑖 ) for some 𝑖 ∈ 𝐼 .

This implies that 𝜑𝑖 (𝑚) = T for some 𝑖 ∈ 𝐼 . Hence,(∨
𝑖∈𝐼

𝜑𝑖

)
(𝑚 ⊎𝑚′) = T

as desired.

This completes the proof of (2).

(Set) Consider 𝑒 = 𝑥 ≔𝑦. The only abstract big-step judgement whose conclusion matches 𝑒 = 𝑥 ≔𝑦

is Set. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ), we get

𝜌 ⊢ (𝑥 ≔ 𝑦, 𝜎) ⇚ ( [(
⋃

𝑖∈𝐼𝜑𝑖 ) : ()], [𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)]]𝑖∈𝐼 ,
∨
𝑖∈𝐼

𝜑𝑖 )

such that 𝜌 (𝑥) = [𝜑𝑖 : ℓ𝑖 ]𝑖∈𝐼 ⊎Loc �̂� .

We will begin by showing (1). It suffices to show that the following two functions have the

same image

run(𝜌 (𝑚), 𝑥 ≔ 𝑦, 𝜎 (𝑚)) : BN → Result⊥

result𝑉

(
𝜎 (𝑚), [(⋃𝑖 𝜑𝑖 ) : ()] |𝑚,

[
𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)]

]
𝑖∈𝐼 |𝑚

)
: Model𝑉 → Result⊥

By the assumption that (𝜌 (𝑚), !𝑥, 𝜎 (𝑚)) ∈ Config, we know that locs(𝜌 (𝑚)) ∪ locs(𝜎 (𝑚)) ⊆
dom(𝜎 (𝑚)), that FV(𝜌 (𝑥)) = ∅ for all 𝑥 ∈ dom(𝜌), and that FV(𝑥 ≔ 𝑦) ⊆ dom(𝜌 (𝑚)). Thus,
we have both 𝜌 (𝑚) (𝑥) ≠ ⊥ and 𝜌 (𝑚) (𝑦) ≠ ⊥. There are now two cases:

(a) Suppose that 𝜑𝑖 (𝑚) = T for some 𝑖 ∈ 𝐼 . Then we have

𝜌 (𝑚) (𝑥) = ( [𝜑𝑖 : ℓ𝑖 ]𝑖∈𝐼 ⊎Loc �̂�1) (𝑚) = ℓ𝑖

Because locs(𝜌 (𝑚)) ⊆ dom(𝜎 (𝑚)), we know that 𝜌 (𝑚) (𝑥) = ℓ𝑖 ∈ dom(𝜎 (𝑚)). Hence, we
can show that, for all 𝑠 ∈ BN

,

𝜌 (𝑚), 𝑠 ⊢ (𝑥 ≔ 𝑦, 𝜎 (𝑚)) ⇓ ((), 𝜎 (𝑚) [𝜌 (𝑚) (𝑥) ↦→ 𝜌 (𝑚) (𝑦)])
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using the concrete big-step judgement Set. We then get, for all 𝑠 ∈ BN
, that

run(𝜌 (𝑚), 𝑥 ≔ 𝑦, 𝜎 (𝑚)) (𝑠) = ⟨∅⟩((), 𝜎 (𝑚) [𝜌 (𝑚) (𝑥) ↦→ 𝜌 (𝑚) (𝑦)])
= ⟨∅⟩((), 𝜎 (𝑚) [ℓ𝑖 ↦→ 𝜌 (𝑚) (𝑦)])

following from the fact that

dom(𝜎 (𝑚) [ℓ𝑖 ↦→ 𝜌 (𝑚) (𝑦)]) \dom(𝜎 (𝑚)) = ∅
because ℓ𝑖 ∈ dom(𝜎 (𝑚)). Therefore, we have

img(run(𝜌 (𝑚), 𝑥 ≔ 𝑦, 𝜎 (𝑚))) = {⟨∅⟩((), 𝜎 (𝑚) [ℓ𝑖 ↦→ 𝜌 (𝑚) (𝑦)])}
We also have that, for all𝑚′ ∈ Model𝑉 ,

[(⋃𝑖 𝜑𝑖 ) : ()] |𝑚 (𝑚′) = [(⋃𝑖 𝜑𝑖 ) : ()] (𝑚 ⊎𝑚′) = ()[
𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)]

]
𝑖∈𝐼 |𝑚 (𝑚′) =

[
𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)]

]
𝑖∈𝐼 (𝑚 ⊎𝑚′)

= 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)] (𝑚 ⊎𝑚′)
= 𝜎 (𝑚) [ℓ𝑖 ↦→ 𝜌 (𝑚) (𝑦)]

Hence, for all𝑚′ ∈ Model𝑉 , we have

result𝑉

(
𝜎 (𝑚), [(⋃𝑖 𝜑𝑖 ) : ()] |𝑚,

[
𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)]

]
𝑖∈𝐼 |𝑚

)
(𝑚′) = ⟨∅⟩((), 𝜎 (𝑚) [ℓ𝑖 ↦→ 𝜌 (𝑚) (𝑦)])

due to the fact that dom(𝜎 (𝑚) [ℓ𝑖 ↦→ 𝜌 (𝑚) (𝑦)]) \dom(𝜎 (𝑚)) = ∅. Hence,

img

(
result𝑉

(
𝜎 (𝑚), [(⋃𝑖 𝜑𝑖 ) : ()] |𝑚,

[
𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)]

]
𝑖∈𝐼 |𝑚

))
= {⟨∅⟩((), 𝜎 (𝑚) [ℓ𝑖 ↦→ 𝜌 (𝑚) (𝑦)])}

meaning that

img(run(𝜌 (𝑚), 𝑥 ≔ 𝑦, 𝜎 (𝑚))) = img

(
result𝑉

(
𝜎 (𝑚), [(⋃𝑖 𝜑𝑖 ) : ()] |𝑚,

[
𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)]

]
𝑖∈𝐼 |𝑚

))
(b) Suppose that 𝜑𝑖 (𝑚) = F for all 𝑖 ∈ 𝐼 . It follows that run(𝜌 (𝑚), 𝑥 ≔ 𝑦, 𝜎 (𝑚)) (𝑠) = ⊥ for all

𝑠 ∈ BN
.

To make this argument explicit, assume for the purposes of contradiction that, for some

𝑠 ∈ BN
, we have run(𝜌 (𝑚), 𝑥 ≔ 𝑦, 𝜎 (𝑚)) (𝑠) ≠ ⊥. Then it is the case that

run(𝜌 (𝑚), 𝑥 ≔ 𝑦, 𝜎 (𝑚)) (𝑠) = ⟨𝐿⟩(𝑣, 𝜎)
for some (𝑣, 𝜎) ∈ Value × Store. The definition of run, implies that there exists a derivation

in the concrete big-step operational semantics whose conclusion is

𝜌 (𝑚), 𝑠 ⊢ (𝑥 ≔ 𝑦, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎)
The existence of this proof tree implies that 𝜌 (𝑚) (𝑥) ∈ dom(𝜎 (𝑚)). However, this is impossi-

ble by the construction of 𝜌 (𝑥) due to the fact that 𝜑𝑖 (𝑚) = F for all 𝑖 ∈ 𝐼 . Hence, we conclude

that run(𝜌 (𝑚), 𝑥 ≔ 𝑦, 𝜎 (𝑚)) (𝑠) = ⊥ for all 𝑠 ∈ BN
.

This implies that

img(run(𝜌 (𝑚), 𝑥 ≔ 𝑦, 𝜎 (𝑚))) = {⊥}
Now, notice that, for all𝑚′ ∈ Model𝑉 , we have

[(⋃𝑖 𝜑𝑖 ) : ()] (𝑚 ⊎𝑚′) = ⊥( [
𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)]

]
𝑖∈𝐼 |𝑚

)
(𝑚 ⊎𝑚′) = ⊥

This implies that, for all𝑚′ ∈ Model𝑉 ,

result𝑉

(
𝜎 (𝑚), [(⋃𝑖 𝜑𝑖 ) : ()] |𝑚,

[
𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)]

]
𝑖∈𝐼 |𝑚

)
(𝑚′) = ⊥
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meaning that

img

(
result𝑉

(
𝜎 (𝑚), [(⋃𝑖 𝜑𝑖 ) : ()] |𝑚,

[
𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)]

]
𝑖∈𝐼 |𝑚

))
= {⊥}

Therefore, we conclude that

img(run(𝜌 (𝑚), 𝑥 ≔ 𝑦, 𝜎 (𝑚))) = img

(
result𝑉

(
𝜎 (𝑚), [(⋃𝑖 𝜑𝑖 ) : ()] |𝑚,

[
𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)]

]
𝑖∈𝐼 |𝑚

))
This completes the proof of (1).

We now turn our attention to (2). It suffices to show that(∨
𝑖∈𝐼

𝜑𝑖

)
(𝑚 ⊎𝑚′) = T ⇐⇒ [(⋃𝑖 𝜑𝑖 ) : ()] (𝑚 ⊎𝑚′) ≠ ⊥ and

[
𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)]

]
𝑖∈𝐼 (𝑚 ⊎𝑚′) ≠ ⊥

for all𝑚′ ∈ Model𝑉 . Take𝑚
′ ∈ Model𝑉 .

(=⇒) Suppose that (∨𝑖∈𝐼 𝜑𝑖 ) (𝑚⊎𝑚′) = T. It follows that 𝜑𝑖 (𝑚) = T for some 𝑖 ∈ 𝐼 . This implies

that

[(⋃𝑖 𝜑𝑖 ) : ()] (𝑚 ⊎𝑚′) = ()[
𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)]

]
𝑖∈𝐼 (𝑚 ⊎𝑚′) = 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)] (𝑚 ⊎𝑚′) = 𝜎 (𝑚) [ℓ𝑖 ↦→ 𝜌 (𝑚) (𝑦)] ≠ ⊥

We know that 𝜎 (𝑚) [ℓ𝑖 ↦→ 𝜌 (𝑚) (𝑦)] ≠ ⊥ due to the fact that 𝜎 (𝑚) ≠ ⊥ and 𝜌 (𝑚) (𝑦) ≠ ⊥. This
shows the (=⇒) direction.
(⇐=) Suppose that [(⋃𝑖 𝜑𝑖 ) : ()] (𝑚 ⊎𝑚′) ≠ ⊥ and

[
𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)]

]
𝑖∈𝐼 (𝑚 ⊎𝑚′) ≠ ⊥. By

construction, the fact that

[
𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)]

]
𝑖∈𝐼 (𝑚 ⊎𝑚′) ≠ ⊥ implies[

𝜑𝑖 : 𝜎 [ℓ𝑖 ↦→ 𝜌 (𝑦)]
]
𝑖∈𝐼 (𝑚 ⊎𝑚′) = 𝜎 (𝑚) [ℓ𝑖 ↦→ 𝜌 (𝑚) (𝑦)]

for some 𝑖 ∈ 𝐼 . This means that 𝜑𝑖 (𝑚) = T for some 𝑖 ∈ 𝐼 . Hence,(∨
𝑖∈𝐼

𝜑𝑖

)
(𝑚 ⊎𝑚′) = T

as desired.

This completes our proof of (2).

(Sym) Consider 𝑒 = sym. The only abstract big-step judgement whose conclusion matches 𝑒 = sym is
Sym. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ), we get

𝜌 ⊢ (sym, 𝜎) ⇚ ( [𝛼 : true,¬𝛼 : false], 𝜎, T)
such that 𝛼 is the smallest not in symvars(𝜌, 𝜎).
We will begin by showing (1). It suffices to show that the following two functions have the

same image

run(𝜌 (𝑚), sym, 𝜎 (𝑚)) : BN → Result⊥

result𝑉 (𝜎 (𝑚), [𝛼 : true,¬𝛼 : false] |𝑚, 𝜎 |𝑚) : Model𝑉 → Result⊥

We will first consider the image of run(𝜌 (𝑚), sym, 𝜎 (𝑚)). Observe that, by the assumption that

(𝜌 (𝑚), 𝑒, 𝜎 (𝑚)) ∈ Config, we know that 𝜌 (𝑚) ≠ ⊥ and 𝜎 (𝑚) ≠ ⊥. Now, there are two sub-cases
for the evaluation of run(𝜌 (𝑚), sym, 𝜎 (𝑚)):

(a) Consider 𝑏 :: 𝑠 ∈ BN
with 𝑏 = T. Because 𝑏 = T, we can prove that

𝜌 (𝑚), 𝑏 :: 𝑠 ⊢ (sym, 𝜎 (𝑚)) ⇓ (true, 𝜎 (𝑚))
using the concrete big-step judgement SymTrue. Then, by definition of run, we have that

run(𝜌 (𝑚), sym, 𝜎 (𝑚)) (𝑏 :: 𝑠) = ⟨∅⟩(true, 𝜎 (𝑚))
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due to the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅.
(b) Consider 𝑏 :: 𝑠 ∈ BN

with 𝑏 = F. Because 𝑏 = F, we can prove that

𝜌 (𝑚), 𝑏 :: 𝑠 ⊢ (sym, 𝜎 (𝑚)) ⇓ (false, 𝜎 (𝑚))
using the concrete big-step judgement SymFalse. Then, by definition of run, we have that

run(𝜌 (𝑚), sym, 𝜎 (𝑚)) (𝑏 :: 𝑠) = ⟨∅⟩(false, 𝜎 (𝑚))
due to the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅.

The cases above imply that

img(run(𝜌 (𝑚), sym, 𝜎 (𝑚))) = {⟨∅⟩(true, 𝜎 (𝑚)), ⟨∅⟩(false, 𝜎 (𝑚))}
Now, observe that 𝑉 = symvars( [𝛼 : true,¬𝛼 : false], 𝜎) \ symvars(𝜌, 𝜎) = {𝛼}. Thus,

Model𝑉 = {{𝛼 ↦→ T}, {𝛼 ↦→ ⊥}}
Note the following four equivalences, recalling that, by construction, 𝛼 ∉ symvars(𝜌, 𝜎):

[𝛼 : true,¬𝛼 : false] |𝑚 ({𝛼 ↦→ T}) = [𝛼 : true,¬𝛼 : false] (𝑚 ⊎ {𝛼 ↦→ T}) = true

𝜎 |𝑚 ({𝛼 ↦→ T}) = 𝜎 (𝑚 ⊎ {𝛼 ↦→ T}) = 𝜎 (𝑚)
[𝛼 : true,¬𝛼 : false] |𝑚 ({𝛼 ↦→ F}) = [𝛼 : true,¬𝛼 : false] (𝑚 ⊎ {𝛼 ↦→ F}) = false

𝜎 |𝑚 ({𝛼 ↦→ F}) = 𝜎 (𝑚 ⊎ {𝛼 ↦→ F}) = 𝜎 (𝑚)
Hence, we have, by definition, that

result𝑉 (𝜎 (𝑚), [𝛼 : true,¬𝛼 : false] |𝑚, 𝜎 |𝑚) ({𝛼 ↦→ T}) = ⟨∅⟩(true, 𝜎 (𝑚))
result𝑉 (𝜎 (𝑚), [𝛼 : true,¬𝛼 : false] |𝑚, 𝜎 |𝑚) ({𝛼 ↦→ F}) = ⟨∅⟩(false, 𝜎 (𝑚))

due to the fact that dom(𝜎 (𝑚)) \dom(𝜎 (𝑚)) = ∅. This means

img(result𝑉 (𝜎 (𝑚), [𝛼 : true,¬𝛼 : false] |𝑚, 𝜎 |𝑚)) = {⟨∅⟩(true, 𝜎 (𝑚)), ⟨∅⟩(false, 𝜎 (𝑚))}
Therefore, img(run(𝜌 (𝑚), sym, 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), [𝛼 : true,¬𝛼 : false] |𝑚, 𝜎 |𝑚)).
This completes our proof of (1)

To prove (2), it suffices to show that

T(𝑚 ⊎𝑚′) = T ⇐⇒ [𝛼 : true,¬𝛼 : false] (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 (𝑚 ⊎𝑚′) ≠ ⊥
for all𝑚′ ∈ Model𝑉 . Take any𝑚

′ ∈ Model𝑉 . Notice immediately that T(𝑚 ⊎𝑚′) = T for all

𝑚′ ∈ Model𝑉 . We showed above that [𝛼 : true,¬𝛼 : false] (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎 (𝑚 ⊎𝑚′) ≠ ⊥
for all 𝑚′ ∈ Model𝑉 . Hence, in all cases, we have that T(𝑚 ⊎𝑚′) = T, that [𝛼 : true,¬𝛼 :

false] (𝑚 ⊎𝑚′) ≠ ⊥, and that 𝜎 (𝑚 ⊎𝑚′) ≠ ⊥. This proves (2).
(Fail) Consider 𝑒 = fail. The only abstract big-step judgement whose conclusion matches 𝑒 = sym is

Sym. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ), we get
𝜌 ⊢ (fail, 𝜎) ⇚ (∅,∅, F)

We will begin by showing (1). It suffices to show that the following two functions have the

same image

run(𝜌 (𝑚), fail, 𝜎 (𝑚)) : BN → Result⊥

result𝑉 (𝜎 (𝑚),∅|𝑚,∅|𝑚) : Model𝑉 → Result⊥

Notice, there does not exist a concrete big-step judgement that matches 𝑒 = fail. Hence, by
definition of run, we have that

run(𝜌 (𝑚), fail, 𝜎 (𝑚)) (𝑠) = ⊥
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for all 𝑠 ∈ BN
. Thus,

img(run(𝜌 (𝑚), fail, 𝜎 (𝑚))) = {⊥}
Now, observe that 𝑉 = symvars(∅, 𝜎) \ symvars(𝜌, 𝜎) = ∅. Thus, Model𝑉 = {∅}. Notice,
because there does not exist a 𝜑 in the empty symbolic union ∅ such that 𝜑 (𝑚) = T, we have

∅|𝑚 (∅) = ⊥. Therefore,
result𝑉 (𝜎 (𝑚),∅|𝑚,∅|𝑚) (∅) = ⊥

This means that

img(result𝑉 (𝜎 (𝑚),∅|𝑚,∅|𝑚)) = {⊥}
Therefore, img(run(𝜌 (𝑚), fail, 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚),∅|𝑚,∅|𝑚)). This completes our

proof of (1).

Now, we turn our attention to (2). It suffices to show

F(𝑚 ⊎𝑚′) = T ⇐⇒ ∅(𝑚 ⊎𝑚′) ≠ ⊥ and ∅(𝑚 ⊎𝑚′) ≠ ⊥

for all𝑚′ ∈ Model𝑉 . Take𝑚
′ ∈ Model𝑉 . Notice that F(𝑚 ⊎𝑚′) = F for all𝑚′ ∈ Model𝑉 . We

showed above that the symbolic value ∅(𝑚 ⊎𝑚′) = ⊥ and the symbolic store ∅(𝑚 ⊎𝑚′) = ⊥
for all𝑚′ ∈ Model𝑉 . Hence, in all cases, we have that F(𝑚 ⊎𝑚′) = F, that ∅(𝑚 ⊎𝑚′) = ⊥, and
that the symbolic store ∅(𝑚 ⊎𝑚′) = ⊥. This proves (2).

(If) Consider 𝑒 = if 𝑥 𝑒1 𝑒2. The only abstract big-step judgement whose conclusion matches

𝑒 = if 𝑥 𝑒1 𝑒2 is If. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ), we get

𝜌 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎) ⇚ ( [𝜑1 : �̂�1, 𝜑2 : �̂�2], [𝜑1 : 𝜎1, 𝜑2 : 𝜎2], (𝜑1 ∧𝜓1) ∨ (𝜑2 ∧𝜓2))

such that

𝜌 (𝑥) = [𝜑1 : true, 𝜑2 : false] ⊎Bool �̂�

𝜌 ⊢ (𝑒1, 𝜎) ⇚ (�̂�1, 𝜎1,𝜓1)
𝜌 ⊢ (𝑒2, 𝜎) ⇚ (�̂�2, 𝜎2,𝜓2)

Suppose that 𝑃 (𝜌, 𝑒1, 𝜎, �̂�1, 𝜎1,𝜓1) and 𝑃 (𝜌, 𝑒2, 𝜎, �̂�2, 𝜎2,𝜓2) hold. By 𝑃 (𝜌, 𝑒1, 𝜎, �̂�1, 𝜎1,𝜓1), we have,
for all𝑚1 ∈ Model

symvars(𝜌,𝜎 ) with (𝜌 (𝑚1), 𝑒1, 𝜎 (𝑚1)) ∈ Config, the following two functions

have the same image

run(𝜌 (𝑚1), 𝑒1, 𝜎 (𝑚1)) : BN → Result⊥

result𝑉1
(𝜎 (𝑚1), �̂�1 |𝑚1

, 𝜎1 |𝑚1
) : Model𝑉1

→ Result⊥

and

𝜓1 (𝑚1 ⊎𝑚′
1
) = T ⇐⇒ �̂�1 (𝑚1 ⊎𝑚′

1
) ≠ ⊥ and 𝜎1 (𝑚1 ⊎𝑚′

1
) ≠ ⊥

for all𝑚′
1
∈ Model𝑉1

where 𝑉1 = symvars(�̂�1, 𝜎1) \ symvars(𝜌, 𝜎). By 𝑃 (𝜌, 𝑒2, 𝜎, �̂�2, 𝜎2,𝜓2), we
have, for all𝑚2 ∈ Model

symvars(𝜌,𝜎 ) with (𝜌 (𝑚2), 𝑒2, 𝜎 (𝑚2)) ∈ Config, the following two func-

tions have the same image

run(𝜌 (𝑚2), 𝑒2, 𝜎 (𝑚2)) : BN → Result⊥

result𝑉1
(𝜎 (𝑚2), �̂�2 |𝑚2

, 𝜎2 |𝑚2
) : Model𝑉2

→ Result⊥

and

𝜓2 (𝑚2 ⊎𝑚′
2
) = T ⇐⇒ �̂�2 (𝑚2 ⊎𝑚′

2
) ≠ ⊥ and 𝜎2 (𝑚2 ⊎𝑚′

2
) ≠ ⊥

for all𝑚′
2
∈ Model𝑉2

where 𝑉2 = symvars(�̂�2, 𝜎2) \ symvars(𝜌, 𝜎).
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We will begin by showing (1). It suffices to show that the following two functions have the

same image

run(𝜌 (𝑚), if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚)) : BN → Result⊥

result𝑉 (𝜎 (𝑚), [𝜑1 : �̂�1, 𝜑2 : �̂�2] |𝑚, [𝜑1 : 𝜎1, 𝜑2 : 𝜎2] |𝑚) : Model𝑉 → Result⊥

We have three sub-cases:

(a) Suppose that 𝜌 (𝑚) (𝑥) = true. We will first consider the image of the function

run(𝜌 (𝑚), if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚))
By the assumption that (𝜌 (𝑚), 𝑒, 𝜎 (𝑚)) ∈ Config, we know that 𝜌 (𝑚) ≠ ⊥ and 𝜎 (𝑚) ≠ ⊥.
Moreover, because𝑚 ∈ Model

symvars(𝜌,𝜎 ) by construction, notice that run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) is
a well-defined function. Now, there are two sub-cases:

(i) Consider 𝑠 ∈ BN
with run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠) ≠ ⊥. Then, by definition,

run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠) = ⟨dom(𝜎 ′) \dom(𝜎 (𝑚))⟩(𝑣, 𝜎 ′)
for some ⟨dom(𝜎 ′)\dom(𝜎 (𝑚))⟩(𝑣, 𝜎 ′) ∈ Result. Again, by definition of run, we must have

that

𝜌 (𝑚), 𝑠 ⊢ (𝑒1, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎 ′)
This, along with the fact that 𝜌 (𝑚) (𝑥) = true (meaning 𝑥 ∈ dom(𝜌 (𝑚))), allows us to
prove

𝜌 (𝑚), 𝑠 ⊢ (if 𝑥 𝑒1 𝑒2, �̂� (𝑚)) ⇓ (𝑣, 𝜎 ′)
using the concrete big-step judgement IfTrue. By the definition of run, this implies that

run(𝜌 (𝑚), if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚)) (𝑠) = ⟨dom(𝜎 ′) \dom(𝜎 (𝑚))⟩(𝑣, 𝜎 ′)
meaning that run(𝜌 (𝑚), if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚)) (𝑠) = run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠).

(ii) Consider 𝑠 ∈ BN
with run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠) = ⊥. Then there does not exist a bitstream

𝑠 ∈ BN
such that 𝜌 (𝑚), 𝑠 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎 ′) for some (𝑣, 𝜎 ′) ∈ Value × Store.

To make this claim explicit, assume, for the purposes of contradiction, that there exists

𝑠 ∈ BN
such that 𝜌 (𝑚), 𝑠 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎 ′) for some (𝑣, 𝜎 ′) ∈ Value × Store.

There are two concrete big-step judgements that match this conclusion: IfTrue and IfFalse.

Notice, because 𝜌 (𝑚) (𝑥) = true, we could not have used IfFalse as the final step of our

derivation, meaning we must have used IfTrue. Therefore, by inversion of the proof tree

corresponding to 𝜌 (𝑚), 𝑠 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎 ′), we get that
𝜌 (𝑚), 𝑠 ⊢ (𝑒1, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎 ′)

This means, by definition of run, that

run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠) = ⟨dom(𝜎 ′) \dom(𝜎 (𝑚))⟩(𝑣, 𝜎 ′)
which is impossible. Hence, we conclude that there does not exist 𝑠 ∈ BN

such that

𝜌 (𝑚), 𝑠 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎 ′) for some (𝑣, 𝜎 ′) ∈ Value × Store.

This implies, by the definition of run, that, for all 𝑠 ∈ BN
,

run(𝜌 (𝑚), if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚)) (𝑠) = ⊥
meaning that run(𝜌 (𝑚), if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚)) (𝑠) = run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠).

The cases above imply, for all 𝑠 ∈ BN
, that

run(𝜌 (𝑚), if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚)) (𝑠) = run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠)
This implies that

img(run(𝜌 (𝑚), if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚))) = img(run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)))
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Now, notice that𝑚 ∈ Model
symvars(𝜌,𝜎 ) by construction.Moreover, becausewe have (𝜌 (𝑚), if𝑥 𝑒1 𝑒2, 𝜎 (𝑚)) ∈

Config, we know that locs(𝜌 (𝑚)) ∪ locs(𝜎 (𝑚)) ⊆ dom(𝜎 (𝑚)), FV(𝜌 (𝑚) (𝑥)) = ∅ for all

𝑥 ∈ dom(𝜌 (𝑚)), and FV(if 𝑥 𝑒1 𝑒2) ⊆ dom(𝜌 (𝑚)). The final condition implies that FV(𝑒1) ⊆
𝜌 (𝑚). Thus, we know that (𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) ∈ Config. Therefore,

img(run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), �̂�1 |𝑚, 𝜎1 |𝑚))

by the inductive hypothesis. Finally, note that because 𝜌 (𝑚) (𝑥) = true implies that𝜑1 (𝑚) = T,

we have

[𝜑1 : �̂�1, 𝜑2 : �̂�2] |𝑚 (𝑚′) = [𝜑1 : �̂�1, 𝜑2 : �̂�2] | (𝑚 ⊎𝑚′) = �̂�1 (𝑚 ⊎𝑚′) = �̂�1 |𝑚 (𝑚′)
[𝜑1 : 𝜎1, 𝜑2 : 𝜎2] |𝑚 (𝑚′) = [𝜑1 : 𝜎1, 𝜑2 : 𝜎2] | (𝑚 ⊎𝑚′) = 𝜎1 (𝑚 ⊎𝑚′) = 𝜎1 |𝑚 (𝑚′)

for all𝑚′ ∈ Model(symvars(�̂�1,𝜎1 )∪symvars(�̂�2,𝜎2 ) )\symvars(𝜌,𝜎 ) . In other words, we have that

[𝜑1 : �̂�1, 𝜑2 : �̂�2] |𝑚 = �̂�1 |𝑚
[𝜑1 : 𝜎1, 𝜑2 : 𝜎2] |𝑚 = 𝜎1 |𝑚

Putting everything together we have that

img(run(𝜌 (𝑚), if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚))) = img(run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)))
= img(result𝑉 (�̂� (𝑚), �̂�1 |𝑚, 𝜎1 |𝑚))
= img(result𝑉 (𝜎 (𝑚), [𝜑1 : �̂�1, 𝜑2 : �̂�2] |𝑚, [𝜑1 : 𝜎1, 𝜑2 : 𝜎2] |𝑚))

as desired.

(b) Suppose that 𝜌 (𝑚) (𝑥) = false. Apply identical reasoning as in the case above.

(c) Suppose that 𝜌 (𝑚) (𝑥) ≠ true and 𝜌 (𝑚) (𝑥) ≠ false. Then there does not exist a bitstream

𝑠 ∈ BN
such that 𝜌 (𝑚), 𝑠 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎 ′) for some (𝑣, 𝜎 ′) ∈ Value × Store.

To make this make explicit, assume, for the purposes of contradiction, that there exists 𝑠 ∈ BN

such that 𝜌 (𝑚), 𝑠 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎 ′) for some (𝑣, 𝜎 ′) ∈ Value × Store. There are

two concrete big-step judgements that match this conclusion: IfTrue and IfFalse. If we used

IfTrue as the final step of our derivation, we get that 𝜌 (𝑚) (𝑥) = true by inversion of the

proof tree. This is impossible since 𝜌 (𝑚) (𝑥) ≠ true. Likewise, if we used IfFalse as the final

step of our derivation, we get that 𝜌 (𝑚) (𝑥) = false by inversion of the proof tree. This too

is impossible since 𝜌 (𝑚) (𝑥) ≠ false. Thus, our assumption was false, and we conclude that

there does not exist a bitstream 𝑠 ∈ BN
such that 𝜌 (𝑚), 𝑠 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎 ′) for

some (𝑣, 𝜎 ′) ∈ Value × Store.

This implies, for all 𝑠 ∈ BN
, that

run(𝜌 (𝑚), if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚)) (𝑠) = ⊥

meaning that

img(run(𝜌 (𝑚), if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚))) = {⊥}
Now, notice that 𝜌 (𝑚) (𝑥) ≠ true and 𝜌 (𝑚) (𝑥) ≠ false implies that 𝜑1 (𝑚) = F and 𝜑2 (𝑚) =
F. Hence, we have

[𝜑1 : �̂�1, 𝜑2 : �̂�2] |𝑚 (𝑚′) = [𝜑1 : �̂�1, 𝜑2 : �̂�2] | (𝑚 ⊎𝑚′) = ⊥
[𝜑1 : 𝜎1, 𝜑2 : 𝜎2] |𝑚 (𝑚′) = [𝜑1 : 𝜎1, 𝜑2 : 𝜎2] | (𝑚 ⊎𝑚′) = ⊥

for all𝑚′ ∈ (symvars(�̂�1, 𝜎1) ∪ symvars(�̂�2, 𝜎2)) \symvars(𝜌, 𝜎). Therefore, by definition, we

have

result𝑉 (𝜎 (𝑚), [𝜑1 : �̂�1, 𝜑2 : �̂�2] |𝑚, [𝜑1 : 𝜎1, 𝜑2 : 𝜎2] |𝑚) (𝑚′) = ⊥

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 231. Publication date: June 2025.



Roulette: A Language for Expressive, Exact, and Efficient Discrete Probabilistic Programming (with Appendices) 231:55

for all𝑚′ ∈ (symvars(�̂�1, 𝜎1) ∪ symvars(�̂�2, 𝜎2)) \ symvars(𝜌, 𝜎), meaning that

img(result𝑉 (𝜎 (𝑚), [𝜑1 : �̂�1, 𝜑2 : �̂�2] |𝑚, [𝜑1 : 𝜎1, 𝜑2 : 𝜎2] |𝑚)) = {⊥}
So,

img(run(𝜌 (𝑚), if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), [𝜑1 : �̂�1, 𝜑2 : �̂�2] |𝑚, [𝜑1 : 𝜎1, 𝜑2 : 𝜎2] |𝑚))
Therefore, in all cases, we have that

img(run(𝜌 (𝑚), if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), [𝜑1 : �̂�1, 𝜑2 : �̂�2] |𝑚, [𝜑1 : 𝜎1, 𝜑2 : 𝜎2] |𝑚))
so we are done. This completes our proof of (1).

Now, we turn our attention to (2). It suffices to show(
(𝜑1∨𝜓1)∧(𝜑2∨𝜓2)

)
(𝑚⊎𝑚′) = T ⇐⇒ [𝜑1 : �̂�1, 𝜑2 : �̂�2] (𝑚⊎𝑚′) ≠ ⊥, [𝜑1 : 𝜎1, 𝜑2 : 𝜎2] (𝑚⊎𝑚′) ≠ ⊥

for all𝑚′ ∈ Model𝑉 . Take𝑚
′ ∈ Model𝑉 .

(=⇒) Suppose that

(
(𝜑1 ∨ 𝜓1) ∧ (𝜑2 ∨ 𝜓2)

)
(𝑚 ⊎ 𝑚′) = T. Then we must have that either

(𝜑1 ∧𝜓1) (𝑚 ⊎𝑚′) = T or that (𝜑2 ∧𝜓2) (𝑚 ⊎𝑚′) = T.

(a) Suppose (𝜑1 ∧𝜓1) (𝑚 ⊎𝑚′) = T. Write𝑚′ =𝑚1 ⊎𝑚′′
for𝑚1 ∈ Model𝑉1

and𝑚′′ ∈ Model𝑉\𝑉1
.

By the inductive hypothesis, we know that

𝜓1 (𝑚 ⊎𝑚1) = T ⇐⇒ �̂�1 (𝑚 ⊎𝑚1) ≠ ⊥ and 𝜎1 (𝑚 ⊎𝑚1) ≠ ⊥
Our assumption implies that𝜓1 (𝑚 ⊎𝑚1) = T, so it must be the case that

[𝜑1 : �̂�1, 𝜑2 : �̂�2] (𝑚 ⊎𝑚′) = �̂�1 (𝑚 ⊎𝑚1) ≠ ⊥
[𝜑1 : 𝜎1, 𝜑2 : 𝜎2] (𝑚 ⊎𝑚′) = 𝜎1 (𝑚 ⊎𝑚1) ≠ ⊥

as desired.

(b) Suppose (𝜑2 ∧𝜓2) (𝑚 ⊎𝑚′) = T. Following the logic from the previous case, we know that

[𝜑1 : �̂�1, 𝜑2 : �̂�2] (𝑚 ⊎𝑚′) ≠ ⊥ and [𝜑1 : 𝜎1, 𝜑2 : 𝜎2] (𝑚 ⊎𝑚′) ≠ ⊥.
This proves the (=⇒) direction.
(⇐=) Suppose that [𝜑1 : �̂�1, 𝜑2 : �̂�2] (𝑚 ⊎ 𝑚′) ≠ ⊥ and [𝜑1 : 𝜎1, 𝜑2 : 𝜎2] (𝑚 ⊎ 𝑚′) ≠ ⊥.
By construction, this can only be the case if either (i) 𝜑1 (𝑚 ⊎ 𝑚′) = T, �̂�1 (𝑚 ⊎ 𝑚1) ≠ ⊥,
and 𝜎1 (𝑚 ⊎𝑚1) ≠ ⊥ where 𝑚′ = 𝑚1 ⊎𝑚′′

for 𝑚1 ∈ Model𝑉1
and 𝑚′′ ∈ Model𝑉\𝑉1

or (ii)

𝜑2 (𝑚 ⊎𝑚′) = T, �̂�2 (𝑚 ⊎𝑚2) ≠ ⊥, and 𝜎2 (𝑚 ⊎𝑚2) ≠ ⊥ where𝑚′ =𝑚2 ⊎𝑚′′′
for𝑚2 ∈ Model𝑉2

and𝑚′′′ ∈ Model𝑉\𝑉2
.

(a) Suppose that 𝜑1 (𝑚 ⊎𝑚′) = T, �̂�1 (𝑚 ⊎𝑚1) ≠ ⊥, and 𝜎1 (𝑚 ⊎𝑚1) ≠ ⊥. By the inductive

hypothesis, we know that

𝜓1 (𝑚 ⊎𝑚1) = T ⇐⇒ �̂�1 (𝑚 ⊎𝑚1) ≠ ⊥ and 𝜎1 (𝑚 ⊎𝑚1) ≠ ⊥
Hence, it must be the case that𝜓1 (𝑚 ⊎𝑚1) = T. Therefore, we have (𝜑1 ∧𝜓1) (𝑚 ⊎𝑚′) = T,

meaning that (
(𝜑1 ∨𝜓1) ∧ (𝜑2 ∨𝜓2)

)
(𝑚 ⊎𝑚′) = T

as desired.

(b) Suppose that 𝜑2 (𝑚 ⊎𝑚′) = T, �̂�2 (𝑚 ⊎𝑚2) ≠ ⊥, and 𝜎2 (𝑚 ⊎𝑚2) ≠ ⊥. Following the logic

from the previous case, we have that

(
(𝜑1 ∨𝜓1) ∧ (𝜑2 ∨𝜓2)

)
(𝑚 ⊎𝑚′) = T, as desired.

This shows the (⇐=) direction, and completes the proof of (2).

(App) Consider 𝑒 = 𝑥 𝑦. The only abstract big-step judgement whose conclusion matches 𝑒 = 𝑥 𝑦 is

App. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ), we get

𝜌 ⊢ (𝑥 𝑦, 𝜎) ⇚ ( [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 , [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 ,
∨
𝑖∈𝐼

(𝜑𝑖 ∧𝜓𝑖 ))
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such that

𝜌 (𝑥) = [𝜑𝑖 : clo(𝜆𝑥𝑖 .𝑒𝑖 , 𝜌𝑖 )]𝑖∈𝐼 ⊎Closure �̂�

𝜌𝑖 [𝑥𝑖 ↦→ 𝜌 (𝑦)] ⊢ (𝑒𝑖 , 𝜎) ⇚ (�̂�𝑖 , 𝜎𝑖 ,𝜓𝑖 ) for all 𝑖 ∈ 𝐼

Suppose that 𝑃 (𝜌𝑖 [𝑥𝑖 ↦→ 𝜌 (𝑦)], 𝑒𝑖 , 𝜎, �̂�𝑖 , 𝜎𝑖 ,𝜓𝑖 ) holds for all 𝑖 ∈ 𝐼 . Then, for each 𝑖 ∈ 𝐼 , we have

that, for all𝑚𝑖 ∈ Model
symvars(𝜌𝑖 [𝑥𝑖 ↦→𝜌 (𝑦) ],𝜎 ) with (𝜌𝑖 [𝑥 ↦→ 𝜌 (𝑦)] (𝑚𝑖 ), 𝑒𝑖 , 𝜎 (𝑚𝑖 )) ∈ Config, the

following two functions have the same image

run(𝜌𝑖 [𝑥𝑖 ↦→ 𝜌 (𝑦)] (𝑚𝑖 ), 𝑒𝑖 , 𝜎 (𝑚𝑖 )) : BN → Result⊥

result𝑉𝑖 (𝜎 (𝑚𝑖 ), �̂�𝑖 |𝑚𝑖
, 𝜎𝑖 |𝑚𝑖

) : Model𝑉𝑖 → Result⊥

and

𝜓𝑖 (𝑚𝑖 ⊎𝑚′
𝑖 ) = T ⇐⇒ �̂�𝑖 (𝑚𝑖 ⊎𝑚′

𝑖 ) ≠ ⊥ and 𝜎𝑖 (𝑚𝑖 ⊎𝑚′
𝑖 ) ≠ ⊥

for all𝑚′
𝑖 ∈ Model𝑉𝑖 where 𝑉𝑖 = symvars(�̂�𝑖 , 𝜎𝑖 ) \ symvars(𝜌𝑖 [𝑥𝑖 ↦→ 𝜌 (𝑦)], 𝜎).

We will begin by showing (1). It suffices to show that the following two functions have the

same image

run(𝜌 (𝑚), 𝑥 𝑦, 𝜎 (𝑚)) : BN → Result⊥

result𝑉 (𝜎 (𝑚), [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 |𝑚, [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 |𝑚) : Model𝑉 → Result⊥

By the assumption that (𝜌 (𝑚), 𝑥 𝑦, 𝜎 (𝑚)) ∈ Config, we know locs(𝜌 (𝑚)) ∪ locs(𝜎 (𝑚)) ⊆
dom(𝜎 (𝑚)), FV(𝜌 (𝑚) (𝑥)) = ∅ for all 𝑥 ∈ dom(𝜌 (𝑚)), and FV(𝑥 𝑦) ⊆ dom(𝜌 (𝑚)). Therefore,
by assumption, we have that 𝑥,𝑦 ∈ dom(𝜌 (𝑚)), meaning that 𝜌 (𝑚) (𝑥) ≠ ⊥ and 𝜌 (𝑚) (𝑦) ≠ ⊥.
Now, we split into two cases:

(a) Suppose that 𝜑𝑖 (𝑚) = T for some 𝑖 ∈ 𝐼 . By definition

𝜌 (𝑚) (𝑥) = ( [𝜑𝑖 : clo(𝜆𝑥𝑖 .𝑒𝑖 , 𝜌𝑖 )]𝑖∈𝐼 ⊎Closure �̂�) (𝑚) = clo(𝜆𝑥𝑖 .𝑒𝑖 , 𝜌𝑖 (𝑚))

noting that, because we know that 𝜌 (𝑚) (𝑥) ≠ ⊥, it must also be the case that 𝜌𝑖 (𝑚) ≠ ⊥ by

the definition of abstract closures.

Wewould now like to show that (𝜌𝑖 (𝑚) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑦)], 𝑒𝑖 , 𝜎 (𝑚)) ∈ Config. Observe, because

locs(𝜌 (𝑚)) ∪ locs(𝜎 (𝑚)) ⊆ dom(𝜎 (𝑚)), we know locs(clo(𝜆𝑥𝑖 .𝑒𝑖 , 𝜌𝑖 (𝑚))) ⊆ locs(𝜌 (𝑚)) ⊆
dom(𝜎 (𝑚)). This implies locs(𝜌𝑖 (𝑚)) ⊆ dom(�̂� (𝑚)). Moreover, we know that locs(𝜌 (𝑚) (𝑦)) ⊆
locs(𝜌 (𝑚)) ⊆ dom(𝜎 (𝑚)). Combining these facts, we can conclude that locs(𝜌𝑖 (𝑚) [𝑥𝑖 ↦→
𝜌 (𝑚) (𝑦)]) ⊆ dom(𝜎 (𝑚)), meaning that

locs(𝜌𝑖 (𝑚) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑦)]) ∪ locs(𝜎 (𝑚)) ⊆ dom(𝜎 (𝑚))

Notice, due to the fact that FV(𝜌 (𝑚) (𝑥)) = ∅ for all 𝑥 ∈ dom(𝜌 (𝑚)), we know that

FV(𝜌𝑖 (𝑚) (𝑥)) = ∅ for all 𝑥 ∈ dom(𝜌𝑖 (𝑚))

Moreover, because FV(clo(𝜆𝑥𝑖 .𝑒𝑖 , 𝜌𝑖 (𝑚))) = ∅, we have that FV(𝜆𝑥𝑖 .𝑒𝑖 ) ⊆ dom(𝜌𝑖 (𝑚)). This
implies that FV(𝑒𝑖 ) ⊆ dom(𝜌𝑖 (𝑚)) ∪ {𝑥𝑖 }. Thus, we can conclude FV(𝑒𝑖 ) ⊆ dom(𝜌𝑖 (𝑚) [𝑥𝑖 ↦→
𝜌 (𝑚) (𝑦)]). Altogether, these facts imply that

(𝜌𝑖 (𝑚) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑦)], 𝑒𝑖 , 𝜎 (𝑚)) ∈ Config

With this important context, we will now show that

img(run(𝜌 (𝑚), 𝑥 𝑦, 𝜎 (𝑚))) = img(run(𝜌𝑖 (𝑚) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑦)], 𝑒𝑖 , 𝜎 (𝑚)))

There are two sub-cases:
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(i) Consider 𝑠 ∈ BN
such that run(𝜌𝑖 (𝑚) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑦)], 𝑒𝑖 , 𝜎 (𝑚)) ≠ ⊥. Then, by definition

run(𝜌𝑖 (𝑚) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑦)], 𝑒𝑖 , 𝜎 (𝑚)) (𝑠) = ⟨dom(𝜎) \dom(𝜎 (𝑚))⟩(𝑣, 𝜎)
for some (𝑣, 𝜎) ∈ Value × Store. This implies that there exists a derivation in the concrete

big-step operational semantics whose conclusion is

𝜌𝑖 (𝑚) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑦)], 𝑠 ⊢ (𝑒𝑖 , 𝜎 (𝑚)) ⇓ (𝑣, 𝜎)
Because 𝜌 (𝑚) (𝑥) = clo(𝜆𝑥𝑖 .𝑒𝑖 , 𝜌𝑖 (𝑚)), we can prove that

𝜌 (𝑚), 𝑠 ⊢ (𝑥 𝑦, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎)
using the concrete big-step judgement App. Therefore, by definition of run, we have that

run(𝜌 (𝑚), 𝑥 𝑦, 𝜎 (𝑚)) (𝑠) = ⟨dom(𝜎) \dom(𝜎 (𝑚))⟩(𝑣, 𝜎)
meaning that run(𝜌 (𝑚), 𝑥 𝑦, 𝜎 (𝑚)) (𝑠) = run(𝜌𝑖 (𝑚) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑦)], 𝑒𝑖 , 𝜎 (𝑚)) (𝑠).

(ii) Consider 𝑠 ∈ BN
such that run(𝜌𝑖 (𝑚) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑦)], 𝑒𝑖 , 𝜎 (𝑚)) = ⊥. Then it must be the

case that run(𝜌 (𝑚), 𝑥 𝑦, 𝜎 (𝑚)) = ⊥.
To make this claim explicit, assume, for the purposes of contradiction, that there exists

𝑠 ∈ BN
such that

run(𝜌 (𝑚), 𝑥 𝑦, 𝜎 (𝑚)) (𝑠) = ⟨dom(𝜎) \dom(𝜎 (𝑚))⟩(𝑣, 𝜎)
for some (𝑣, 𝜎) ∈ Value × Store. Then there exists a derivation in the concrete big-step

operational semantics whose conclusion is

𝜌 (𝑚), 𝑠 ⊢ (𝑥 𝑦, 𝜎 (𝑚)) ⊢ (𝑣, 𝜎)
Recall, we know that 𝜌 (𝑚) (𝑥) = clo(𝜆𝑥𝑖 .𝑒𝑖 , 𝜌𝑖 (𝑚)). Thus, by inversion of the proof tree

for 𝜌 (𝑚), 𝑠 ⊢ (𝑥 𝑦, 𝜎 (𝑚)) ⊢ (𝑣, 𝜎), we conclude that
𝜌𝑖 (𝑚) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑦)], 𝑠 ⊢ (𝑒𝑖 , 𝜎 (𝑚)) ⇓ (𝑣, 𝜎)

This implies

run(𝜌𝑖 (𝑚) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑦)], 𝑒𝑖 , 𝜎 (𝑚)) (𝑠) = ⟨dom(𝜎) \dom(𝜎 (𝑚))⟩(𝑣, 𝜎)
which is impossible. Therefore, we have that

run(𝜌 (𝑚), 𝑥 𝑦, 𝜎 (𝑚)) (𝑠) = ⊥ = run(𝜌𝑖 (𝑚) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑦)], 𝑒𝑖 , 𝜎 (𝑚)) (𝑠)
The cases above demonstrate that

img(run(𝜌 (𝑚), 𝑥 𝑦, 𝜎 (𝑚))) = img(run(𝜌𝑖 (𝑚) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑦)], 𝑒𝑖 , 𝜎 (𝑚)))
Because𝑚 ∈ Model

symvars(𝜌𝑖 [𝑥𝑖 ↦→𝜌 (𝑦) ] (𝑚),𝜎 (𝑚) ) , and (𝜌𝑖 [𝑥𝑖 ↦→ 𝜌 (𝑦)] (𝑚), 𝑒𝑖 , 𝜎 (𝑚)) ∈ Config,

we also know that

img(run(𝜌𝑖 (𝑚) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑦)], 𝑒𝑖 , 𝜎 (𝑚))) = img(result𝑉𝑖 (𝜎 (𝑚), �̂�𝑖 |𝑚, 𝜎𝑖 |𝑚))
by the inductive hypothesis. Finally, because 𝜑𝑖 (𝑚) = T, notice that

[𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 |𝑚 (𝑚′) = [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 (𝑚 ⊎𝑚′) = �̂�𝑖 (𝑚 ⊎𝑚′) = �̂�𝑖 |𝑚 (𝑚′)
[𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 |𝑚 (𝑚′) = [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 (𝑚 ⊎𝑚′) = 𝜎𝑖 (𝑚 ⊎𝑚′) = 𝜎𝑖 |𝑚 (𝑚′)

meaning

result𝑉 (𝜎 (𝑚), [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 |𝑚, [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 |𝑚) (𝑚′) = result𝑉𝑖 (𝜎 (𝑚), �̂�𝑖 |𝑚, 𝜎𝑖 |𝑚) (𝑚′)
for all𝑚′ ∈ Model

symvars( [𝜑𝑖 :̂𝑣𝑖 ]𝑖∈𝐼 |𝑚,[𝜑𝑖 :𝜎𝑖 ]𝑖∈𝐼 |𝑚 )\symvars(𝜌,𝜎 ) . This directly implies that

img(result𝑉 (𝜎 (𝑚), [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 |𝑚, [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 |𝑚)) = img(result𝑉𝑖 (𝜎 (𝑚), �̂�𝑖 |𝑚, 𝜎𝑖 |𝑚))
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Therefore, we can conclude

img(run(𝜌 (𝑚), 𝑥 𝑦, 𝜎 (𝑚))) = img(run(𝜌𝑖 (𝑚) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑦)], 𝑒𝑖 , 𝜎 (𝑚)))
= img(result𝑉𝑖 (𝜎 (𝑚), �̂�𝑖 |𝑚, 𝜎𝑖 |𝑚))
= img(result𝑉 (𝜎 (𝑚), [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 |𝑚, [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 |𝑚))

as desired.

(b) Suppose that 𝜑𝑖 (𝑚) = F for all 𝑖 ∈ 𝐼 . Then we have that

𝜌 (𝑚) (𝑥) = ( [𝜑𝑖 : clo(𝜆𝑥𝑖 .𝑒𝑖 , 𝜌𝑖 )]𝑖∈𝐼 ⊎Closure �̂�) (𝑚) ∉ Closure

Hence, it must be the case that run(𝜌 (𝑚), 𝑥 𝑦, �̂� (𝑚)) (𝑠) = ⊥ for all 𝑠 ∈ BN
.

To make this claim explicit, assume, for the purposes of contradiction, that

run(𝜌 (𝑚), 𝑥 𝑦, 𝜎 (𝑚)) (𝑠) = ⟨dom(𝜎) \dom(𝜎 (𝑚))⟩(𝑣, 𝜎)

for some (𝑣, 𝜎) ∈ Value × Store. This implies that there exists a derivation in the concrete

big-step operational semantics whose conclusion is

𝜌 (𝑚), 𝑠 ⊢ (𝑥 𝑦, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎)

By inversion of this proof tree, we then conclude that 𝜌 (𝑚) (𝑥) = clo(𝜆𝑥 ′ .𝑒′, 𝜌 ′) for some

clo(𝜆𝑥 ′ .𝑒′, 𝜌 ′) ∈ Closure, which is impossible.

Therefore, we conclude run(𝜌 (𝑚), 𝑥 𝑦, 𝜎 (𝑚)) (𝑠) = ⊥ for all 𝑠 ∈ BN
, meaning that

img(run(𝜌 (𝑚), 𝑥 𝑦, �̂� (𝑚))) = {⊥}

Likewise, notice that, because 𝜑𝑖 (𝑚) = F for all 𝑖 ∈ 𝐼 , we have that

[𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 |𝑚 (𝑚′) = [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 (𝑚 ⊎𝑚′) = ⊥
[𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 |𝑚 (𝑚′) = [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 (𝑚 ⊎𝑚′) = ⊥

meaning

result𝑉 (𝜎 (𝑚), [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 |𝑚, [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 |𝑚) (𝑚′) = ⊥
for all𝑚′ ∈ Model

symvars( [𝜑𝑖 :̂𝑣𝑖 ]𝑖∈𝐼 |𝑚,[𝜑𝑖 :𝜎𝑖 ]𝑖∈𝐼 |𝑚 )\symvars(𝜌,𝜎 ) . This directly implies that

img(result𝑉 (𝜎 (𝑚), [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 |𝑚, [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 |𝑚)) = {⊥}

Therefore, we conclude that

img(run(𝜌 (𝑚), 𝑥 𝑦, 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 |𝑚, [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 |𝑚))

as desired.

This completes our proof of (1).

Now, we turn our attention to (2). It suffices to show(∨
𝑖∈𝐼

(𝜑𝑖 ∧𝜓𝑖 )
)
(𝑚 ⊎𝑚′) = T ⇐⇒ [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 (𝑚 ⊎𝑚′) ≠ ⊥ and [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 (𝑚 ⊎𝑚′) ≠ ⊥

for all𝑚′ ∈ Model𝑉 . Consider any𝑚
′ ∈ Model𝑉 .

(=⇒) Suppose that (∨𝑖∈𝐼 (𝜑𝑖 ∧𝜓𝑖 )) (𝑚 ⊎𝑚′) = T. This implies (𝜑𝑖 ∧𝜓𝑖 ) (𝑚 ⊎𝑚′) = T and for

some 𝑖 ∈ 𝐼 . Write𝑚′ =𝑚𝑖 ⊎𝑚′′
for some𝑚𝑖 ∈ Model𝑉𝑖 . We then have that𝜓𝑖 (𝑚 ⊎𝑚𝑖 ) = T and

𝜑𝑖 (𝑚 ⊎𝑚′) = T. By the inductive hypothesis, we then get

𝜓𝑖 (𝑚 ⊎𝑚𝑖 ) = T ⇐⇒ �̂�𝑖 (𝑚 ⊎𝑚𝑖 ) ≠ ⊥ and 𝜎𝑖 (𝑚 ⊎𝑚𝑖 ) ≠ ⊥
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Because𝜓𝑖 (𝑚 ⊎𝑚𝑖 ) = T, we have �̂�𝑖 (𝑚 ⊎𝑚𝑖 ) ≠ ⊥ and 𝜎𝑖 (𝑚 ⊎𝑚𝑖 ) ≠ ⊥. This means

[𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 (𝑚 ⊎𝑚′) = �̂�𝑖 (𝑚 ⊎𝑚𝑖 ) ≠ ⊥
[𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 (𝑚 ⊎𝑚′) = 𝜎𝑖 (𝑚 ⊎𝑚𝑖 ) ≠ ⊥

as desired.

(⇐=) Suppose that [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 (𝑚⊎𝑚′) ≠ ⊥ and [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 (𝑚⊎𝑚′) ≠ ⊥. Repeat the argument

for (=⇒) in the opposite direction.

This proves (2).

(Let) Consider 𝑒 = let 𝑥 = 𝑒1 in 𝑒2. The only abstract big-step judgement whose conclusion matches

𝑒 = let 𝑥 = 𝑒1 in 𝑒2 is Let. Hence, by inversion of our assumption that 𝜌 ⊢ (𝑒, 𝜎) ⇚ (�̂�, 𝜎 ′,𝜓 ),
we get

𝜌 ⊢ (let 𝑥 = 𝑒1 in 𝑒2, 𝜎) ⇚ ( [𝜓1 : �̂�2], [𝜓1 : 𝜎2],𝜓1 ∧𝜓2)
such that

𝜌 ⊢ (𝑒1, 𝜎) ⇚ (�̂�1, 𝜎1,𝜓1)
𝜌 [𝑥 ↦→ �̂�1] ⊢ (𝑒2, 𝜎1) ⇚ (�̂�2, 𝜎2,𝜓2)

Suppose that 𝑃 (𝜌, 𝑒1, 𝜎, �̂�1, 𝜎1,𝜓1) and 𝑃 (𝜌 [𝑥 ↦→ �̂�1], 𝑒2, 𝜎1, �̂�2, 𝜎2,𝜓2) hold. By the assumption

𝑃 (𝜌, 𝑒1, 𝜎, �̂�1, 𝜎1,𝜓1), we have, for all𝑚1 ∈ Model
symvars(𝜌,𝜎 ) with (𝜌 (𝑚1), 𝑒1, 𝜎 (𝑚1)) ∈ Config,

the following two functions have the same image

run(𝜌 (𝑚1), 𝑒1, 𝜎 (𝑚1)) : BN → Result⊥

result𝑉1
(𝜎 (𝑚1), �̂�1 |𝑚1

, 𝜎1 |𝑚1
) : Model𝑉1

→ Result⊥

and

𝜓1 (𝑚1 ⊎𝑚′
1
) = T ⇐⇒ �̂�1 (𝑚1 ⊎𝑚′

1
) ≠ ⊥ and 𝜎1 (𝑚1 ⊎𝑚′

1
) ≠ ⊥

for all𝑚′
1
∈ Model𝑉1

where 𝑉1 = symvars(�̂�1, 𝜎1) \ symvars(𝜌, 𝜎). By the assumption 𝑃 (𝜌 [𝑥 ↦→
�̂�1], 𝑒2, 𝜎1, �̂�2, 𝜎2,𝜓2), we have, for all𝑚2 ∈ Model

symvars(𝜌 [𝑥 ↦→�̂�1 ],𝜎1 ) with (𝜌 [𝑥 ↦→ �̂�1] (𝑚2), 𝑒2, 𝜎1 (𝑚2)) ∈
Config, the following two functions have the same image

run(𝜌 [𝑥 ↦→ �̂�1] (𝑚2), 𝑒2, 𝜎1 (𝑚2)) : BN → Result⊥

result𝑉2
(𝜎1 (𝑚2), �̂�2 |𝑚2

, 𝜎2 |𝑚2
) : Model𝑉2

→ Result⊥

and

𝜓2 (𝑚2 ⊎𝑚′
2
) = T ⇐⇒ �̂�2 (𝑚2 ⊎𝑚′

2
) ≠ ⊥ and 𝜎2 (𝑚2 ⊎𝑚′

2
) ≠ ⊥

for all𝑚′
2
∈ Model𝑉2

where 𝑉2 = symvars(�̂�2, 𝜎2) \ symvars(𝜌 [𝑥 ↦→ �̂�1], 𝜎1).
We will begin by showing (1). It suffices to show that the following two functions have the

same image

run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, �̂� (𝑚)) : BN → Result⊥

result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚) : Model𝑉 → Result⊥

We will break this proof into two parts:

img(run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚))) ⊆ img(result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚))
img(run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚))) ⊇ img(result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚))

Before we begin, recall that (𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) ∈ Config by assumption. Hence, we

know that locs(𝜌 (𝑚)) ∪ locs(𝜎 (𝑚)) ⊆ dom(𝜎 (𝑚)), that FV(let 𝑥 = 𝑒1 in 𝑒2) ⊆ dom(𝜌 (𝑚)),
and FV(𝜌 (𝑚) (𝑥)) ≠ ∅ for all 𝑥 ∈ dom(𝜌 (𝑚)).
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(⊆) Now, consider any 𝑠 ∈ BN
and write 𝑠 { 𝑠1, 𝑠2. We will consider several cases for the

evaluation of run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) (𝑠) and show that, in each case,

run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) (𝑠) ∈ img(result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚))
(a) Suppose that run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠1) = ⊥. This fact implies that run(𝜌 (𝑚), let𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) (𝑠) =

⊥.
To be precise, assume, for the purposes of contradiction, that

run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) (𝑠) ≠ ⊥
By definition of run, this implies that there exists a derivation in the concrete big-step

operational semantics whose conclusion is

𝜌 (𝑚), 𝑠 ⊢ (let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎)
for some (𝑣, 𝜎) ∈ Value × Store. Recall, 𝑠 { 𝑠1, 𝑠2 by assumption. Hence, by inversion of the

proof tree for 𝜌 (𝑚), 𝑠 ⊢ (let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎), we have that
𝜌 (𝑚), 𝑠1 ⊢ (𝑒1, 𝜎 (𝑚)) ⇓ (𝑣1, 𝜎1)

𝜌 (𝑚) [𝑥 ↦→ 𝑣1], 𝑠2 ⊢ (𝑒2, 𝜎1) ⇓ (𝑣, 𝜎)
This implies, by the definition of run, that

run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠1) = ⟨dom(𝜎) \dom(𝜎1)⟩(𝑣1, 𝜎1)
which is impossible. Therefore, run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) (𝑠) = ⊥.
Now, we must show ⊥ ∈ img(result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚)). Notice that we have
(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) ∈ Config due to the fact that FV(𝑒1) ⊆ FV(let 𝑥 = 𝑒1 in 𝑒2). Hence, by the

inductive hypothesis,

img(run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚))) = img(result𝑉1
(𝜎 (𝑚), �̂�1 |𝑚, 𝜎1 |𝑚))

Therefore, because ⊥ ∈ img(run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚))), there must exist𝑚1 ∈ Model𝑉1
such that

result𝑉1
(𝜎 (𝑚), �̂�1 |𝑚, 𝜎1 |𝑚) (𝑚1) = ⊥

This means, by the definition of result𝑉1
, that we have at least one of �̂�1 (𝑚 ⊎𝑚1) = ⊥ or

𝜎1 (𝑚 ⊎𝑚1) = ⊥. By the inductive hypothesis, this occurs if and only if 𝜓1 (𝑚 ⊎𝑚1) = F.

Therefore, for any𝑚2 ∈ Model𝑉2
, we get

[𝜓1 : �̂�2] |𝑚 (𝑚1 ⊎𝑚2) = [𝜓1 : �̂�2] (𝑚 ⊎𝑚1 ⊎𝑚2) = ⊥
[𝜓1 : 𝜎2] |𝑚 (𝑚1 ⊎𝑚2) = [𝜓1 : 𝜎2] (𝑚 ⊎𝑚1 ⊎𝑚2) = ⊥

using the fact that𝑚1 ⊎𝑚2 ∈ Model𝑉 for any𝑚1 ∈ Model𝑉1
and𝑚2 ∈ Model𝑉2

. Hence, by

the definition of result𝑉 ,

result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚) (𝑚1 ⊎𝑚2) = ⊥
for any𝑚2 ∈ Model𝑉2

, meaning

⊥ ∈ img(result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚))
as desired.

(b) Suppose that run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠1) ≠ ⊥. Then, by definition of run, we have that

run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠1) = ⟨dom(𝜎1) \dom(𝜎 (𝑚))⟩(𝑣1, 𝜎1)
for some (𝑣1, 𝜎1) ∈ Value × Store. Observe, because (𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) ∈ Config, we have that

FV(𝑣1) = ∅, that dom(𝜎1) = dom(𝜎 (𝑚)) ⊎ dom(𝜎 ′′) for some 𝜎 ′′ ∈ Store, that locs(𝜎1) ⊆
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dom(𝜎1), and that 𝑣1 ∈ Loc implies that 𝑣1 ∈ dom(𝜎1) by Theorem B.14. These facts imply

that

(𝜌 (𝑚) [𝑥 ↦→ 𝑣1], 𝑒2, 𝜎1) ∈ Config

due to FV(𝑒2) ⊆ dom(𝜌 (𝑚)) ∪ {𝑥} = dom(𝜌 (𝑚) [𝑥 ↦→ 𝑣1]). As in the previous case, the

inductive hypothesis implies that

img(run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚))) = img(result𝑉1
(𝜎 (𝑚), �̂�1 |𝑚, 𝜎1 |𝑚))

Therefore,

result𝑉1
(𝜎 (𝑚), �̂�1 |𝑚, 𝜎1 |𝑚) (𝑚1) = ⟨dom(𝜎1) \dom(𝜎 (𝑚))⟩(𝑣1, 𝜎1)

for some𝑚1 ∈ Model𝑉1
such that 𝑣1 = �̂�1 (𝑚 ⊎𝑚1) and 𝜎1 = 𝜎1 (𝑚 ⊎𝑚1). By the inductive

hypothesis, we then know that𝜓1 (𝑚 ⊎𝑚1) = T. Moreover, it implies that

(𝜌 (𝑚) [𝑥 ↦→ 𝑣1], 𝑒2, 𝜎1) = (𝜌 [𝑥 ↦→ �̂�1] (𝑚 ⊎𝑚1), 𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) ∈ Config

We must now break into sub-cases for run(𝜌 [𝑥 ↦→ �̂�1] (𝑚 ⊎𝑚1), 𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) (𝑠2):
(i) Suppose that run(𝜌 [𝑥 ↦→ �̂�1] (𝑚 ⊎𝑚1), 𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) (𝑠2) = ⊥. Then it must be the case

that run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) (𝑠) = ⊥.
To be precise, assume, for the purposes of contradiction, that

run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) (𝑠) ≠ ⊥
By definition of run, this implies that there exists a derivation in the concrete big-step

operational semantics whose conclusion is

𝜌 (𝑚), 𝑠 ⊢ (let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) ⇓ (𝑣, 𝜎)
Recall, 𝑠 { 𝑠1, 𝑠2 Hence, by inversion of the proof tree for 𝜌 (𝑚), 𝑠 ⊢ (let𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) ⇓
(𝑣, 𝜎), we have that

𝜌 (𝑚), 𝑠1 ⊢ (𝑒1, 𝜎 (𝑚)) ⇓ (𝑣 ′
1
, 𝜎 ′

1
)

𝜌 (𝑚) [𝑥 ↦→ 𝑣 ′
1
], 𝑠2 ⊢ (𝑒2, 𝜎 ′

1
) ⇓ (𝑣, 𝜎)

This implies, by definition of run, that

run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠1) = ⟨dom(𝜎 ′
1
) \dom(𝜎 (𝑚))⟩(𝑣 ′

1
, 𝜎 ′

1
)

run(𝜌 (𝑚) [𝑥 ↦→ 𝑣 ′
1
], 𝑒2, 𝜎 ′

1
) (𝑠2) = ⟨dom(𝜎) \dom(𝜎 ′

1
)⟩(𝑣, 𝜎)

By Theorem B.17, we know that

⟨dom(𝜎1 (𝑚 ⊎𝑚1)) \dom(𝜎 (𝑚))⟩(�̂�1 (𝑚 ⊎𝑚1), 𝜎1 (𝑚 ⊎𝑚1)) = ⟨dom(𝜎 ′
1
) \dom(𝜎 (𝑚))⟩(𝑣 ′

1
, 𝜎 ′

1
)

For convenience, say that dom(𝜎1 (𝑚 ⊎𝑚1)) \dom(𝜎 (𝑚)) = {ℓ1, . . . , ℓ𝑛} and that dom(𝜎 ′
1
) \

dom(𝜎 (𝑚)) = {ℓ ′
1
, . . . , ℓ ′𝑛}. By Theorem B.9, there must exist locations 𝑓1, . . . , 𝑓𝑛 disjoint

from locs(�̂�1 (𝑚 ⊎𝑚1), 𝜎1 (𝑚 ⊎𝑚1), 𝑣 ′1, 𝜎 ′
1
) such that

(ℓ1 𝑓1) · · · (ℓ𝑛 𝑓𝑛) · �̂�1 (𝑚 ⊎𝑚1), 𝜎1 (𝑚 ⊎𝑚1) = (ℓ ′
1
𝑓1) · · · (ℓ ′𝑛 𝑓𝑛) · (𝑣 ′1, 𝜎 ′

1
)

Let 𝜋 = (ℓ𝑛 𝑓𝑛) · · · (ℓ1 𝑓1) · (ℓ ′1 𝑓1) · · · (ℓ ′𝑛 𝑓𝑛). Observe that
𝜋 · (𝑣 ′

1
, 𝜎 ′

1
) = (�̂�1 (𝑚 ⊎𝑚1), 𝜎1 (𝑚 ⊎𝑚1))

and that

𝜋 · 𝜌 (𝑚) = 𝜌 (𝑚)
because ℓ1, . . . , ℓ𝑛, ℓ

′
1
, . . . , ℓ ′𝑛, 𝑓1, . . . , 𝑓𝑛 ∉ dom(�̂� (𝑚)) and, by assumption, we know locs(𝜌 (𝑚)) ⊆

dom(𝜎 (𝑚)). This implies that

𝜋 · 𝜌 [𝑥 ↦→ 𝑣 ′
1
] = 𝜌 (𝑚) [𝑥 ↦→ �̂�1 (𝑚 ⊎𝑚1)] = 𝜌 [𝑥 ↦→ �̂�1] (𝑚 ⊎𝑚1)

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 231. Publication date: June 2025.



231:62 Cameron Moy, Jack Czenszak, John M. Li, Brianna Marshall, and Steven Holtzen

by definition. Therefore, combining that 𝜌 (𝑚) [𝑥 ↦→ 𝑣 ′
1
], 𝑠2 ⊢ (𝑒2, 𝜎 ′

1
) ⇓ (𝑣, 𝜎), that 𝜋 ·

𝜌 (𝑚) [𝑥 ↦→ 𝑣 ′
1
] = 𝜌 [𝑥 ↦→ �̂�1] (𝑚 ⊎𝑚1), and that 𝜋 · 𝜎 ′

1
= 𝜎1 (𝑚 ⊎𝑚1), we get that

𝜌 [𝑥 ↦→ �̂�1] (𝑚 ⊎𝑚1), 𝑠2 ⊢ (𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) ⇓ (𝜋 · 𝑣, 𝜋 · 𝜎)
by Theorem B.15. Finally, by definition of run, we get that

run(𝜌 [𝑥 ↦→ �̂�1] (𝑚 ⊎𝑚1), 𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) (𝑠2) = ⟨dom(𝜋 · 𝜎) \dom(𝜎1 (𝑚 ⊎𝑚′))⟩(𝜋 · 𝑣, 𝜋 · 𝜎)
which contradicts run(𝜌 [𝑥 ↦→ �̂�1] (𝑚 ⊎𝑚1), 𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) (𝑠2) = ⊥. Hence, we conclude
that run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) (𝑠) = ⊥.
We must now show that ⊥ ∈ img(result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚)). Because (𝜌 [𝑥 ↦→
�̂�1] (𝑚 ⊎𝑚1), 𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) ∈ Config, we know that

img(run(𝜌 [𝑥 ↦→ �̂�] (𝑚 ⊎𝑚1), 𝑒2, 𝜎1 (𝑚 ⊎𝑚1))) = img(result𝑉2
(𝜎 (𝑚 ⊎𝑚1), �̂�2 |𝑚⊎𝑚1

, 𝜎2 |𝑚⊎𝑚1
))

by the inductive hypothesis. Thus, our assumption that run(𝜌 [𝑥 ↦→ �̂�1] (𝑚⊎𝑚1), 𝑒2, 𝜎1 (𝑚⊎
𝑚1)) (𝑠2) = ⊥ implies

result𝑉2
(𝜎 (𝑚 ⊎𝑚1), �̂�2 |𝑚⊎𝑚1

, 𝜎2 |𝑚⊎𝑚1
) (𝑚2) = ⊥

for some𝑚2 ∈ Model𝑉2
. This implies that at least one of �̂�2 (𝑚 ⊎𝑚1 ⊎𝑚2) = ⊥ or 𝜎2 (𝑚 ⊎

𝑚1 ⊎𝑚2) = ⊥. If �̂�2 (𝑚 ⊎𝑚1 ⊎𝑚2) = ⊥, then
[𝜓1 : �̂�2] |𝑚 (𝑚1 ⊎𝑚2) = [𝜓1 : �̂�2] (𝑚 ⊎𝑚1 ⊎𝑚2) = �̂�2 (𝑚 ⊎𝑚1 ⊎𝑚2) = ⊥

meaning

result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚) (𝑚1 ⊎𝑚2) = ⊥
Likewise, if 𝜎2 (𝑚 ⊎𝑚1 ⊎𝑚2) = ⊥, then

[𝜓1 : 𝜎2] |𝑚 (𝑚1 ⊎𝑚2) = [𝜓1 : 𝜎2] (𝑚 ⊎𝑚1 ⊎𝑚2) = 𝜎2 (𝑚 ⊎𝑚1 ⊎𝑚2) = ⊥
meaning

result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚) (𝑚1 ⊎𝑚2) = ⊥
In both cases, ⊥ ∈ img(result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚)).

(ii) Suppose that run(𝜌 [𝑥 ↦→ �̂�1] (𝑚 ⊎𝑚1), 𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) (𝑠2) ≠ ⊥. Then, by definition of run,

we have that

run(𝜌 [𝑥 ↦→ �̂�1] (𝑚 ⊎𝑚1), 𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) (𝑠2) = ⟨dom(𝜎2) \dom(𝜎1 (𝑚 ⊎𝑚1))⟩(𝑣2, 𝜎2)
for some (𝑣2, 𝜎2) ∈ Value × Store. Because of our assumption that

run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠1) = ⟨dom(𝜎1 (𝑚 ⊎𝑚1)) \dom(𝜎 (𝑚))⟩(�̂�1 (𝑚 ⊎𝑚1), 𝜎1 (𝑚 ⊎𝑚1))
there must exist a derivation in the concrete big-step operational semantics whose conclu-

sion is

𝜌 (𝑚), 𝑠1 ⊢ (𝑒1, 𝜎 (𝑚)) ⇓ (�̂�1 (𝑚 ⊎𝑚1), 𝜎1 (𝑚 ⊎𝑚1))
by the definition of run. Likewise, there must exist a derivation in the concrete big-step

operational semantics whose conclusion is

𝜌 (𝑚) [𝑥 ↦→ �̂�1 (𝑚 ⊎𝑚1)], 𝑠2 ⊢ (𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) ⇓ (𝑣2, 𝜎2)
using the fact that 𝜌 [𝑥 ↦→ �̂�1] (𝑚 ⊎𝑚1) = 𝜌 (𝑚) [𝑥 ↦→ �̂�1 (𝑚 ⊎𝑚1)]. Hence, we can prove

that

𝜌 (𝑚), 𝑠 ⊢ (let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) ⇓ (𝑣2, 𝜎2)
By the definition of run, we get

run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) (𝑠) = ⟨dom(𝜎2) \dom(𝜎 (𝑚))⟩(𝑣2, 𝜎2)
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We must now show that

⟨dom(𝜎2) \dom(𝜎 (𝑚))⟩(𝑣2, 𝜎2) ∈ img(result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚))
As in the previous case, we know that

img(run(𝜌 [𝑥 ↦→ �̂�] (𝑚 ⊎𝑚1), 𝑒2, 𝜎1 (𝑚 ⊎𝑚1))) = img(result𝑉2
(𝜎 (𝑚 ⊎𝑚1), �̂�2 |𝑚⊎𝑚1

, 𝜎2 |𝑚⊎𝑚1
))

because (𝜌 [𝑥 ↦→ �̂�1] (𝑚 ⊎𝑚1), 𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) ∈ Config. Thus, we get

result𝑉2
(𝜎 (𝑚 ⊎𝑚1), �̂�2 |𝑚⊎𝑚1

, 𝜎2 |𝑚⊎𝑚1
) (𝑚2) = ⟨dom(𝜎2) \dom(𝜎1 (𝑚 ⊎𝑚1))⟩(𝑣2, 𝜎2)

for some𝑚2 ∈ Model𝑉2
such that 𝑣2 = �̂�2 (𝑚⊎𝑚1⊎𝑚2) and 𝜎2 = 𝜎 (𝑚⊎𝑚1⊎𝑚2). Therefore,

for some𝑚2 ∈ Model𝑉2
, we get

[𝜓1 : �̂�2] |𝑚 (𝑚1 ⊎𝑚2) = [𝜓1 : �̂�2] (𝑚 ⊎𝑚1 ⊎𝑚2) = �̂�2 (𝑚 ⊎𝑚1 ⊎𝑚2) = 𝑣2

[𝜓1 : 𝜎2] |𝑚 (𝑚1 ⊎𝑚2) = [𝜓1 : 𝜎2] (𝑚 ⊎𝑚1 ⊎𝑚2) = 𝜎2 (𝑚 ⊎𝑚1 ⊎𝑚2) = 𝜎2

meaning that

result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚) (𝑚1 ⊎𝑚2) = ⟨dom(𝜎2) \dom(𝜎 (𝑚))⟩(𝑣2, 𝜎2)
Therefore, we get that

⟨dom(𝜎2) \dom(𝜎 (𝑚))⟩(𝑣2, 𝜎2) ∈ img(result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚))
The cases above collectively prove that

run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) (𝑠) ∈ img(result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚))
for all 𝑠 ∈ BN

, meaning

img(run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚))) ⊆ img(result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚))
(⊇) Take any𝑚′ ∈ Model𝑉 and write𝑚′ =𝑚1 ⊎𝑚2 for𝑚1 ∈ Model𝑉1

and𝑚2 ∈ Model𝑉2
. We

will consider several cases for the evaluation of result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚) (𝑚′) and
show that, in each case,

result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚) (𝑚′) ∈ img(run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)))
(a) Suppose that𝜓1 (𝑚 ⊎𝑚1) = F. We immediately get that

[𝜓1 : �̂�2] |𝑚 (𝑚′) = [𝜓1 : �̂�2] (𝑚 ⊎𝑚1 ⊎𝑚2) = ⊥
[𝜓1 : 𝜎2] |𝑚 (𝑚′) = [𝜓1 : 𝜎2] (𝑚 ⊎𝑚1 ⊎𝑚2) = ⊥

meaning that

result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚) (𝑚′) = ⊥
by definition.

We must now show that ⊥ ∈ img(run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚))). Because we have that
(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) ∈ Config, we get that

𝜓1 (𝑚 ⊎𝑚1) = T ⇐⇒ �̂�1 (𝑚 ⊎𝑚1) ≠ ⊥ and 𝜎1 (𝑚 ⊎𝑚1) ≠ ⊥
using the inductive hypothesis. The assumption that𝜓1 (𝑚 ⊎𝑚1) = F implies that at least one

of �̂�1 (𝑚 ⊎𝑚1) ≠ ⊥ or 𝜎1 (𝑚 ⊎𝑚1) ≠ ⊥. Then, by definition of result𝑉1
, we get that

result𝑉1
(𝜌 (𝑚), �̂�1 |𝑚, 𝜎1 |𝑚) (𝑚1) = ⊥

Applying the inductive hypothesis again, we have that

img(run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚))) = img(result𝑉1
(𝜎 (𝑚), �̂�1 |𝑚, 𝜎1 |𝑚))

Hence, because result𝑉1
(𝜌 (𝑚), �̂�1 |𝑚, 𝜎1 |𝑚) (𝑚1) = ⊥, we get run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠1) = ⊥ for

some 𝑠1 ∈ BN
. Now, construct 𝑠 ∈ BN

with 𝑠 { 𝑠1, 𝑠2 for some other 𝑠2 ∈ BN
. It follows that
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run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2) (𝑠) = ⊥ (see case (a) of the (⊆) argument for a thorough proof by

contradiction). We conclude that

⊥ ∈ img(run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)))
(b) Suppose that𝜓1 (𝑚 ⊎𝑚1) = T. Recall, by the inductive hypothesis, we have that

𝜓1 (𝑚 ⊎𝑚1) = T ⇐⇒ �̂�1 (𝑚 ⊎𝑚1) ≠ ⊥ and 𝜎1 (𝑚 ⊎𝑚1) ≠ ⊥
Hence,𝜓1 (𝑚 ⊎𝑚1) = T implies that

result𝑉1
(𝜎 (𝑚), �̂�1 |𝑚, 𝜎1 |𝑚) (𝑚1) = ⟨dom(𝜎1 (𝑚 ⊎𝑚1)) \dom(𝜎 (𝑚))⟩(�̂�1 (𝑚 ⊎𝑚1), 𝜎1 (𝑚 ⊎𝑚1))

Again by the inductive hypothesis, we have that

img(run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚))) = img(result𝑉1
(𝜎 (𝑚), �̂�1 |𝑚, 𝜎1 |𝑚))

Therefore, there exists some 𝑠1 ∈ BN
such that

run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠1) = ⟨dom(𝜎1 (𝑚 ⊎𝑚1)) \dom(𝜎 (𝑚))⟩(�̂�1 (𝑚 ⊎𝑚1), 𝜎1 (𝑚 ⊎𝑚1))
which, by definition, implies that there exists a derivation in the concrete big-step operational

semantics whose conclusion is

𝜌 (𝑚), 𝑠1 ⊢ (𝑒1, 𝜎 (𝑚)) ⇓ (�̂�1 (𝑚 ⊎𝑚1), 𝜎1 (𝑚 ⊎𝑚1))
As in the (⊆) proof, we can show

(𝜌 (𝑚) [𝑥 ↦→ �̂�1 (𝑚 ⊎𝑚1)], 𝑒1, 𝜎1 (𝑚 ⊎𝑚1)) = (𝜌 [𝑥 ↦→ �̂�1] (𝑚 ⊎𝑚1), 𝑒1, 𝜎1 (𝑚 ⊎𝑚1)) ∈ Config

as a direct corollary of Theorem B.14. We must now case on the evaluation of �̂�2 (𝑚 ⊎𝑚′) and
𝜎2 (𝑚 ⊎𝑚′):
(i) Suppose at least one of �̂�2 (𝑚 ⊎𝑚′) = ⊥ or �̂�2 (𝑚 ⊎𝑚′) = ⊥. If �̂�2 (𝑚 ⊎𝑚′) = ⊥, then

[𝜓1 : �̂�2]𝑚 (𝑚′) = [𝜓1 : �̂�2] (𝑚 ⊎𝑚′) = �̂�2 (𝑚 ⊎𝑚′) = ⊥
meaning that

result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚) (𝑚′) = ⊥
by definition. Likewise, if 𝜎2 (𝑚 ⊎𝑚′) = ⊥, then

[𝜓1 : 𝜎2]𝑚 (𝑚′) = [𝜓1 : 𝜎2] (𝑚 ⊎𝑚′) = 𝜎2 (𝑚 ⊎𝑚′) = ⊥
meaning that

result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚) (𝑚′) = ⊥
by definition. In either case, result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚) (𝑚′) = ⊥, so it suffices

to show that ⊥ ∈ img(run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚))).
Because (𝜌 [𝑥 ↦→ �̂�1] (𝑚 ⊎𝑚1), 𝑒1, 𝜎1 (𝑚 ⊎𝑚1)) ∈ Config, we have that

img(run(𝜌 [𝑥 ↦→ �̂�] (𝑚 ⊎𝑚1), 𝑒2, 𝜎1 (𝑚 ⊎𝑚1))) = img(result𝑉2
(𝜎 (𝑚 ⊎𝑚1), �̂�2 |𝑚⊎𝑚1

, 𝜎2 |𝑚⊎𝑚1
))

using the inductive hypothesis. Therefore, there exists 𝑠2 ∈ BN
, such that

run(𝜌 [𝑥 ↦→ �̂�] (𝑚 ⊎𝑚1), 𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) (𝑠2) = ⊥
Now, construct 𝑠 ∈ BN

such that 𝑠 { 𝑠1, 𝑠2. Because we have shown

run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠1) = ⟨dom(𝜎1 (𝑚 ⊎𝑚1)) \dom(𝜎 (𝑚))⟩(�̂�1 (𝑚 ⊎𝑚1), 𝜎1 (𝑚 ⊎𝑚1)) ≠ ⊥
run(𝜌 [𝑥 ↦→ �̂�] (𝑚 ⊎𝑚1), 𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) (𝑠2) = ⊥
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it follows that run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) (𝑠) = ⊥ (see case (b) of the (⊆) argument

for detailed proof). Therefore,

⊥ ∈ img(run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)))
(ii) Suppose �̂�2 (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎2 (𝑚 ⊎𝑚′) ≠ ⊥. Then we have

[𝜓1 : �̂�2] |𝑚 (𝑚′) = [𝜓1 : �̂�2] (𝑚 ⊎𝑚′) = �̂�2 (𝑚 ⊎𝑚′) ≠ ⊥
[𝜓1 : 𝜎2] |𝑚 (𝑚′) = [𝜓1 : 𝜎2] (𝑚 ⊎𝑚′) = 𝜎2 (𝑚 ⊎𝑚′) ≠ ⊥

meaning

result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚) (𝑚′) = ⟨𝐿⟩(�̂�2 (𝑚 ⊎𝑚′), 𝜎2 (𝑚 ⊎𝑚′))
where 𝐿 = dom(𝜎2 (𝑚 ⊎𝑚′)) \dom(𝜎 (𝑚)) by definition of result𝑉 . It then suffices to show

that ⟨𝐿⟩(�̂�2 (𝑚 ⊎𝑚′), 𝜎2 (𝑚 ⊎𝑚′)) ∈ img(run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚))).
As previously stated, we know that there exists some 𝑠1 ∈ BN

such that

run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠1) = ⟨dom(𝜎1 (𝑚 ⊎𝑚1)) \dom(𝜎 (𝑚))⟩(�̂�1 (𝑚 ⊎𝑚1), 𝜎1 (𝑚 ⊎𝑚1))
and, subsequently, that

𝜌 (𝑚), 𝑠1 ⊢ (𝑒1, 𝜎 (𝑚)) ⇓ (�̂�1 (𝑚 ⊎𝑚1), 𝜎1 (𝑚 ⊎𝑚1))
By the inductive hypothesis, we have that

img(run(𝜌 [𝑥 ↦→ �̂�] (𝑚 ⊎𝑚1), 𝑒2, 𝜎1 (𝑚 ⊎𝑚1))) = img(result𝑉2
(𝜎 (𝑚 ⊎𝑚1), �̂�2 |𝑚⊎𝑚1

, 𝜎2 |𝑚⊎𝑚1
))

This implies that there exists 𝑠2 ∈ BN
such that

run(𝜌 [𝑥 ↦→ �̂�] (𝑚 ⊎𝑚1), 𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) (𝑠2) = ⟨𝐿⟩(�̂�2 (𝑚 ⊎𝑚′), 𝜎2 (𝑚 ⊎𝑚′))
meaning that there exists a derivation in the concrete big-step operational semantics whose

conclusion is

𝜌 (𝑚) [𝑥 ↦→ �̂� (𝑚 ⊎𝑚1)], 𝑠2 ⊢ (𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) ⇓ (�̂�2 (𝑚 ⊎𝑚′), 𝜎2 (𝑚 ⊎𝑚′))
using the fact that 𝜌 [𝑥 ↦→ �̂�] (𝑚 ⊎𝑚1) = 𝜌 (𝑚) [𝑥 ↦→ �̂� (𝑚 ⊎𝑚1)]. Now, construct 𝑠 ∈ BN

with 𝑠 { 𝑠1, 𝑠2. We can prove that

𝜌 (𝑚), 𝑠 ⊢ (let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) ⇓ (�̂�2 (𝑚 ⊎𝑚′), 𝜎2 (𝑚 ⊎𝑚′))
using the concrete big-step judgement Let. Hence, by definition of run, we get that

run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) (𝑠) = ⟨𝐿⟩(�̂�2 (𝑚 ⊎𝑚′), 𝜎2 (𝑚 ⊎𝑚′))
meaning ⟨𝐿⟩(�̂�2 (𝑚 ⊎𝑚′), 𝜎2 (𝑚 ⊎𝑚′)) ∈ img(run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚))).

The cases above collectively imply that

result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚) (𝑚′) ∈ img(run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)))
for all𝑚′ ∈ Model𝑉 , meaning

img(run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚))) ⊇ img(result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚))
We then conclude that

img(run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚))) = img(result𝑉 (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚))
completing our proof of (1).

Now, we turn our attention to (2). It suffices to show that

(𝜓1 ∧𝜓2) (𝑚 ⊎𝑚′) = T ⇐⇒ [𝜓1 : �̂�2] (𝑚 ⊎𝑚′) ≠ ⊥ and [𝜓1 : 𝜎2] (𝑚 ⊎𝑚′) ≠ ⊥
for all𝑚′ ∈ Model𝑉 . Write𝑚′ =𝑚1 ⊎𝑚2 for𝑚1 ∈ Model𝑉1

and𝑚2 ∈ Model𝑉2
.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 231. Publication date: June 2025.



231:66 Cameron Moy, Jack Czenszak, John M. Li, Brianna Marshall, and Steven Holtzen

(=⇒) Suppose that (𝜓1∧𝜓2) (𝑚⊎𝑚′) = T. This means that𝜓1 (𝑚⊎𝑚1) = T and𝜓2 (𝑚⊎𝑚′) = T.

By the inductive hypothesis, we have

𝜓2 (𝑚 ⊎𝑚1 ⊎𝑚2) = T ⇐⇒ �̂�2 (𝑚 ⊎𝑚1 ⊎𝑚2) ≠ ⊥ and 𝜎2 (𝑚 ⊎𝑚1 ⊎𝑚2) ≠ ⊥
as (𝑚 ⊎𝑚1) ∈ Model

symvars(𝜌 [𝑥 ↦→�̂�1 ],𝜎1 ) and𝑚2 ∈ Model𝑉2
by construction. Hence, we must

have that �̂�2 (𝑚 ⊎𝑚′) ≠ ⊥ and 𝜎2 (𝑚 ⊎𝑚′) ≠ ⊥. Therefore,
[𝜓1 : �̂�2] (𝑚 ⊎𝑚′) = �̂�2 (𝑚 ⊎𝑚′) ≠ ⊥
[𝜓1 : 𝜎2] (𝑚 ⊎𝑚′) = �̂�2 (𝑚 ⊎𝑚′) ≠ ⊥

as desired.

(⇐=) Suppose [𝜓1 : �̂�2] (𝑚 ⊎𝑚′) ≠ ⊥ and [𝜓1 : 𝜎2] (𝑚 ⊎𝑚′) ≠ ⊥. Repeat the proof of (=⇒) in
the opposite direction.

This proves (2).

This completes our proof by induction. □

Definition B.22. The set of answers, denoted Ans, are defined to be

AnsF () | 𝑏 | 𝑟 | (𝑎, 𝑎) | opaque

Definition B.23. Let ⌊·⌋ be the function
⌊·⌋ : Value → Ans

⌊𝑣⌋ =

𝑣 if 𝑣 ∈ Bool ∪ Num ∪ {()}
(⌊𝑣1⌋, ⌊𝑣2⌋) if 𝑣 = (𝑣1, 𝑣2)
opaque otherwise

Definition B.24. Let eval be the function

eval : Expr → (Stream → Ans⊥)

eval(𝑒) (𝑠) =
{
⌊𝑣⌋ if ∅, 𝑠 ⊢ (𝑒,∅) ⇓ (𝑣, 𝜎)
⊥ otherwise

and ans be the dependently-typed function

ans : ( �Value × �Store) → (Model𝑉 → Ans⊥)

ans(�̂�, 𝜎) (𝑚) =
{
⌊�̂� (𝑚)⌋ if �̂� (𝑚) ≠ ⊥, 𝜎 (𝑚) ≠ ⊥
⊥ otherwise

where 𝑉 = symvars(�̂�, 𝜎)

Theorem B.25 (Correctness of Closed Expressions in Idealized Rosette). Let 𝑒 ∈ Expr such that

FV(𝑒) = ∅ and ∅ ⊢ (𝑒,∅) ⇚ (�̂�, 𝜎,𝜓 ). Then
(1) img(eval(𝑒)) = img(ans(�̂�, 𝜎));
(2) 𝜓 (𝑚) = T ⇐⇒ �̂� (𝑚) ≠ ⊥ and 𝜎 (𝑚) ≠ ⊥, for all𝑚 ∈ Model

symvars(�̂�,𝜎 ) .

Proof. Observe that (∅, 𝑒,∅) ∈ Config due to the fact that FV(𝑒) = ∅. Moreover, we have that

Model(∅,∅) = {∅}. Then, by Theorem B.21, we get

img(run(∅, 𝑒,∅)) = img(result𝑉 (∅, �̂� |∅, 𝜎 |∅))
and

𝜓 (∅ ⊎𝑚) = T ⇐⇒ �̂� (∅ ⊎𝑚) ≠ ⊥ and 𝜎 (∅ ⊎𝑚), for all𝑚 ∈ Model𝑉

where 𝑉 = symvars(�̂�, 𝜎). The second point immediately implies (2). We break the proof of (1) into

two steps:
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(⊆) Consider 𝑠 ∈ BN
. We must show that eval(𝑒) (𝑠) ∈ img(ans(�̂�, 𝜎)). There are two cases.

If ∅, 𝑠, ⊢ (𝑒,∅) ⇓ (𝑣, 𝜎), then eval(𝑒) (𝑠) = ⌊𝑣⌋. Likewise, run(∅, 𝑒,∅)(𝑠) = ⟨dom(𝜎)⟩(𝑣, 𝜎).
Because img(run(∅, 𝑒,∅)) = img(result𝑉 (∅, �̂� |∅, 𝜎 |∅)), there must then exist some 𝑚 ∈
Model

symvars(�̂�,𝜎 ) such that result𝑉 (∅, �̂� |∅, 𝜎 |∅) (𝑚) = ⟨dom(𝜎)⟩(𝑣, 𝜎) where 𝑣 = �̂� (𝑚) and
𝜎 = 𝜎 (𝑚). Hence, ans(�̂�, 𝜎) (𝑚) = ⌊�̂� (𝑚)⌋ = ⌊𝑣⌋. Therefore, eval(𝑒) (𝑠) ∈ img(ans(�̂�, 𝜎)).

On the other hand, if there is not derivation in the concrete big-step operational semantics

whose conclusion is ∅, 𝑠, ⊢ (𝑒,∅) ⇓ (𝑣, 𝜎), then eval(𝑒) (𝑠) = ⊥. Thus, run(∅, 𝑒,∅)(𝑠) =

⊥, and we conclude that result𝑉 (∅, �̂� |∅, 𝜎 |∅) (𝑚) = ⊥ for some 𝑚 ∈ Model
symvars(�̂�,𝜎 ) . By

definition of result𝑉 , this can only occur if �̂� (𝑚) = ⊥ or 𝜎 (𝑚) = ⊥. In this case, we also have

that ans(�̂�, 𝜎) (𝑚) = ⊥. Hence, eval(𝑒) (𝑠) ∈ img(ans(�̂�, 𝜎)), implying that img(eval(𝑒)) ⊆
img(ans(�̂�, 𝜎)).

(⊇) Consider𝑚 ∈ Model
symvars(�̂�,𝜎 ) . We must show that ans(�̂�, 𝜎) (𝑚) ∈ img(eval(𝑒)). There are

two cases.

If �̂� (𝑚) ≠ ⊥ or 𝜎 (𝑚) ≠ ⊥, then ans(�̂�, 𝜎) (𝑚) = ⌊�̂� (𝑚)⌋. Additionally, we know that

result𝑉 (∅, �̂� |∅, 𝜎 |∅) (𝑚) = ⟨dom(𝜎 (𝑚))⟩(�̂� (𝑚), 𝜎 (𝑚)). Because we have img(run(∅, 𝑒,∅)) =
img(result𝑉 (∅, �̂� |∅, 𝜎 |∅)), there must then exist some 𝑠 ∈ BN

such that run(∅, 𝑒,∅)(𝑠) =

⟨dom(𝜎 (𝑚))⟩(�̂� (𝑚), 𝜎 (𝑚)). This is only the case when ∅, 𝑠 ⊢ (𝑒,∅) ⇓ (�̂� (𝑚), 𝜎 (𝑚)). Hence,
we get eval(𝑒)(𝑠) = ⌊�̂� (𝑚)⌋, meaning ans(�̂�, 𝜎) (𝑚) ∈ img(eval(𝑒)).

Alternatively, suppose that �̂� (𝑚) = ⊥ or 𝜎 (𝑚) = ⊥. Then ans(�̂�, 𝜎) (𝑚) = ⊥. Further,
result𝑉 (∅, �̂� |∅, 𝜎 |∅) (𝑚) = ⊥. We conclude that run(∅, 𝑒,∅)(𝑠) = ⊥ for some 𝑠 ∈ BN

,

meaning that there does not exist a derivation in the concrete big-step operational seman-

tics whose conclusion is ∅, 𝑠 ⊢ (𝑒,∅) ⇓ (𝑣, 𝜎) for some (𝑣, 𝜎) ∈ Value × Store. Hence,

we also have eval(𝑒) (𝑠) = ⊥. This implies ans(�̂�, 𝜎) (𝑚) ∈ img(eval(𝑒)), and we have

img(eval(𝑒)) ⊇ img(ans(�̂�, 𝜎)).

This completes the proof. □

C Idealized Roulette
C.1 Syntax

𝑒 ∈ Expr ::= 𝑥 | let 𝑥 = 𝑒 in 𝑒 | 𝜆𝑥 .𝑒 | 𝑥 𝑦

| true | false | if 𝑥 𝑒 𝑒

| 𝑟 | 𝑥 + 𝑦 | 𝑥 − 𝑦 | 𝑥 × 𝑦

| () | (𝑥,𝑦) | fst𝑥 | snd𝑥
| ref𝑥 | !𝑦 | 𝑥 ≔ 𝑦

| flip𝑥 | fail
𝜌 ∈ Env := Var →fin Val

𝑣 ∈ Val ::= true | false | clo(𝜆𝑥.𝑒, 𝜌) | 𝑟 | () | (𝑣, 𝑣) | ℓ ∈ Loc

𝜎 ∈ Store := Loc →fin Val

𝑟 ∈ Q

𝑠 ∈ EntropySrc := Stream[0, 1] � [0, 1]N
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𝜌, 𝑠 ⊢ (𝑒, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )

Var

𝑥 ∈ dom(𝜌 )
𝜌, 𝑠 ⊢ (𝑥, 𝜎 ) ⇓ (𝜌 (𝑥 ), 𝜎 )

Let

𝑠 { 𝑠1, 𝑠2

𝜌, 𝑠1 ⊢ (𝑒1, 𝜎 ) ⇓ (𝑣1, 𝜎1 )
𝜌 [𝑥 ↦→ 𝑣1 ], 𝑠2 ⊢ (𝑒2, 𝜎1 ) ⇓ (𝑣, 𝜎 ′ )

𝜌, 𝑠 ⊢ (let 𝑥 = 𝑒1 in 𝑒2, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )

Lam

𝜌, 𝑠 ⊢ (𝜆𝑥.𝑒, 𝜎 ) ⇓ (clo(𝜆𝑥.𝑒, 𝜌 ), 𝜎 )

App

𝜌 (𝑥1 ) = clo(𝜆𝑥 ′ .𝑒′, 𝜌 ′ )
𝜌 ′ [𝑥 ′ ↦→ 𝜌 (𝑥2 ) ], 𝑠 ⊢ (𝑒′, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )

𝜌, 𝑠 ⊢ (𝑥1𝑥2, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )

True

𝜌, 𝑠 ⊢ (true, 𝜎 ) ⇓ (true, 𝜎 )

False

𝜌, 𝑠 ⊢ (false, 𝜎 ) ⇓ (false, 𝜎 )

IfTrue

𝑥 ∈ dom(𝜌 ) 𝜌 (𝑥 ) = true
𝜌, 𝑠 ⊢ (𝑒1, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )

𝜌, 𝑠 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )

IfFalse

𝑥 ∈ dom(𝜌 ) 𝜌 (𝑥 ) = false
𝜌, 𝑠 ⊢ (𝑒2, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )

𝜌, 𝑠 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎 ) ⇓ (𝑣, 𝜎 ′ )

Num

𝑟 ∈ Q

𝜌, 𝑠 ⊢ (𝑟, 𝜎 ) ⇓ (𝑟, 𝜎 )

Arith

𝑥1 ∈ dom(𝜌 ) 𝑥2 ∈ dom(𝜌 )
𝜌 (𝑥1 ), 𝜌 (𝑥2 ) ∈ Q ⊕ ∈ {+, −, ×}

𝜌, 𝑠 ⊢ (𝑥1 ⊕ 𝑥2, 𝜎 ) ⇓ (𝜌 (𝑥1 ) ⟦⊕⟧ 𝜌 (𝑥2 ), 𝜎 )

Pair

𝑥, 𝑦 ∈ dom(𝜌 )
𝜌, 𝑠 ⊢ ( (𝑥, 𝑦), 𝜎 ) ⇓ ( (𝜌 (𝑥 ), 𝜌 (𝑦) ), 𝜎 )

Fst

𝜌 (𝑥 ) = (𝑣, 𝑤 )
𝜌, 𝑠 ⊢ (fst𝑥, 𝜎 ) ⇓ (𝑣, 𝜎 )

Snd

𝜌 (𝑥 ) = (𝑣, 𝑤 )
𝜌, 𝑠 ⊢ (snd𝑥, 𝜎 ) ⇓ (𝑤,𝜎 )

Ref

𝑥 ∈ dom(𝜌 ) ℓ ∉ locs(𝜌, 𝜎 )
𝜌, 𝑠 ⊢ (ref𝑥, 𝜎 ) ⇓ (ℓ, 𝜎 ⊎ {ℓ ↦→ 𝜌 (𝑥 ) } )

Get

𝑥 ∈ dom(𝜌 ) 𝜌 (𝑥 ) ∈ dom(𝜎 )
𝜌, 𝑠 ⊢ (!𝑥, 𝜎 ) ⇓ (𝜎 (𝜌 (𝑥 ) ), 𝜎 )

Set

𝑥 ∈ dom(𝜌 ) 𝜌 (𝑥 ) ∈ dom(𝜎 )
𝜌, 𝑠 ⊢ (𝑥 ≔ 𝑦, 𝜎 ) ⇓ ( (), 𝜎 [𝜌 (𝑥 ) ↦→ 𝜌 (𝑦) ] )

FlipTrue

𝑥 ∈ dom(𝜌 ) 𝑟 < 𝜌 (𝑥 )
𝜌, 𝑟 :: 𝑠 ⊢ (flip𝑥, 𝜎 ) ⇓ (true, 𝜎 )

FlipFalse

𝑥 ∈ dom(𝜌 ) 𝑟 ≥ 𝜌 (𝑥 )
𝜌, 𝑟 :: 𝑠 ⊢ (flip𝑥, 𝜎 ) ⇓ (false, 𝜎 )

Fig. 17. Concrete semantics.

C.2 Concrete semantics
Lemma C.1 (Invariant of the concrete semantics). If (𝜌, 𝑒, 𝜎) ∈ Config and 𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′),
then 𝜎 ′ = 𝜎old ⊎ 𝜎new for some 𝜎old, 𝜎new with dom(𝜎 ′) = dom(𝜎old).

Proof. Analogous to Theorem B.14. □

Lemma C.2 (Nominal determinism). If (𝜌, 𝑒, 𝜎) ∈ Config and 𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝑣1, 𝜎1) and 𝜌, 𝑠 ⊢
(𝑒, 𝜎) ⇓ (𝑣2, 𝜎2) then ⟨dom(𝜎1) \dom(𝜎)⟩(𝑣1, 𝜎1) = ⟨dom(𝜎2) \dom(𝜎)⟩(𝑣2, 𝜎2).

Proof. Analogous to Theorem B.17. □

Definition C.3. Let run be the function

run : Config → EntropySrc → Result⊥

run(𝜌, 𝑒, 𝜎) (𝑠) =
{
⟨dom(𝜎 ′) \dom(𝜎)⟩(𝑣, 𝜎 ′) if 𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′)
⊥, otherwise

,
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well-defined by Theorem C.2.

Lemma C.4. For all (𝜌, 𝑒, 𝜎) ∈ Config the partial application

run(𝜌, 𝑒, 𝜎) : EntropySrc → Result⊥

run(𝜌, 𝑒, 𝜎) = 𝑠 ↦→ run(𝜌, 𝑠, 𝑒, 𝜎)

is measurable as a function [0, 1]N → Result⊥, where [0, 1]N is given the 𝜎-algebra induced by its

usual Lebesgue measure as in Wand et al. [63], and Result⊥ is given the discrete 𝜎-algebra.

Proof. Fix 𝜌, 𝑒, 𝜎 and a result 𝑟 , with aim to show run(𝜌, 𝑒, 𝜎)−1{𝑟 } is a measurable subset of

[0, 1]N. The relation −,− ⊢ (−,−) ⇓ (−,−) is the least fixed point of a continuous functional

𝐹 on ℘(Env × EntropySpc × Exp × Store × Val × Store), so equal to the countable union of the

sequence (𝐹 𝑖 (∅))𝑖∈N, and one has 𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′) iff (𝜌, 𝑠, 𝑒, 𝜎, 𝑣, 𝜎 ′) ∈ 𝐹𝑛 (∅) for some 𝑛.

It holds by induction on 𝑛 that {𝑠 | (𝜌, 𝑠, 𝑒, 𝜎, 𝑟 ) ∈ 𝐹𝑛 (∅)} is a measurable subset of [0, 1]N for

all 𝑛, because the action of 𝐹 can be written using countable unions, countable intersections,

complements, and preimages of the measurable functions split : [0, 1]N → [0, 1]N × [0, 1]N and

hd(−) < 𝑎 : [0, 1]N → Bool. From this it follows that {𝑠 | 𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎)} is a countable
union of measurable sets, hence measurable. Each run(𝜌, 𝑒, 𝜎)−1{𝑟 } is then a union of sets of the

form {𝑠 | 𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎)}, where 𝜌, 𝑣, 𝜎 range over the representatives of the equivalence

class 𝑟 ; since there are only countably many representatives, this union is also countable, so

run(𝜌, 𝑒, 𝜎)−1{𝑟 } is measurable too. □

C.3 Abstract semantics

𝑤 ∈ WeightMap := SymVar →fin [0, 1]

Lemma C.5 (Determinism). If 𝜌 ⊢ (𝑒, 𝜎,𝑤) ⇚ (�̂�1, 𝜎1,𝑤1,𝜓1) and 𝜌 ⊢ (𝑒, 𝜎,𝑤) ⇚ (�̂�2, 𝜎2,𝑤2,𝜓2) then
(�̂�1, 𝜎1,𝑤1,𝜓1) = (�̂�2, 𝜎2,𝑤2,𝜓2).

Proof. By induction on 𝜌 ⊢ (𝑒, 𝜎,𝑤) ⇚ (�̂�1, 𝜎1,𝑤1,𝜓1). □

Lemma C.6 (Invariant of the abstract semantics). If 𝜌 ⊢ (𝑒, 𝜎,𝑤) ⇚ (�̂�, 𝜎 ′,𝑤 ′,𝜓 ), then:
(1) 𝑤 ′ =𝑤 ⊎𝑤new for some𝑤new;

(2) If symvars(𝜌, 𝜎) ⊆ 𝐴 ⊆ dom(𝑤), then symvars(�̂�, 𝜎 ′) ⊆ 𝐴 ⊎ dom(𝑤new).

Proof. By induction on 𝜌 ⊢ (𝑒, 𝜎,𝑤) ⇚ (�̂�, 𝜎 ′,𝑤 ′,𝜓 ). □

C.4 Correctness
Definition C.7. Every weight map𝑤 yields a distribution weight𝑤 onModeldom(𝑤 ) :

weight𝑤 (𝑚) =
∏

(𝑥 ↦→𝑏 ) ∈𝑚
if 𝑏 then𝑤 (𝑥) else 1 −𝑤 (𝑥)

Lemma C.8. 𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝑣, 𝜎 ′) iff run(𝜌, 𝑒, 𝜎) (𝑠) = ⟨𝜎 ′ \𝜎⟩(𝑣, 𝜎 ′).

Proof. The left-to-right direction follows by definition of run. For right-to-left direction, suppose

𝜌, 𝑠 ⊢ (𝑒, 𝜎) ⇓ (𝑣1, 𝜎 ′
1
) witnesses run(𝜌, 𝑒, 𝜎) (𝑠) = ⟨𝜎 ′

1
\𝜎⟩(𝑣1, 𝜎 ′

1
). Then ⟨𝜎 ′

1
\𝜎⟩(𝑣1, 𝜎 ′

1
) = ⟨𝜎 ′\𝜎⟩(𝑣, 𝜎 ′)

by Theorem C.2. □

Theorem C.9 (Correctness of Idealized Roulette). If 𝜌 ⊢ (𝑒, 𝜎,𝑤) ⇚ (�̂�, 𝜎 ′,𝑤 ⊎𝑤 ′, 𝛼) and 𝜌, 𝜎 ∈
𝐴dom(𝑤 )

and �̂�, 𝜎 ′, 𝛼 ∈ 𝐴dom(𝑤⊎𝑤′ )
, then for all𝑚 ∈ Modeldom(𝑤 ) with (𝜌 (𝑚), 𝑒, 𝜎 (𝑚)) ∈ Config,
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𝜌 ⊢ (𝑒, 𝜎, 𝑤 ) ⇚ (�̂�, 𝜎 ′, 𝑤′ ,𝜓 )

Var

𝜌 (𝑥 ) = [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼
𝜌 ⊢ (𝑥, 𝜎, 𝑤 ) ⇚ ( [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 , 𝜎, 𝑤,

∨
𝑖 𝜑𝑖 )

Let

𝜌 ⊢ (𝑒1, 𝜎, 𝑤 ) ⇚ (�̂�1, 𝜎1, 𝑤1,𝜓1 )
𝜌 [𝑥 ↦→ �̂�1 ] ⊢ (𝑒2, 𝜎1, 𝑤1 ) ⇚ (�̂�2, 𝜎2, 𝑤2,𝜓2 )

𝜌 ⊢ (let 𝑥 = 𝑒1 in 𝑒2, 𝜎, 𝑤 ) ⇚ ( [𝜓1 : �̂�2 ], [𝜓1 : 𝜎2 ], 𝑤2,𝜓1 ∧𝜓2 )

Lam

𝜌 ⊢ (𝜆𝑥.𝑒, 𝜎, 𝑤 ) ⇚ ( [T : clo(𝜆𝑥.𝑒, 𝜌 ) ], 𝜎, 𝑤, T)

App

𝜌 (𝑥1 ) = [𝜑𝑖 : clo(𝜆𝑥𝑖 .𝑒𝑖 , 𝜌𝑖 ) ]1≤𝑖∈𝑛 ⊎
Closure

�̂�

∀1 ≤ 𝑖 ≤ 𝑛. 𝜌𝑖 [𝑥𝑖 ↦→ 𝜌 (𝑥2 ) ] ⊢ (𝑒𝑖 , 𝜎, 𝑤𝑖−1 ) ⇚ (�̂�𝑖 , 𝜎𝑖 , 𝑤𝑖 ,𝜓𝑖 )
𝜌 ⊢ (𝑥1𝑥2, 𝜎, 𝑤0 ) ⇚ ( [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 , [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 , 𝑤𝑛,

∨
𝑖 (𝜑𝑖 ∧𝜓𝑖 ) )

True

𝜌 ⊢ (true, 𝜎, 𝑤 ) ⇚ ( [T : true], 𝜎, 𝑤, T)

False

𝜌 ⊢ (false, 𝜎, 𝑤 ) ⇚ ( [T : false], 𝜎, 𝑤, T)

If

𝜌 (𝑥 ) = [𝜑1 : true, 𝜑2 : false] ⊎Bool
�̂�

𝜌 ⊢ (𝑒1, 𝜎, 𝑤 ) ⇚ (�̂�1, 𝜎1, 𝑤1,𝜓1 ) 𝜌 ⊢ (𝑒2, 𝜎, 𝑤1 ) ⇚ (�̂�2, 𝜎2, 𝑤2,𝜓2 )
𝜌 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎, 𝑤 ) ⇚ ( [𝜑1 : �̂�1, 𝜑2 : �̂�2 ], [𝜑1 : 𝜎1, 𝜑2 : 𝜎2 ], 𝑤2, (𝜑1 ∧𝜓1 ) ∨ (𝜑2 ∧𝜓2 ) )

Num

𝑟 ∈ Q

𝜌 ⊢ (𝑟, 𝜎, 𝑤 ) ⇚ ( [T : 𝑟 ], 𝜎, 𝑤, T)

Arith

𝜌 (𝑥1 ) = [𝜑𝑖 : 𝑟𝑖 ]𝑖∈𝐼 ⊎Num �̂�1 𝜌 (𝑥2 ) = [𝜑𝑖 : 𝑠𝑖 ]𝑖∈𝐼 ⊎Num �̂�2

∀ 𝑖 ∈ 𝐼 . 𝑟𝑖 , 𝑠𝑖 ∈ Q ⊕ ∈ {+, −, ×}
𝜌 ⊢ (𝑥1 ⊕ 𝑥2, 𝜎, 𝑤 ) ⇚ ( [𝜑𝑖 : 𝑟𝑖 ⟦⊕⟧ 𝑠𝑖 ]𝑖∈𝐼 , 𝜎, 𝑤,

∨
𝑖 𝜑𝑖 )

Pair

𝜌 (𝑥1 ) = [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 𝜌 (𝑥2 ) = [𝜑𝑖 : 𝑤𝑖 ]𝑖∈𝐼
𝜌 ⊢ ( (𝑥, 𝑦), 𝜎, 𝑤 ) ⇚ ( [𝜑𝑖 : (𝑣𝑖 , 𝑤𝑖 ) ]𝑖∈𝐼 , 𝜎, 𝑤,

∨
𝑖 𝜑𝑖 )

Fst

𝜌 (𝑥 ) = [𝜑𝑖 : (𝑣𝑖 , 𝑤𝑖 ) ]𝑖∈𝐼 ⊎Pair �̂�

𝜌 ⊢ (fst𝑥, 𝜎, 𝑤 ) ⇚ ( [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 , 𝜎, 𝑤,
∨

𝑖∈𝐼 𝜑𝑖 )

Snd

𝜌 (𝑥 ) = [𝜑𝑖 : (𝑣𝑖 , 𝑤𝑖 ) ]𝑖∈𝐼 ⊎Pair �̂�

𝜌 ⊢ (snd𝑥, 𝜎, 𝑤 ) ⇚ ( [𝜑𝑖 : 𝑤𝑖 ]𝑖∈𝐼 , 𝜎, 𝑤,
∨

𝑖∈𝐼 𝜑𝑖 )

Ref

𝜌 (𝑥 ) = [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 ℓ smallest not in locs(𝜌, 𝜎 )
𝜌 ⊢ (ref𝑥, 𝜎, 𝑤 ) ⇚ ( [T : ℓ ], 𝜎 [ℓ ↦→ [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 ], 𝑤,

∨
𝑖 𝜑𝑖 )

Get

𝜌 (𝑥 ) = [𝜑𝑖 : ℓ𝑖 ]𝑖∈𝐼 ⊎Loc �̂� 𝜎 = [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 ⊎ 𝜎 ′ ∀𝑖 ∈ 𝐼 . ℓ𝑖 ∈ dom(𝜎𝑖 )
𝜌 ⊢ (!𝑥, 𝜎, 𝑤 ) ⇚ ( [𝜑𝑖 : 𝜎𝑖 (ℓ𝑖 ) ]𝑖∈𝐼 , 𝜎, 𝑤,

∨
𝑖 𝜑𝑖 )

Set

𝜌 (𝑥 ) = [𝜑𝑖 : ℓ𝑖 ]𝑖∈𝐼 ⊎Loc �̂�1 𝜌 (𝑦) = [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 ⊎Loc �̂�2 𝜎 = [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 ⊎ 𝜎 ′ ∀𝑖 ∈ 𝐼 . ℓ𝑖 ∈ dom(𝜎𝑖 )
𝜌 ⊢ (𝑥 ≔ 𝑦, 𝜎, 𝑤 ) ⇚ ( [T : ( ) ], [𝜑𝑖 : 𝜎𝑖 [ℓ𝑖 ↦→ 𝑣𝑖 ] ]𝑖∈𝐼 , 𝑤,

∨
𝑖 𝜑𝑖 )

Flip

𝜌 (𝑥 ) = [𝜑𝑖 : 𝑟𝑖 ]𝑖∈𝐼 ⊎Q �̂� ∀𝑖 ∈ 𝐼 . 𝑠𝑖 =max(min(𝑟𝑖 , 1), 0)
{𝛼𝑖 }𝑖∈𝐼 smallest not in symvars(𝜌, 𝜎 ) ∪ dom(𝑤 )

𝜌 ⊢ (flip𝑥, 𝜎, 𝑤 ) ⇚ ( [𝜑𝑖 : 𝛼𝑖 ]𝑖∈𝐼 , 𝜎, 𝑤 ⊎ {𝛼𝑖 ↦→ 𝑠𝑖 }𝑖∈𝐼 ,
∨

𝑖 𝜑𝑖 )

Fail

𝜌 ⊢ (fail, 𝜎, 𝑤 ) ⇚ (∅,∅, 𝑤,⊥)

Fig. 18. Abstract semantics.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 231. Publication date: June 2025.



Roulette: A Language for Expressive, Exact, and Efficient Discrete Probabilistic Programming (with Appendices) 231:71

(1) The following random variables have the same distribution, where [0, 1]N is given the usual

Lebesgue measure andModeldom(𝑤′ ) is given the measure weight𝑤′ :

run(𝜌 (𝑚), 𝑒, 𝜎 (𝑚)) : [0, 1]N → Result⊥

resultdom(𝑤′ ) (𝜎 (𝑚), �̂� |𝑚, 𝜎 ′ |𝑚) : Modeldom(𝑤′ ) → Result⊥

(2) For all𝑚′ ∈ Modeldom(𝑤′ ) it holds that (𝜌 (𝑚 ⊎𝑚′), 𝜎 (𝑚 ⊎𝑚′)) ≠ ⊥ iff 𝛼 (𝑚 ⊎𝑚′) = T.

Proof. Both (1) and (2) follow by induction on 𝜌 ⊢ (𝑒, 𝜎,𝑤) ⇚ (�̂�, 𝜎 ′,𝑤 ⊎𝑤 ′, 𝛼). Point (2) is shown
entirely analogously to Theorem B.21. For (1), we first consider the rules that do not involve

probability:

• (Var) Suppose 𝜌 (𝑥) = [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 and 𝜌 ⊢ (𝑥, �̂�,𝑤) ⇚ ( [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 , 𝜎,𝑤,
∨

𝑖 𝜑𝑖 ). In this case

dom(𝑤 ′) = ∅ and result∅ (𝜎 (𝑚), 𝜌 (𝑚) (𝑥), 𝜎 (𝑚)) is the constant function taking value ⊥ in case

𝑥 ∉ 𝜌 (𝑚) and value 𝑣𝑖 in case 𝜑𝑖 (𝑚) = T for some 𝑖 ∈ 𝐼 ; the same is true of run(𝜌 (𝑚), 𝑥, 𝜎 (𝑚)),
so they have the same distribution.

Cases Lam, True, False, Num, Pair, Fail, Arith, Fst, Snd, Get, Set are similar.

• (Ref) Suppose

– 𝜌 (𝑥) = [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼
– ℓ smallest not in locs(𝜌, 𝜎)
– 𝜌 ⊢ (ref𝑥, 𝜎,𝑤) ⇚ ( [T : ℓ], 𝜎 [ℓ ↦→ [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 ],𝑤,

∨
𝑖 𝜑𝑖 )

In this case dom(𝑤 ′) = ∅ and result∅ (𝜌 (𝑚), [T : ℓ] |𝑚, 𝜎 [ℓ ↦→ [𝜑𝑖 : 𝑣𝑖 ]𝑖∈𝐼 ] |𝑚) is the constant
function taking value ⊥ if 𝑥 ∉ 𝜌 (𝑚) and value ⟨ℓ⟩(ℓ, 𝜎 (𝑚) [ℓ ↦→ 𝑣𝑖 ]) if 𝜑𝑖 (𝑚) = T for some 𝑖 ∈ 𝐼 .

Similarly, run(𝜌 (𝑚), ref𝑥, 𝜎 (𝑚)) is the constant function taking value ⊥ if 𝑥 ∉ 𝜌 (𝑚) and value

⟨ℓ ′⟩(ℓ ′, 𝜎 (𝑚) [ℓ ′ ↦→ 𝑣𝑖 ]), if 𝜑𝑖 (𝑚) = T for some 𝑖 ∈ 𝐼 , where ℓ ′ is an arbitrarily chosen fresh

location. These functions are equal because ⟨ℓ⟩(ℓ, 𝜎 (𝑚) [ℓ ↦→ 𝑣𝑖 ]) = ⟨ℓ ′⟩(ℓ ′, 𝜎 (𝑚) [ℓ ′ ↦→ 𝑣𝑖 ]), so
they also have the same distribution.

For the rules involving probability,

• (If) Suppose

– 𝜌 (𝑥) = [𝜑1 : true, 𝜑2 : false] ⊎Bool �̂�

– 𝜌 ⊢ (𝑒1, 𝜎,𝑤) ⇚ (�̂�1, 𝜎1,𝑤1,𝜓1)
– 𝜌 ⊢ (𝑒2, 𝜎,𝑤1) ⇚ (�̂�2, 𝜎2,𝑤2,𝜓2)
– 𝜌 ⊢ (if 𝑥 𝑒1 𝑒2, 𝜎,𝑤) ⇚ ( [𝜑1 : �̂�1, 𝜑2 : �̂�2], [𝜑1 : 𝜎1, 𝜑2 : 𝜎2],𝑤2, (𝜑1 ∧𝜓1) ∨ (𝜑2 ∧𝜓2))
Let𝑋 = result𝑤1⊎𝑤2

(𝜌 (𝑚), [𝜑1 : �̂�1, 𝜑2 : �̂�2] |𝑚, [𝜑1 : 𝜎1, 𝜑2 : 𝜎2] |𝑚), 𝑌 = run(𝜌 (𝑚), if 𝑥 𝑒1 𝑒2, 𝜎 (𝑚)).
The goal is to show 𝑋 and 𝑌 have the same distribution. There are three cases.

– If (𝜑1 ∨ 𝜑2) (𝑚) = ⊥ then 𝑋 and 𝑌 are both the constant function at ⊥, and so have the same

distribution.

– If 𝜑1 (𝑚) = T, then 𝑋 = result𝑤1⊎𝑤2
(𝜌 (𝑚), �̂�1 |𝑚, �̂�2 |𝑚) and 𝑌 = run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)). Now

result𝑤1⊎𝑤2
(𝜌 (𝑚), �̂�1 |𝑚, 𝜎1 |𝑚) has the same distribution as result𝑤1

(𝜌 (𝑚), �̂�1 |𝑚, 𝜎1 |𝑚) because
symvars(�̂�1, 𝜎1) ⊆ dom(𝑤 ⊎𝑤1), so the result follows from IH on 𝑒1.

– The case 𝜑2 (𝑚) = T is analogous, using the fact that symvars(�̂�2, 𝜎2) ⊆ dom(𝑤 ⊎𝑤2).
• (App) Suppose

– 𝜌 (𝑥1) = [𝜑𝑖 : clo(𝜆𝑥𝑖 .𝑒𝑖 , 𝜌𝑖 )]1≤𝑖∈𝑛 ⊎Closure �̂�

– 𝜌𝑖 [𝑥𝑖 ↦→ 𝜌 (𝑥2)] ⊢ (𝑒𝑖 , 𝜎,𝑤𝑖−1) ⇚ (�̂�𝑖 , 𝜎𝑖 ,𝑤𝑖 ,𝜓𝑖 ) for all 1 ≤ 𝑖 ≤ 𝑛

– 𝜌 ⊢ (𝑥1𝑥2, 𝜎,𝑤0) ⇚ ( [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 , [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 ,𝑤𝑛,
∨

𝑖 (𝜑𝑖 ∧𝜓𝑖 ))
Let

– 𝑤 ′ =𝑤0 ⊎ · · · ⊎𝑤𝑛

– 𝑋 = result𝑤′ (𝜎 (𝑚), [𝜑𝑖 : �̂�𝑖 ]𝑖∈𝐼 |𝑚, [𝜑𝑖 : 𝜎𝑖 ]𝑖∈𝐼 |𝑚)
– 𝑌 = run(𝜌 (𝑚), 𝑥1𝑥2, 𝜎 (𝑚))
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with aim to show 𝑋 and 𝑌 have the same distribution. There are two cases:

– If

∨
1≤𝑖≤𝑛 𝜑𝑖 (𝑚) = ⊥ then 𝑋 and 𝑌 are both constant functions at ⊥, and so have the same

distribution.

– If 𝜑𝑖 (𝑚) = T for 1 ≤ 𝑖 ≤ 𝑛, then the following equations hold:

𝑋 = result𝑤′ (𝜎 (𝑚), �̂�𝑖 |𝑚, 𝜎𝑖 |𝑚)
𝑌 = run(𝜌𝑖 (𝑚) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑥2)], 𝑒𝑖 , 𝜎 (𝑚))

Since symvars(𝜌𝑖 , 𝜎) ⊆ dom(𝑤), it holds that
𝑌 = run(𝜌𝑖 (𝑚 ⊎𝑚1...𝑖−1) [𝑥𝑖 ↦→ 𝜌 (𝑚) (𝑥2)], 𝑒𝑖 , 𝜎 (𝑚 ⊎𝑚1...𝑖−1))

for any𝑚1...𝑖−1 ∈ Modeldom(𝑤1⊎···⊎𝑤𝑖−1 ) . Picking arbitrary such𝑚1...𝑖−1 gives, by IH, that 𝑌 has

the same distribution as

𝑋 ′ = result𝑤⊎𝑤1⊎···⊎𝑤𝑖−1 (𝜎 (𝑚), �̂�𝑖 |𝑚⊎𝑚1...𝑖−1 , 𝜎𝑖 |𝑚⊎𝑚1...𝑖−1 )
Now symvars(�̂�𝑖 , 𝜎𝑖 ) ⊆ dom(𝑤)⊎dom(𝑤𝑖 ) by choosing dom(𝑤) for𝐴 in Theorem C.6, because

symvars(𝜌𝑖 [𝑥𝑖 ↦→ 𝜌 (𝑥2)], 𝜎) ⊆ dom(𝑤). Thus
𝑋 ′ = result𝑤 (𝜎 (𝑚), �̂�𝑖 |𝑚, 𝜎𝑖 |𝑚) = 𝑋

as functionsModeldom(𝑤𝑖 ) → Result⊥, as needed.
• (Flip) Suppose

– 𝜌 (𝑥) = [𝜑𝑖 : 𝑟𝑖 ]𝑖∈𝐼 ⊎[0,1] �̂�
– 𝑠𝑖 =max(min(𝑟𝑖 , 1), 0) for all 𝑖 ∈ 𝐼

– {𝛼𝑖 }𝑖∈𝐼 smallest not in symvars(𝜌, 𝜎) ∪ dom(𝑤)
– 𝜌 ⊢ (flip𝑥, 𝜎,𝑤) ⇚ ( [𝜑𝑖 : 𝛼𝑖 ]𝑖∈𝐼 , 𝜎,𝑤 ⊎ {𝛼𝑖 ↦→ 𝑠𝑖 }𝑖∈𝐼 ,

∨
𝑖 𝜑𝑖 )

and let

– 𝜇 = weight{𝛼𝑖 ↦→𝑠𝑖 }𝑖∈𝐼
– 𝑋 = result{𝛼𝑖 }𝑖∈𝐼 (𝜎 (𝑚), [𝜑𝑖 : 𝛼𝑖 ]𝑖∈𝐼 |𝑚, 𝜎 (𝑚)) = (𝑚′ ↦→ ⟨∅⟩[𝜑𝑖 : 𝛼𝑖 ]𝑖∈𝐼 (𝑚 ⊎𝑚′))
– 𝑌 = run(𝜌 (𝑚), flip𝑥, 𝜎 (𝑚)).
The goal is to show the distribution of 𝑋 under 𝜇 is equal to the distribution of 𝑌 under Lebesgue

measure on [0, 1]N. There are two cases.

– If

∨
𝑖 𝜑𝑖 (𝑚) = ⊥, then both 𝑋 and 𝑌 are constant functions at ⊥, so they have the same

distribution.

– If 𝜑𝑖 (𝑚) = T for some 𝑖 , then 𝑋 is the function defined by 𝑋 (𝑚′) = ⟨∅⟩𝑚′ (𝛼𝑖 ) for all𝑚′ ∈
Model{𝛼𝑖 }𝑖∈𝐼 , so has distribution Ber(𝑠𝑖 ) under 𝜇. Similarly, 𝑌 is the function

𝑌 : [0, 1]N → Result

𝑌 (𝑥 :: 𝑠) =
{
⟨∅⟩true, if 𝑥 < 𝑟𝑖

⟨∅⟩false, if 𝑥 ≥ 𝑟𝑖

which also has distribution Ber(𝑠𝑖 ) under Lebesgue measure on [0, 1]N.
• (Let) Suppose

– 𝜌 ⊢ (𝑒1, 𝜎,𝑤) ⇚ (�̂�1, 𝜎1,𝑤 ⊎𝑤1,𝜓1)
– 𝜌 [𝑥 ↦→ �̂�1] ⊢ (𝑒2, 𝜎1,𝑤 ⊎𝑤1) ⇚ (�̂�2, 𝜎2,𝑤 ⊎𝑤1 ⊎𝑤2,𝜓2).
Fix arbitrary 𝑟 ∈ Result with aim to show the following:

Pr

𝑠∼[0,1]N

[
run(𝜌 (𝑚), let 𝑥 = 𝑒1 in 𝑒2, 𝜎 (𝑚)) (𝑠) = 𝑟

]
= Pr

𝑚1∼weight𝑤
1

𝑚2∼weight𝑤
2

[
resultdom(𝑤1⊎𝑤2 ) (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚) (𝑚1 ⊎𝑚2) = 𝑟

]
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We will calculate from LHS to RHS. The calculation is long, but mostly due to explicit reasoning

about renaming of heap locations; the structure of the proof mirrors that of the Let case of

Theorem B.17. First, unwind the definition of run and perform inversion on the abstract semantics:

LHS = Pr

𝑠1,𝑠2∼[0,1]N


∃ 𝑣1 𝜎1 𝑣2 𝜎2. 𝜌 (𝑚), 𝑠1 ⊢ (𝑒1, 𝜎 (𝑚)) ⇓ (𝑣1, 𝜎1) ∧
𝜌 (𝑚) [𝑥 ↦→ 𝑣1], 𝑠2 ⊢ (𝑒2, 𝜎1) ⇓ (𝑣2, 𝜎2)∧
⟨𝜎2 \𝜎 (𝑚)⟩(𝑣2, 𝜎2) = 𝑟 ∧ 𝑠 { 𝑠1, 𝑠2


Note that, as in the Let case of Theorem B.17, we have abused notation and written 𝜎2 \𝜎 (𝑚)
instead of dom(𝜎2) \dom(𝜎 (𝑚)); we will continue to do this throughout for legibility’s sake,

automatically coercing stores into their domains as needed. Next, rewrite using Theorem C.8:

· · · = Pr

𝑠1,𝑠2∼[0,1]N


∃ 𝑣1 𝜎1 𝑣2 𝜎2.

run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠1) = ⟨𝜎1 \𝜎 (𝑚)⟩(𝑣1, 𝜎1) ∧
run(𝜌 (𝑚) [𝑥 ↦→ 𝑣1], 𝑒2, 𝜎1) (𝑠2) = ⟨𝜎2 \𝜎1⟩(𝑣2, 𝜎2) ∧
⟨𝜎2 \𝜎 (𝑚)⟩(𝑣2, 𝜎2) = 𝑟


The event under consideration is a function of run(𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑠1), so the IH on 𝑒1 applies:

· · · = Pr

𝑚1∼weight𝑤
1

𝑠2∼[0,1]N


∃ 𝑣1 𝜎1 𝑣2 𝜎2.

resultdom(𝑤1 ) (𝜎 (𝑚), �̂�1 |𝑚, 𝜎1 |𝑚) (𝑚1) = ⟨𝜎1 \𝜎 (𝑚)⟩(𝑣1, 𝜎1) ∧
run(𝜌 (𝑚) [𝑥 ↦→ 𝑣1], 𝑒2, 𝜎1) (𝑠2) = ⟨𝜎2 \𝜎1⟩(𝑣2, 𝜎2) ∧
⟨𝜎2 \𝜎 (𝑚)⟩(𝑣2, 𝜎2) = 𝑟


The equation resultdom(𝑤1 ) (𝜌 (𝑚), 𝑒1, 𝜎 (𝑚)) (𝑚1) = ⟨𝜎1\̂𝜎 (𝑚)⟩(𝑣1, 𝜎1) can be unpacked into a fresh
set of locations 𝐹1 and products of transpositions 𝑝1, 𝜋1 swapping dom(𝜎1 (𝑚⊎𝑚1))\dom(𝜎 (𝑚))
and dom(𝜎1)\dom(𝜎 (𝑚)) to 𝐹1 respectively such that 𝑝1 · (�̂�1 (𝑚⊎𝑚1), 𝜎1 (𝑚⊎𝑚1)) = 𝜋1 · (𝑣1, 𝜎1).
Rearranging gives 𝑝−1

1
𝜋1 · (𝑣1, 𝜎1) = (�̂�1 (𝑚⊎𝑚1), 𝜎1 (𝑚⊎𝑚1)), which combined with equivariance

shows run(𝜌 (𝑚) [𝑥 ↦→ 𝑣1], 𝑒2, 𝜎1) (𝑠2) = ⟨𝜎2 \𝜎1⟩(𝑣2, 𝜎2) is equivalent to

run(𝜌 (𝑚) [𝑥 ↦→ �̂�1 (𝑚 ⊎𝑚1)], 𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) (𝑠2) = 𝑝−1
1
𝜋1 · ⟨𝜎2 \𝜎1⟩(𝑣2, 𝜎2).

Thus we can continue as follows, where Fresh1 (𝐹1, 𝑝1, 𝜋1) is the logical formula expressing the

side conditions on 𝐹1, 𝑝1, 𝜋1 stated above:

· · · = Pr

𝑚1∼weight𝑤
1

𝑠2∼[0,1]N



∃ 𝑣1 𝜎1 𝑣2 𝜎2 𝐹1 𝑝1 𝜋1. Fresh1 (𝐹1, 𝑝1, 𝜋1) ∧
𝑝1 · (�̂�1 (𝑚 ⊎𝑚1), 𝜎1 (𝑚 ⊎𝑚1)) = 𝜋1 · (𝑣1, 𝜎1) ∧
run(𝜌 (𝑚) [𝑥 ↦→ �̂�1 (𝑚 ⊎𝑚1)], 𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) (𝑠2)

= 𝑝−1
1
𝜋1 · ⟨𝜎2 \𝜎1⟩(𝑣2, 𝜎2) ∧

⟨𝜎2 \𝜎 (𝑚)⟩(𝑣2, 𝜎2) = 𝑟


After this rearrangement, the event under consideration is now a function of

(𝑚1, run(𝜌 (𝑚) [𝑥 ↦→ �̂�1 (𝑚 ⊎𝑚1)], 𝑒2, 𝜎1 (𝑚 ⊎𝑚1)) (𝑠2)),
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so the IH on 𝑒2 applies:

· · · = Pr

𝑚1∼weight𝑤
1

𝑚2∼weight𝑤
2



∃ 𝑣1 𝜎1 𝑣2 𝜎2 𝐹1 𝑝1 𝜋1. Fresh1 (𝐹1, 𝑝1, 𝜋1) ∧
𝑝1 · (�̂�1 (𝑚 ⊎𝑚1), 𝜎1 (𝑚 ⊎𝑚1)) = 𝜋1 · (𝑣1, 𝜎1) ∧
resultdom(𝑤2 ) (𝜎1 (𝑚 ⊎𝑚1), �̂�2 |𝑚⊎𝑚1

, 𝜎2 |𝑚⊎𝑚1
) (𝑚2)

= 𝑝−1
1
𝜋1 · ⟨𝜎2 \𝜎1⟩(𝑣2, 𝜎2) ∧

⟨𝜎2 \𝜎 (𝑚)⟩(𝑣2, 𝜎2) = 𝑟


The equation resultdom(𝑤2 ) (𝜎1 (𝑚 ⊎ 𝑚1), �̂�2 |𝑚⊎𝑚1

, 𝜎2 |𝑚⊎𝑚1
) (𝑚2) = 𝑝−1

1
𝜋1 · ⟨𝜎2 \ 𝜎1⟩(𝑣2, 𝜎2) is

equivalent to ⟨𝜎2 (𝑚′) \ 𝜎1 (𝑚′)⟩(�̂�2 (𝑚′), 𝜎2 (𝑚′)) = 𝑝−1
1
𝜋1 · ⟨𝜎2 \ 𝜎1⟩(𝑣2, 𝜎2), which rearranges

to ⟨𝜎2 (𝑚′) \𝜎1 (𝑚′)⟩(𝑝1 · (�̂�2 (𝑚′), 𝜎2 (𝑚′))) = ⟨𝜎2 \𝜎1⟩(𝜋1 · (𝑣2, 𝜎2)), where 𝑝1, 𝜋1 can be brought

under ⟨−⟩ because the locations they touch are disjoint from 𝜎2 (𝑚′) \𝜎1 (𝑚′) and 𝜎2 \𝜎1 respec-
tively. This equation can then be further unpacked into a second fresh set of locations 𝐹2 and

products of transpositions 𝑝2, 𝜋2 swapping dom(�̂�2 (𝑚′)) \dom(𝜎1 (𝑚′)) and dom(𝜎2) \dom(𝜎1)
with 𝐹2 respectively such that 𝑝2 · (𝑝1 · (�̂�2 (𝑚′), 𝜎2 (𝑚′))) = 𝜋2 · (𝜋1 · (𝑣2, 𝜎2)). Since 𝑝1, 𝑝2
are disjoint products of transpositions, 𝑝2𝑝1 is itself a product of transpositions swapping

dom(𝜎2 (𝑚′)) \dom(𝜎 (𝑚)) with 𝐹1 ⊎ 𝐹2; analogously, 𝜋2𝜋1 swaps dom(𝜎2) \dom(𝜎 (𝑚)) with
𝐹1⊎𝐹2. This implies ⟨𝜎2 (𝑚′)\𝜎 (𝑚)⟩(�̂�2 (𝑚′), 𝜎2 (𝑚′)) = ⟨𝜎2\𝜎 (𝑚)⟩(𝑣2, 𝜎2) = 𝑟 , so we can continue

the calculation as follows, where Fresh2 (𝐹2, 𝑝2, 𝜋2) is the logical formula expressing the side

conditions on 𝐹2, 𝑝2, 𝜋2:

· · · = Pr

𝑚1∼weight𝑤
1

𝑚2∼weight𝑤
2



∃ 𝑣1 𝜎1 𝑣2 𝜎2 𝐹1 𝑝1 𝜋1 𝐹2 𝑝2 𝜋2.

Fresh1 (𝐹1, 𝑝1, 𝜋1) ∧ Fresh2 (𝐹2, 𝑝2, 𝜋2) ∧
𝑝1 · (�̂�1 (𝑚 ⊎𝑚1), �̂�1 (𝑚 ⊎𝑚1)) = 𝜋1 · (𝑣1, 𝜎1) ∧
let𝑚′ =𝑚 ⊎𝑚1 ⊎𝑚2 in

𝑝2𝑝1 · (�̂�2 (𝑚′), 𝜎2 (𝑚′)) = 𝜋2𝜋1 · (𝑣2, 𝜎2) ∧
⟨𝜎2 (𝑚′) \𝜎 (𝑚)⟩(�̂�2 (𝑚′), 𝜎2 (𝑚′)) = 𝑟

︸                                                            ︷︷                                                            ︸
𝐸 (𝑚1,𝑚2 )

We are done if we can show that this is equal to the right-hand side

Pr

𝑚1∼weight𝑤
1

𝑚2∼weight𝑤
2

[
resultdom(𝑤1⊎𝑤2 ) (𝜎 (𝑚), [𝜓1 : �̂�2] |𝑚, [𝜓1 : 𝜎2] |𝑚) (𝑚1 ⊎𝑚2) = 𝑟

]
.

Unwinding the definition of resultdom(𝑤1⊎𝑤2 ) (−), this right-hand side is equivalent to

Pr

𝑚1∼weight𝑤
1

𝑚2∼weight𝑤
2

[
let𝑚′ =𝑚 ⊎𝑚1 ⊎𝑚2 in ⟨[𝜓1 : 𝜎2] (𝑚′) \𝜎 (𝑚)⟩([𝜓1 : �̂�2] (𝑚′), [𝜓1 : 𝜎2] (𝑚′)) = 𝑟

]︸                                                                                                          ︷︷                                                                                                          ︸
𝐹 (𝑚1,𝑚2 )

.

It’s enough to show 𝐸 and 𝐹 are equal as events.

(⊆) First suppose 𝐹 (𝑚1,𝑚2), so ⟨[𝜓1 : 𝜎2] (𝑚′) \𝜎 (𝑚)⟩([𝜓1 : �̂�2] (𝑚′), [𝜓1 : 𝜎2] (𝑚′)) = 𝑟 where

𝑚′ =𝑚 ⊎𝑚1 ⊎𝑚2. Then it must be that𝜓1 (𝑚′) = T and (�̂�2, 𝜎2) (𝑚′) ≠ ⊥, and simplification

gives ⟨𝜎2 (𝑚′)\𝜎 (𝑚)⟩(�̂�2 (𝑚′), 𝜎2 (𝑚′)) = 𝑟 . Since𝜓1 (𝑚′) = T, IH on 𝑒1 gives (�̂�1 (𝑚′), 𝜎1 (𝑚′)) ≠
⊥. Now we can always find disjoint sets of fresh variables 𝐹1 and 𝐹2 and swapping maps
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𝜋1, 𝑝1, 𝜋2, 𝑝2 for the pairs (�̂�1 (𝑚′), 𝜎1 (𝑚′)) and (�̂�2 (𝑚′), 𝜎2 (𝑚′)) so that setting

(𝑣1, 𝜎1) = 𝜋−1
1
𝑝1 · (�̂�1 (𝑚 ⊎𝑚1), 𝜎1 (𝑚 ⊎𝑚2))

(𝑣2, 𝜎2) = 𝜋−1
1
𝜋−1
2
𝑝2𝑝1 · (�̂�2 (𝑚′), 𝜎2 (𝑚′))

establishes 𝐸 (𝑚1,𝑚2).
(⊇) Conversely, suppose 𝐸 (𝑚1,𝑚2) and let𝑚′ =𝑚 ⊎𝑚1 ⊎𝑚2. Since

(�̂�1 (𝑚′), 𝜎1 (𝑚′)) = (�̂�1 (𝑚 ⊎𝑚1), 𝜎1 (𝑚 ⊎𝑚′)) ≠ ⊥,

IH on 𝑒1 shows𝜓1 (𝑚′) = T. Thus

⟨[𝜓1 : 𝜎2] (𝑚′) \𝜎 (𝑚)⟩([𝜓1 : �̂�2] (𝑚′), [𝜓1 : 𝜎2] (𝑚′))

= ⟨̂𝑣2 (𝑚′) \𝜎 (𝑚)⟩(�̂�1 (𝑚′), 𝜎2 (𝑚′)) assumption

= 𝑟

as needed to show 𝐹 (𝑚1,𝑚2). □

D Complete Performance Tables
D.1 Easy Benchmarks

Table 3. Easy Benchmarks

Roulette Dice (2025) Dice (2020) PSI

Benchmark Ops Size Time (ms) Ops Size Time (ms) Size Time (ms) Time (ms)

alarm 32 11 0 55 11 19 11 16 71

evidence1 6 3 0 15 5 24 5 17 22

evidence2 12 4 0 17 6 21 6 18 34

grass 40 13 0 72 15 30 15 19 80

murder-mystery 6 4 0 297 6 28 6 20 46

noisy-or 143 33 0 170 35 23 35 19 328

two-coins 6 3 0 15 5 25 5 22 20

D.2 Expressive Benchmarks

Table 4. Network Reliability

Roulette Enumeration

Iterations Operations Size Time Time

1 344 14 1 0

2 3,181 95 3 3

3 12,692 283 12 164

4 31,765 547 15 3,719

5 75,258 821 19 –

10 149,541 2,191 38 –

50 1,607,021 13,151 421 –

100 5,903,871 26,851 1,527 –

200 22,747,571 54,251 6,267 –

400 89,434,971 109,051 26,569 –

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 231. Publication date: June 2025.



231:76 Cameron Moy, Jack Czenszak, John M. Li, Brianna Marshall, and Steven Holtzen

Table 5. Hardware N

Roulette Enumeration

N Ops Size Time (ms) Time (ms)

1 977 23 3 1,114

2 816 31 2 1,024

3 752 24 3 823

4 752 24 3 836

5 752 24 3 818

6 752 24 3 824

7 752 24 3 819

8 752 24 3 823

9 752 24 3 824

10 752 24 3 831

Table 6. Hardware Fuel

Roulette Enumeration

Fuel Ops Size Time (ms) Time (ms)

1 0 0 0 0

3 2,176 70 4 1,102

5 7,806 218 7 –

7 18,710 492 12 –

9 35,210 780 16 –

11 57,218 1,068 20 –

21 251,174 2,508 60 –

31 584,558 3,948 129 –

41 1,057,514 5,388 226 –

51 1,669,898 6,828 358 –

61 2,421,854 8,268 560 –

71 3,313,238 9,708 703 –

81 4,344,194 11,148 929 –

91 5,514,578 12,588 1,235 –

93 5,765,438 12,876 1,264 –

95 6,021,806 13,164 1,299 –

97 6,283,826 13,452 1,361 –

99 6,551,354 13,740 1,406 –
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Table 7. Hardware Bitwidth

Roulette Enumeration

Bitwidth Ops Size Time (ms) Time (ms)

5 1,593 24 4 1,064

6 1,593 24 4 983

7 1,593 24 4 1,014

8 1,593 24 4 960

9 1,593 24 4 952

10 1,593 24 4 897

11 1,593 24 4 931

12 1,593 24 4 866

13 1,593 24 4 864

14 1,593 24 4 835

15 1,593 24 4 852

16 1,593 24 4 815

17 1,593 24 5 825

18 1,593 24 5 795

19 1,593 24 5 806

20 1,593 24 5 794

D.3 Scaling Benchmarks

Table 8. Caesar with Errors

Roulette Dice (2025) Dice (2020)

Iterations Ops Size Time (ms) Ops Size Time (ms) Size Time (ms)

1 5,074 259 13 521,687 195 75 751 28

26 109,397 4,953 124 12,908,645 5,959 1,810 13,238 123

51 214,338 9,776 221 25,280,143 11,775 3,588 25,767 215

76 319,979 14,851 337 37,648,765 17,651 5,414 38,942 399

101 425,262 19,752 432 50,020,149 23,352 7,215 51,769 612

126 528,393 24,135 582 62,381,755 29,213 8,942 63,686 680

151 634,084 29,431 686 74,752,953 35,039 10,769 76,009 715

176 740,049 34,737 796 87,111,831 41,033 12,856 89,118 878

201 844,128 39,164 890 99,481,979 46,824 14,849 102,078 1,101

226 950,397 44,580 1,015 111,843,093 52,790 16,853 114,871 1,198

251 1,054,452 49,144 1,164 124,213,559 58,520 18,715 127,122 1,085

276 1,158,379 53,777 1,278 136,592,621 64,321 21,007 139,493 1,214

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 231. Publication date: June 2025.



231:78 Cameron Moy, Jack Czenszak, John M. Li, Brianna Marshall, and Steven Holtzen

Table 9. Diamond Network

Roulette Dice (2025) Dice (2020)

Iterations Ops Size Time (ms) Ops Size Time (ms) Size Time (ms)

1 6 2 0 96 4 39 4 14

100 1,887 200 16 26,737 202 35 202 13

200 3,787 400 28 93,441 402 56 402 19

300 5,687 600 39 200,141 602 81 602 23

400 7,587 800 54 346,841 802 122 802 22

500 9,487 1,000 67 533,541 1,002 165 1,002 23

700 13,287 1,400 88 1,026,941 1,402 281 1,402 26

800 15,187 1,600 117 1,333,641 1,602 360 1,602 27

900 17,087 1,800 130 1,680,341 1,802 435 1,802 28

1,000 18,987 2,000 139 2,067,041 2,002 508 2,002 38

2,000 37,987 4,000 286 8,134,047 4,002 2,004 4,002 43

3,000 56,987 6,000 425 18,201,047 6,002 4,808 6,002 68

4,000 75,987 8,000 612 32,268,049 8,002 9,162 8,002 82

5,000 94,987 10,000 747 50,335,051 10,002 15,557 10,002 103

Table 10. Ladder Network

Roulette Dice (2025) Dice (2020)

Iterations Ops Size Time (ms) Ops Size Time (ms) Size Time (ms)

1 14 3 0 313 6 16 6 11

5 173 19 7 2,145 30 22 30 12

10 368 39 8 7,968 60 23 60 18

20 758 79 9 2,116,168 120 55 120 12

100 3,878 399 20 – – – 600 14

200 7,778 799 33 – – – 1,200 24

300 11,678 1,199 50 – – – 1,800 18

400 15,578 1,599 63 – – – 2,400 21

500 19,478 1,999 87 – – – 3,000 26

700 27,278 2,799 122 – – – 4,200 37

800 31,178 3,199 135 – – – 4,800 33

900 35,078 3,599 150 – – – 5,400 41

1,000 38,978 3,999 168 – – – 6,000 44

2,000 77,978 7,999 339 – – – 12,000 83

3,000 116,978 11,999 552 – – – 18,000 123

4,000 155,978 15,999 731 – – – 24,000 158

5,000 194,978 19,999 909 – – – 30,000 208
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Table 11. Figure 1 of Holtzen et al. [29]

Roulette Dice (2025) Dice (2020)

Iterations Ops Size Time (ms) Ops Size Time (ms) Size Time (ms)

1 11 4 0 91 5 17 5 14

100 1,100 301 10 67,806 203 44 203 19

200 2,200 601 14 255,768 403 75 403 18

300 3,300 901 19 564,126 603 131 603 20

400 4,400 1,201 23 992,834 803 206 803 17

500 5,500 1,501 28 1,541,508 1,003 300 1,003 22

700 7,700 2,101 37 2,998,680 1,403 557 1,403 26

800 8,800 2,401 42 3,907,472 1,603 728 1,603 29

900 9,900 2,701 49 4,936,410 1,803 898 1,803 30

1,000 11,000 3,001 50 6,085,382 2,003 1,101 2,003 31

2,000 22,000 6,001 118 24,175,120 4,003 4,661 4,003 47

3,000 33,000 9,001 178 54,270,994 6,003 11,825 6,003 71

4,000 44,000 12,001 230 96,364,856 8,003 23,738 8,003 83

5,000 55,000 15,001 287 – – – 10,003 101

D.4 Hidden Markov Model

Table 12. Hidden Markov Models for marginal-likelihoodQuery

Roulette Dice (2025) Dice (2020) DP

Steps Ops Size Time (ms) Ops Size Time (ms) Size Time (ms) Time (ms)

1 10 5 0 354 7 1,266 7 505 0

100 61,093 401 29 191,918 403 1,359 403 468 16

500 1,505,493 2,001 391 4,160,320 2,003 2,259 2,003 533 45

1,000 6,010,993 4,001 1,585 16,321,614 4,003 5,168 4,003 746 81

2,000 24,021,993 8,001 6,905 – – – 8,003 1,608 167

3,000 54,032,993 12,001 15,377 – – – 12,003 2,983 238

4,000 – – – – – – 16,003 5,315 314

5,000 – – – – – – 20,003 8,561 397

Table 13. Hidden Markov Models for filtering-marginalQuery

Roulette Dice (2025) Dice (2020) DP

Steps Ops Size Time (ms) Ops Size Time (ms) Size Time (ms) Time (ms)

1 24 11 0 368 10 1,270 10 472 0

100 82,095 1,199 31 174,112 604 1,376 604 465 16

500 2,010,495 5,999 524 3,671,314 3,004 2,177 3,004 520 44

1,000 8,020,995 11,999 2,191 14,343,608 6,004 4,755 6,004 671 79

2,000 32,041,995 23,999 9,190 – – – 12,004 1,304 164

3,000 72,062,995 35,999 22,041 – – – 18,004 2,355 235

4,000 – – – – – – 24,004 3,848 313

5,000 – – – – – – 30,004 5,559 399
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Table 14. Hidden Markov Models for smoothing-marginalQuery

Roulette Dice (2025) Dice (2020) DP

Steps Ops Size Time (ms) Ops Size Time (ms) Size Time (ms) Time (ms)

1 16 7 0 360 8 1,274 8 463 0

100 80,503 403 29 172,520 404 1,314 404 475 16

500 2,002,503 2,003 525 3,663,322 2,004 2,180 2,004 528 44

1,000 8,005,003 4,003 2,198 14,327,616 4,004 4,773 4,004 677 80

2,000 32,010,003 8,003 9,446 – – – 8,004 1,217 165

3,000 72,015,003 12,003 21,331 – – – 12,004 2,351 243

4,000 – – – – – – 16,004 3,675 317

5,000 – – – – – – 20,004 5,760 394

Table 15. Hidden Markov Models for filtering-jointQuery

Roulette Dice (2025) Dice (2020) DP

Steps Ops Size Time (ms) Ops Size Time (ms) Size Time (ms) Time (ms)

1 23 9 0 368 9 1,269 9 459 0

100 96,745 999 34 186,362 554 1,311 554 478 19

500 2,383,745 4,999 581 3,982,564 2,754 2,198 2,754 549 60

1,000 9,517,495 9,999 2,465 15,591,108 5,504 5,075 5,504 712 113

2,000 38,034,995 19,999 10,911 – – – 11,004 1,651 237

3,000 85,552,495 29,999 25,219 – – – 16,504 3,112 342

4,000 – – – – – – 22,004 5,251 475

5,000 – – – – – – 27,504 8,107 580

Table 16. Hidden Markov Models for smoothing-jointQuery

Roulette Dice (2025) Dice (2020) DP

Steps Ops Size Time (ms) Ops Size Time (ms) Size Time (ms) Time (ms)

1 10 5 0 354 7 1,289 7 457 0

100 85,742 597 30 175,456 453 1,336 453 476 17

500 2,128,742 2,997 547 3,728,058 2,253 2,159 2,253 551 51

1,000 8,507,492 5,997 2,295 14,582,102 4,503 4,751 4,503 736 94

2,000 34,014,992 11,997 9,641 – – – 9,003 1,606 199

3,000 76,522,492 17,997 23,391 – – – 13,503 3,234 288

4,000 – – – – – – 18,003 5,676 392

5,000 – – – – – – 22,503 8,796 491

D.5 Bayesian Networks

Table 17. Bayesian Networks

Roulette Dice (2025) Dice (2020)

Benchmark Ops Size Time (ms) Ops Size Time (ms) Size Time (ms)

cancer 43 13 2 149 15 49 28 19

survey 256 46 4 708 48 29 73 18

alarm 5,007 981 42 1,496,332 672 308 1,366 30

insurance 1,855,308 75,594 395 2,056,519 44,846 643 101,047 148

hepar2 77,362 1,967 140 380,225 1,969 230 3,936 32

hailfinder 2,877,324 33,211 596 – – – 65,386 428

pigs 106 19 255 822,635 25 417 35 48

water 188,397 39,146 200 584,307 33,226 454 51,952 16,083

munin 193,689 10,307 2,400 337,439,533 3,704 24,839 11,977 1,605
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E Diamond TwoWays
This section shows two different ways in which the diamond network from our network reliability

example in Section 2.1 can be implemented.

The following code realizes the diamond network with linear scaling, using a non-tail recursive

function to perform every flip and then perform Boolean operations back to front:

(define (main n)
(let go ([n n])
(cond
[(zero? n) #t]
[else
(define drop (flip 0.0001))
(define route (flip 0.5))
(define s1 (go (sub1 n)))
(define s2 (if route s1 #f))
(define s3 (if route #f s1))
(or s2 (and s3 (not drop)))])))

The following code realizes the diamond network with quadratic scaling, using a tail-recursive

function:

(define (main n)
(let go ([n n] [s1 #t])
(cond
[(zero? n) s1]
[else
(define drop (flip 0.0001))
(define route (flip 0.5))
(define s2 (if route s1 #f))
(define s3 (if route #f s1))
(go (sub1 n) (or s2 (and s3 (not drop))))])))
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