
Faster, Simpler Red-Black Trees

Cameron Moy

PLT, Northeastern University, Boston MA 02115, USA
camoy@ccs.neu.edu

Abstract. For more than two decades, functional programmers have
refined the persistent red-black tree—a data structure of unrivaled ele-
gance. This paper presents another step in its evolution. Using a monad
to communicate balancing information yields a fast insertion procedure,
without sacrificing clarity. Employing the same monad plus a new decom-
position simplifies the deletion procedure, without sacrificing efficiency.

Keywords: Algorithms · Data Structures · Trees

1 A Quick Recap

A red-black tree is a self-balancing binary search tree [3, 8]. Insertion and deletion
operations rebalance the tree so it never becomes too lopsided. To this end, every
node carries an extra bit that “colors” it either red or black. In Haskell [12]:

data Color = Red | Black
data Tree a = E | N Color (Tree a) a (Tree a)

For convenience, nodes of each color can be constructed and matched using the
pattern synonym extension of the Glasgow Haskell Compiler:

pattern R a x b = N Red a x b
pattern B a x b = N Black a x b

Insertion and deletion use chromatic information to maintain two invariants:

1. The red-child invariant states that a red node may not have a red child.
2. The black-height invariant states that the number of black nodes along

all paths through the tree—the black height—is the same.

These two properties imply that the tree is roughly balanced. Naively inserting
or deleting nodes from the tree may violate these invariants. Hence, the challenge
of implementing red-black trees is to repair the invariants during a modification.

This paper improves on existing work with four contributions: (1) a faster way
to implement insertion by avoiding redundant pattern matching; (2) a simpler
way to implement deletion by employing two new auxiliary operations; (3) a
monad instance that communicates information across recursive calls; (4) an
evaluation that compares the performance of several red-black tree implemen-
tations. The algorithms are presented in Haskell since it provides a convenient
notation for monads, but the approach is not language specific. Appendix A
provides a Racket version.

2 Cameron Moy

2 Insertion à la Okasaki

Recall the insertion algorithm of Okasaki [11]. For an ordinary binary search
tree, insertion traverses the tree and replaces a leaf with the desired value. For a
red-black tree, insertion’s first step is the same, with the new node colored red:1

y

Doing so does not introduce a black-height violation but it may introduce a
red-child violation if the leaf’s parent happens to be red. A balance function
resolves such red-child violations. A violation can only come in one of four shapes

z

y

x

a b

c

d

z

x

a
y

b c

d

x

a
z

y

b c

d

x

a
y

b
z

c d

and balance fixes the violation by transforming each into:

y

x

a b

z

c d

Realizing this diagram as code is a straightforward, if tedious, exercise:

-- Pre: Child may have a red-child violation.
-- Post: Satisfies the red-child invariant;
-- bh(out) = bh(in).2

balance :: Tree a -> Tree a
balance (B (R (R a x b) y c) z d) = R (B a x b) y (B c z d)
balance (B (R a x (R b y c)) z d) = R (B a x b) y (B c z d)
balance (B a x (R (R b y c) z d)) = R (B a x b) y (B c z d)
balance (B a x (R b y (R c z d))) = R (B a x b) y (B c z d)
balance s = s

Since balance can turn a black node into a red node, this may induce a
red-child violation one level up the tree. Thus, insert must balance at every
level. This process “bubbles” violations up the tree. At the end, insert blackens
the root to resolve the last possible violation:

1 The diagrams use the letters x, y, z for values; the letters a, b, c, d for subtrees; and
• for the empty tree.

2 Where bh computes the black height of a tree.

Faster, Simpler Red-Black Trees 3

insert :: Ord a => a -> Tree a -> Tree a
insert x s = (blacken . ins) s

where ins E = R E x E
ins (N k a y b)

| x < y = balance (N k (ins a) y b)
| x == y = N k a y b
| x > y = balance (N k a y (ins b))

blacken :: Tree a -> Tree a
blacken (N _ a y b) = B a y b
blacken s = s

3 Insertion, Faster

The balance operation is applied at every level of a tree during insertion. Each
time, balance pattern matches four specific shapes. Often, however, this pattern
matching is unnecessary.

Suppose balance returns a black node. No more red-child violations can
occur further up the tree, since the rest of the tree satisfies the red-child invariant.
In other words, when balance produces a black node, the “bubbling” stops. No
more work needs to be done and every subsequent balance is redundant.

For a mutable data structure, a break statement could eliminate the ex-
tra work. For an immutable data structure, a different solution is needed. An
additional data type3 makes short circuiting future operations possible:

type Result a = Result' a a
data Result' a b = D a | T b

A Result contains a tree where either the work is done, constructed with D, or
there is more to do, constructed with T. Trees marked with D do not violate the
red-child invariant, while trees marked with T may. Trees marked with D can pass
forward unaffected, while trees marked with T must be fixed by calling balance.

A Monad instance for Result makes this use case easy to express. A tree
where more work needs to be done is given to a function f, while a tree that is
done propagates:

instance Monad (Result' a) where
return x = T x
(D x) >>= f = D x
(T x) >>= f = f x

Two functions on Result values prove useful too. The fromResult function
extracts trees from a Result

fromResult (D x) = x
fromResult (T x) = x

3 This type is the same as Either, but with more convenient constructors.

4 Cameron Moy

and <$$> applies a function to the contents of both T and D values4

f <$$> (D x) = D (f x)
f <$$> (T x) = T (f x)

Equipped with Result, suspended calls to balance further up a tree can be
bypassed by wrapping a subtree in D. As mentioned before, it is safe to do so
whenever balance produces a black node. Here is the new balance function:

balance :: Tree a -> Result (Tree a)
balance (B (R (R a x b) y c) z d) = T (R (B a x b) y (B c z d))
balance (B (R a x (R b y c)) z d) = T (R (B a x b) y (B c z d))
balance (B a x (R (R b y c) z d)) = T (R (B a x b) y (B c z d))
balance (B a x (R b y (R c z d))) = T (R (B a x b) y (B c z d))
balance (B a x b) = D (B a x b)
balance (R a x b) = T (R a x b)

Now that balance returns a Result value, insert must handle it. The
essence of the function, however, remains the same:

insert :: Ord a => a -> Tree a -> Tree a
insert x s = (blacken . fromResult . ins) s

where ins E = T (R E x E)
ins (N k a y b)

| x < y = balance =<< (\a -> N k a y b) <$$> ins a
| x == y = D (N k a y b)
| x > y = balance =<< (\b -> N k a y b) <$$> ins b

Using this approach, insertion can be up to 1.56× faster than the original one.

4 Deletion, Simpler

As with insert, the delete function is similar to ordinary deletion on a binary
search tree. For an internal node, delete replaces the target node with its in-
order successor. Only the base cases, where no in-order successor exists, are
interesting. The following diagram shows all three:

y
✔ y

x

✔
x y

✘

Deleting a red node does not introduce a black-height violation, but deleting
a black node might if its left child is empty; an empty left child provides no
opportunity to maintain the black height. In other words, the subtree becomes
short with respect to black height.
4 Note that <$$> is not fmap. The functor instance implied by the monad applies a

function only to T values.

Faster, Simpler Red-Black Trees 5

Two auxiliary functions are needed to repair short subtrees: balance' and
eq. Like balance, the balance' function resolves red-child violations. Unlike
balance, it simultaneously increases a tree’s black height. The eq function takes
a tree where one child is short and equalizes the children’s black heights. Both
auxiliary functions use Result to communicate shortness information. Here,
Result has a slightly different interpretation than Result for insert.

Recall that insert always adds a red node, possibly causing a red-child vi-
olation. Subtrees are wrapped in T if there might be a violation and D if there
is not. In contrast, the final base case for delete always causes a black-height
violation. Thus, a subtree is wrapped in T if it is definitely short and D otherwise.

4.1 balance'

The purpose of balance' is to resolve red-child violations and, if possible, in-
crease the black height by one. To accomplish this, the function acts like balance,
except the root color is preserved. So the following four shapes5

z

y

x

a b

c

d

z

x

a
y

b c

d

x

a
z

y

b c

d

x

a
y

b
z

c d

are transformed into

y

x

a b

z

c d

Whether the root is black or red, all red-child violations are resolved and the
black height is increased by one. If none of the four shapes match, then the tree
is blackened. Differences compared to balance are highlighted:

-- Pre: Root or child may have a red-child violation.
-- Post: Satisfies the red-child invariant;
-- bh(out) = bh(in) + 1 or bh(out) = bh(in).
balance' :: Tree a -> Result (Tree a)
balance' (N k (R (R a x b) y c) z d) = D (N k (B a x b) y (B c z d))
balance' (N k (R a x (R b y c)) z d) = D (N k (B a x b) y (B c z d))
balance' (N k a x (R (R b y c) z d)) = D (N k (B a x b) y (B c z d))
balance' (N k a x (R b y (R c z d))) = D (N k (B a x b) y (B c z d))
balance' s = blacken' s

blacken' :: Tree a -> Result (Tree a)
blacken' (R a y b) = D (B a y b)
blacken' s = T s

5 The half-colored nodes indicate that the color could be either red or black.

6 Cameron Moy

Three facts are worth noting. First, not only can balance' resolve trees with
two red nodes in a row, but also trees where there are three red nodes in a row.
Second, balance' never induces a red-child violation further up the tree because
it never turns a black node into a red node. Finally, when provided a red node,
balance' always returns a D result.

4.2 eq

Just as insert needs balance, delete needs a function that can repair the black-
height invariant at every level of the tree. That is the purpose of eq. Although
it is possible to define a single function to get the job done, it is convenient to
split the function in two: eqL and eqR.6

Given a short left (right) child, eqL (eqR) returns a tree where the black
heights of the children are equal. If the function can raise the black height of the
left (right) child, it does so. If it cannot, it lowers the black height of the sibling
and bubbles the violation up.

Consider eqL, where the left child, labeled a, is short. There are two cases
to consider: when its sibling is black and when its sibling is red. Here is the first
case, where the sibling is black and the root is any color:7

x

a
y

b c

x

a
y

b c

balance'

To equalize the black heights, eqL reduces the black height of the right child
by reddening it. Now the whole tree is short. Not only that, but this can introduce
red-child violations. If b is red, there may even be three red nodes in a row. The
balance' function is designed to handle all of these issues simultaneously:

-- Pre: bh(left) = bh(right) - 1.
-- Post: bh(left) = bh(right).
eqL :: Tree a -> Result (Tree a)
eqL (N k a x (B b y c)) = balance' (N k a x (R b y c))

-- Pre: bh(right) = bh(left) - 1.
-- Post: bh(right) = bh(left).
eqR :: Tree a -> Result (Tree a)
eqR (N k (B a x b) y c) = balance' (N k (R a x b) y c)

Next, consider the case where the sibling is red. Here, eqL applies a rotation
that does not affect any black heights and calls itself recursively on the left child:
6 Some split balance into balanceL and balanceR [10, exercise 3.10]. For balance,

splitting is done for performance rather than convenience.
7 The dotted triangle encloses the tree that balance' is applied to.

Faster, Simpler Red-Black Trees 7

x

a
y

b c

y

x

a b

eqL
c

After the rotation, a is still short and the other subtrees are unchanged. However,
as noted before, balance' resolves a black-height violation when called on a red
node. Thus, it is guaranteed that the recursive call to eqL successfully increases
the black height of a, yielding a valid red-black tree:

eqL (N k a x (R b y c)) = (\a -> B a y c) <$$> eqL (R a x b)
eqR (N k (R a x b) y c) = (\b -> B a x b) <$$> eqR (R b y c)

4.3 Putting it Together

Here is the rest of the code, which composes the presented functions into a
complete algorithm:

delete :: Ord a => a -> Tree a -> Tree a
delete x s = (fromResult . del) s

where del E = D E
del (N k a y b)

| x < y = eqL =<< (\a -> N k a y b) <$$> del a
| x == y = delCur (N k a y b)
| x > y = eqR =<< (\b -> N k a y b) <$$> del b

delCur :: Tree a -> Result (Tree a)
delCur (R a y E) = D a
delCur (B a y E) = blacken' a
delCur (N k a y b) = eqR =<< (\b -> N k a min b) <$$> b'

where (b', min) = delMin b

delMin :: Tree a -> (Result (Tree a), a)
delMin (R E y b) = (D b, y)
delMin (B E y b) = (blacken' b, y)
delMin (N k a y b) = (eqL =<< (\a -> N k a y b) <$$> a', min)

where (a', min) = delMin a

5 Performance Evaluation

Using monads to communicate balancing information yields a unified and ele-
gant presentation of both insertion and deletion; critically though, these variants
perform as well as or better than existing algorithms. The next two pages sum-
marize a performance evaluation for several functional red-black tree algorithms.
Figure 1 and Table 1 present the data for insertion. Figure 2 and Table 2 present
the data for deletion.

8 Cameron Moy

M
ea

n
 C

P
U

 T
im

e
(s

)

AscendingAscendingAscendingAscendingAscendingAscendingAscendingAscendingAscending

2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷ 2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸ 2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹ 2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰

111111111

222222222

333333333

444444444

Tree Size

M
ea

n
 C

P
U

 T
im

e
(s

)

RandomRandomRandomRandomRandomRandomRandomRandomRandom

2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷ 2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸ 2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹ 2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰

2.52.52.52.52.52.52.52.52.5

555555555

7.57.57.57.57.57.57.57.57.5

101010101010101010

Tree Size

M
ea

n
 G

C
 T

im
e

(s
)

AscendingAscendingAscendingAscendingAscendingAscendingAscendingAscendingAscending

2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷ 2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸ 2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹ 2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

Tree Size

M
ea

n
 G

C
 T

im
e

(s
)

RandomRandomRandomRandomRandomRandomRandomRandomRandom

2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷ 2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸ 2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹ 2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰

111111111

222222222

333333333

444444444

555555555

Tree Size

Fig. 1: Insertion Line Plots

Benchmark Algorithm CPU (s) GC (s) Memory (MB)

ascending (220) Monadic 2.68± 0.01 0.79± 0.01 7807± 1

Okasaki 4.19± 0.01 0.82± 0.01 7810± 1

random (220) Monadic 10± 0.07 5.21± 0.03 5619± 7

Okasaki 11.43± 0.1 5.22± 0.05 5622± 8

suffixtree Monadic 4.99± 0.05 0.33± 0.01 2720± 1

Okasaki 5.35± 0.03 0.33± 0.01 2720± 1

Table 1: Insertion Measurements (Mean ± Standard Deviation)

Faster, Simpler Red-Black Trees 9

M
ea

n
 C

P
U

 T
im

e
(s

)

AscendingAscendingAscendingAscendingAscendingAscendingAscendingAscendingAscending

2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷ 2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸ 2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹ 2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰

.5.5.5.5.5.5.5.5.5

111111111

1.51.51.51.51.51.51.51.51.5

222222222

Tree Size

M
ea

n
 C

P
U

 T
im

e
(s

)

RandomRandomRandomRandomRandomRandomRandomRandomRandom

2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷ 2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸ 2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹ 2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰

2.52.52.52.52.52.52.52.52.5

555555555

7.57.57.57.57.57.57.57.57.5

101010101010101010

12.512.512.512.512.512.512.512.512.5

Tree Size

M
ea

n
 G

C
 T

im
e

(s
)

AscendingAscendingAscendingAscendingAscendingAscendingAscendingAscendingAscending

2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷ 2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸ 2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹ 2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰

.04.04.04.04.04.04.04.04.04

.06.06.06.06.06.06.06.06.06

.08.08.08.08.08.08.08.08.08

.1.1.1.1.1.1.1.1.1

Tree Size

M
ea

n
 G

C
 T

im
e

(s
)

RandomRandomRandomRandomRandomRandomRandomRandomRandom

2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷2¹⁷ 2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸2¹⁸ 2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹2¹⁹ 2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰2²⁰

111111111

222222222

333333333

444444444

555555555

Tree Size

Fig. 2: Deletion Line Plots

Benchmark Algorithm CPU (s) GC (s) Memory (MB)

ascending (220) Monadic 1.32± 0.01 0.1± 0 4685± 34

Kahrs 1.75± 0.02 0.11± 0 7324± 58

Germane-Might 2.36± 0.03 0.1± 0 5377± 64

Filliâtre-Letouzey 1.41± 0.01 0.1± 0 4918± 33

random (220) Monadic 9.88± 0.11 4.38± 0.03 5376± 15

Kahrs 12.93± 0.13 5.96± 0.03 8635± 32

Germane-Might 11.56± 0.13 4.39± 0.04 5301± 11

Filliâtre-Letouzey 9.9± 0.1 4.41± 0.02 5328± 11

Table 2: Deletion Measurements (Mean ± Standard Deviation)

10 Cameron Moy

These measurements were collected on a Linux machine running an Intel
Xeon E3 processor at 3.10 GHz with 32 GB of RAM. Since the different algo-
rithms were originally implemented in different languages, they were all ported
to Racket [5] and run with Racket 8.7 CS. Racket is a strict language, so the
performance characteristics should generalize better than that of a lazy language
like Haskell. Every sample ran the entire sequence of operations 5 times and 100
such samples were collected for each configuration.

A configuration consists of a specific choice for input size, input order, and
algorithm. For a given size n, the input values are the first n natural numbers,
ordered in two different ways: ascending and random. The random order is a
random permutation of the input data.

To test insertion and deletion, each red-black tree algorithm was used to
implement sets. Insertion was tested by adding all the input values to an empty
set. Deletion was tested by removing all the input values from a set containing
them already.

As an additional benchmark for insertion, the suffixtree program from the
gradual typing benchmark suite [7] was adapted to use red-black trees instead of
hash tables. This program uses Ukkonen’s algorithm to calculate the suffix tree
of a text—in this case T.S. Eliot’s “Prufrock.”

The line plots in Figure 1 and Figure 2 show mean execution time, both
total execution time including garbage collection (GC) and just GC time, across
several tree sizes. Note that the plots are log scale. Table 1 and Table 2 give
the mean and standard deviation of total execution time, GC time, and memory
consumption for the same benchmarks.

Monadic insertion is about 1.14× faster than Okasaki’s original [11] when
inserting 220 elements in a random order. When the input sequence is in ascend-
ing order, this improvement increases to about 1.56× faster. On the suffixtree
benchmark it is 1.07× faster, demonstrating that the optimization has a mea-
surable impact on the end-to-end performance of a real-world program.

Monadic deletion performs the same, or a tad better, than the algorithm
of Filliâtre and Letouzey [4], currently the best known approach. On a ran-
domly distributed deletion sequence, their performance exactly coincides. The
monadic approach is significantly faster than that of Kahrs [9] and Germane
and Might [6]. This evaluation demonstrates that the simplicity of the monadic
deletion algorithm does not come at the cost of performance.

6 Related Work

Okasaki [11] gave a beautiful account of insertion, but omitted any discussion of
deletion. Deletion is more difficult than insertion because black-height invariance
is a global property; whether a subtree violates the black-height invariant can be
determined only through inspection of the entire tree. To avoid this, a subtree
must somehow indicate that its black height is too small—that it is short. Every
paper on red-black trees does this differently.

Faster, Simpler Red-Black Trees 11

Filliâtre and Letouzey [4] develop an implementation where shortness is han-
dled in an ad-hoc way using a threaded Boolean. Germane and Might [6] use
a “double-black” color to serve the same function. The Result monad has the
same purpose, but eliminates the manual bookkeeping necessary in both of them.
Kahrs [9] describes a significantly different approach; it maintains an additional
invariant during the deletion process: black nodes are always short and red nodes
are never short. Thus, the information is communicated implicitly rather than
explicitly.

The deletion algorithm presented here is substantially simpler to understand
than prior work for two reasons. First, all prior algorithms have three cases for
eq instead of just two. By factoring out balance', two special cases collapse
into one. Second, all prior algorithms require contortions to deal with the red
sibling case. Specifically, each uses a three-level pattern match combined with
a nested balance operation. The eq function presented here uses a two-level
pattern match and recursion instead.

Germane and Might report that their double-black algorithm has poor per-
formance—substantially worse than the one given by Kahrs. However, their eval-
uation is fatally flawed; it measures a version of the double-black algorithm with
a suboptimal order of conditional branches. Reordering these branches improves
performance. Section 5 evaluates a corrected variant of Germane and Might’s
code. See Appendix B for an explanation of this modification.

A related line of work focuses on proving the correctness of red-black tree
algorithms using proof assistants [1, 4] and GADTs [9, 13]. These techniques
should easily be applicable to this paper, and doing so is left as an exercise to
the reader.

7 Conclusion

Given the beauty of red-black tree insertion, the absence of a deletion algo-
rithm that is simultaneously efficient and simple has been unfortunate. Using the
Result monad yields an algorithm that, along with balance' and eq, achieves
both goals. The same monadic style can be applied to insertion, yielding a faster
algorithm, without compromising simplicity.

Acknowledgements. Thanks to Matthias Felleisen for his feedback and en-
couragement. Also, thanks to Ben Lerner, Ben Sidhom, Jason Hemann, Leif
Andersen, Michael Ballantyne, Mitch Gamburg, Sam Caldwell, audience mem-
bers at TFP, and anonymous TFP reviewers for providing valuable comments
that significantly improved the exposition.

Much of the code in this paper was directly adapted or at least heavily
influenced by the code of Okasaki [11] (for insertion) and Germane and Might [6]
(for deletion). They deserve a great deal of credit for the final product.

This work was partially supported by NSF grant SHF 2116372.

Bibliography

[1] Appel, A.: Efficient verified red-black trees. https://www.cs.princeton.
edu/~appel/papers/redblack.pdf (2011)

[2] Ashley, J.M., Dybvig, R.K.: An efficient implementation of multiple return
values in scheme. LISP and Functional Programming (LFP) (1994). https:
//doi.org/10.1145/182590.156784

[3] Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms.
MIT Press (2009)

[4] Filliâtre, J.C., Letouzey, P.: Functors for proofs and programs. In: European
Symposium on Programming (ESOP) (2004). https://doi.org/10.1007/
978-3-540-24725-8_26

[5] Flatt, M., PLT: Reference: Racket. Tech. Rep. PLT-TR-2010-1, PLT Design
Inc. (2010), https://racket-lang.org/tr1/

[6] Germane, K., Might, M.: Deletion: The curse of the red-black tree. Jour-
nal of Functional Programming (JFP) (2014). https://doi.org/10.1017/
S0956796814000227

[7] Greenman, B., Takikawa, A., New, M.S., Feltey, D., Findler, R.B., Vitek, J.,
Felleisen, M.: How to evaluate the performance of gradual typing systems.
Journal of Functional Programming (JFP) (2019). https://doi.org/10.
1017/S0956796818000217

[8] Guibas, L., Sedgewick, R.: A dichromatic framework for balanced trees.
In: IEEE Symposium on Foundations of Computer Science (1978). https:
//doi.org/10.1109/SFCS.1978.3

[9] Kahrs, S.: Red-black trees with types. Journal of Functional Programming
(JFP) (2001). https://doi.org/10.1017/S0956796801004026

[10] Okasaki, C.: Purely Functional Data Structures. Cambridge University
Press (1999)

[11] Okasaki, C.: Red-black trees in a functional setting. Journal of
Functional Programming (JFP) (1999). https://doi.org/10.1017/
S0956796899003494

[12] Peyton Jones, S.: Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press (2003)

[13] Weirich, S.: Red black trees (redux). https://www.seas.upenn.edu/
~cis5520/21fa/lectures/stub/06-GADTs/RedBlackGADT0.html (2021)

https://www.cs.princeton.edu/~appel/papers/redblack.pdf
https://www.cs.princeton.edu/~appel/papers/redblack.pdf
https://doi.org/10.1145/182590.156784
https://doi.org/10.1145/182590.156784
https://doi.org/10.1145/182590.156784
https://doi.org/10.1145/182590.156784
https://doi.org/10.1007/978-3-540-24725-8_26
https://doi.org/10.1007/978-3-540-24725-8_26
https://doi.org/10.1007/978-3-540-24725-8_26
https://doi.org/10.1007/978-3-540-24725-8_26
https://racket-lang.org/tr1/
https://doi.org/10.1017/S0956796814000227
https://doi.org/10.1017/S0956796814000227
https://doi.org/10.1017/S0956796814000227
https://doi.org/10.1017/S0956796814000227
https://doi.org/10.1017/S0956796818000217
https://doi.org/10.1017/S0956796818000217
https://doi.org/10.1017/S0956796818000217
https://doi.org/10.1017/S0956796818000217
https://doi.org/10.1109/SFCS.1978.3
https://doi.org/10.1109/SFCS.1978.3
https://doi.org/10.1109/SFCS.1978.3
https://doi.org/10.1109/SFCS.1978.3
https://doi.org/10.1017/S0956796801004026
https://doi.org/10.1017/S0956796801004026
https://doi.org/10.1017/S0956796899003494
https://doi.org/10.1017/S0956796899003494
https://doi.org/10.1017/S0956796899003494
https://doi.org/10.1017/S0956796899003494
https://www.seas.upenn.edu/~cis5520/21fa/lectures/stub/06-GADTs/RedBlackGADT0.html
https://www.seas.upenn.edu/~cis5520/21fa/lectures/stub/06-GADTs/RedBlackGADT0.html

Faster, Simpler Red-Black Trees 13

A Racket Implementation

This section shows a Racket port of the Haskell code. Monads can be imple-
mented in many ways, but the following code uses macros and multiple return
values [2] to do so. This choice yields excellent performance.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; insert

(define (insert t x)
(define (ins t)

(match t
[(E) (todo (R (E) x (E)))]
[(N k a y b)
(cond

[(< x y) (=<< balance (<$$> (λ (a) (N k a y b)) (ins a)))]
[(> x y) (=<< balance (<$$> (λ (b) (N k a y b)) (ins b)))]
[else (done t)])]))

(blacken (from-result (ins t))))

(define (balance t)
(match t

[(or (B (R a x (R b y c)) z d)
(B (R (R a x b) y c) z d)
(B a x (R (R b y c) z d))
(B a x (R b y (R c z d))))

(todo (R (B a x b) y (B c z d)))]
[(B _ _ _) (done t)]
[_ (todo t)]))

(define (blacken t)
(match t

[(R a x b) (B a x b)]
[_ t]))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; delete

(define (delete t x)
(define (del t)

(match-define (N k a y b) t)
(cond

[(< x y) (=<< del-left (<$$> (λ (a) (N k a y b)) (del a)))]
[(> x y) (=<< del-right (<$$> (λ (b) (N k a y b)) (del b)))]
[else (del-root t)]))

(from-result (del t)))

14 Cameron Moy

(define (del-root t)
(match t

[(B a y (E)) (blacken* a)]
[(R a y (E)) (done a)]
[(N k a y b)
(define m (box false))
(=<< del-right (<$$> (λ (b) (N k a (unbox m) b)) (del-min b m)))]))

(define (del-min t m)
(match t

[(B (E) y b) (set-box! m y) (blacken* b)]
[(R (E) y b) (set-box! m y) (done b)]
[(N k a y b)
(=<< del-left (<$$> (λ (a) (N k a y b)) (del-min a m)))]))

(define (del-left t)
(match t

[(N k a y (R c z d))
(<$$> (λ (a) (B a z d)) (del-left (R a y c)))]

[(N k a y (B c z d))
(balance* (N k a y (R c z d)))]))

(define (del-right t)
(match t

[(N k (R a x b) y c)
(<$$> (λ (b) (B a x b)) (del-right (R b y c)))]

[(N k (B a x b) y c)
(balance* (N k (R a x b) y c))]))

(define (balance* t)
(match t

[(or (N k (R a x (R b y c)) z d)
(N k (R (R a x b) y c) z d)
(N k a x (R (R b y c) z d))
(N k a x (R b y (R c z d))))

(done (N k (B a x b) y (B c z d)))]
[_ (blacken* t)]))

(define (blacken* t)
(match t

[(R a x b) (done (B a x b))]
[_ (todo t)]))

Faster, Simpler Red-Black Trees 15

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; monad

(define-syntax-rule (todo x)
(values true x))

(define-syntax-rule (done x)
(values false x))

(define-syntax-rule (from-result x)
(let-values ([(_ y) x])

y))

(define-syntax-rule (<$$> f x)
(let-values ([(a d) x])

(values a (f d))))

(define-syntax-rule (=<< f x)
(let-values ([(ax dx) x])

(if ax (f dx) (values ax dx))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; data

(struct E ())
(struct N (color left value right))

(define-syntax-rule (define-color name)
(begin

(define-for-syntax (transf stx)
(syntax-case stx ()

[(_ a x b) #'(N 'name a x b)]))
(define-match-expander name transf transf)))

(define-color R)
(define-color B)

16 Cameron Moy

B Performance Evaluation Correction

Germane and Might [6] incorrectly conclude that their algorithm is always sig-
nificantly slower than other approaches. This conclusion is due to a subtle con-
founding factor that put their algorithm at an unfair disadvantage.

To understand the flaw, consider this skeleton of their delete function:

delete :: Ord a => a -> Tree a -> Tree a
delete x s = del (redden s)

where del E = E
del (R E y E)

| x == y = ...
| x /= y = ...

del (B E y E)
| x == y = ...
| x /= y = ...

del (B (R E y E) z E)
| x < z = ...
| x == z = ...
| x > z = ...

del (N k a y b)
| x < y = ...
| x == y = ...
| x > y = ...

It highlights the two most common cases during deletion, when the current node
does not match the target and the function recurs on either the left or right side.
However, the structure of the code forces each of the base cases to be checked
first—before the most common cases.

To favor the common cases, the skeleton should look as follows:

delete :: Ord a => a -> Tree a -> Tree a
delete x s = del (redden s)

where del E = E
del (N k a y b)

| x < y = ...
| x == y =

case s of
R E y E -> ...
B E y E -> ...
B (R E y E) z E -> ...

| x > y = ...

The base cases are only checked at the target node. This simple modification
improves the performance of the double-black algorithm by 2×.

	Faster, Simpler Red-Black Trees

