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A course on software specification deserves a prominent place in the undergraduate curriculum. This report
describes our experience teaching a first-year course that places software specification front and center. In
support of the course, we created a pedagogic programming language with a focus on contracts and property-
based testing. Assignments draw on real-world programs, from a variety of domains, that are intended to show
how formal specification can increase confidence in the correctness of code. Interviews with students suggest
that this approach successfully conveys how formal specification is relevant to software construction.
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1 Specifying Software is a Skill
Software correctness is well-recognized as essential in many fields. Both programming languages
and formal methods practitioners have explored ways of teaching it for decades. Showing that
software is correct can be split into two activities: specification and verification. Specification for-
mally characterizes (some aspect of) the intended behavior of software, whereas verification shows,
using various methods, that software conforms to its specification.

While these two may seem equally important, in practice, time spent articulating a specifica-
tion is often dwarfed by time spent working on verification. This imbalance can also be present
in the classroom. If theorems are written by instructors, then students get little to no practice
writing specifications themselves. If the theorems are relatively simple, then the complexity of the
programs students reason about might never exceed single-digit line counts.

Confronted with this reality in our own proof-heavy course, we decided to turn the class on
its head: rather than thinking of specifications as instructor-written problems that students solve
by carrying out proofs, we made specification the primary activity, avoiding most work on proofs.
Indeed, while writing correct software requires both specification and verification, arguably it is
specification that is more critical.Without a specification, any proof, successful or not, is worthless.

Software specification is also a broadly applicable skill. Even projects that are never subject
to formal verification can benefit from clear descriptions of functional correctness, security prop-
erties, or other behavioral invariants. For this reason, specification should be a core part of any
undergraduate curriculum, and it should come as early as in the first year.This is true of our course:
it is required of many students and is suggested to freshmen.

The redesigned course is based on two intertwined components. First, we employ run-time con-
tracts and property-based testing to capture sophisticated (type) invariants and logical properties.
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Contracts [15, 24] can express dependent-type invariants, introducing students to the power of this
type-based reasoning without any background on the complex topic of dependent type systems.
Property-based tests (PBT) [5] also provide a relatively low-barrier means of expressing complex
invariants about code. One way to understand our approach to PBT is that students practice writ-
ing theorems, but the proofs are deferred to the approximation produced by a PBT engine.

Second, we created a pedagogic functional language for the course, dubbed the Logical Student
Language (LSL), that includes not only constructs for contracts and property-based testing, but
also linguistic support for non-trivial programs. For example, one of our assignments has students
build an idealized memory allocator and write down memory-correctness properties, which re-
lies on state-of-the-art temporal contracts. Another assignment has them implement a distributed
snapshot algorithm and express snapshot consistency as property-based tests, which relies on
message-passing concurrency and an accompanying visualizer. Linguistic support allows such
problems to be tractable, even for students in their second semester of programming, as we elimi-
nate the incidental complexity that typically arises without full control over the language.

This paper contains background about our educational context, an outline of the revised course,
the design of LSL, some sample assignments, what students told us in comparison to another
iteration of the course taught using the Lean theorem prover [8], and how ideas from the course
can be adapted to other curricula.

2 Learning From Past Experiments
For the last two decades, our institution has had a course that aims to connect logical reasoning
with introductory programming courses. Historically, the course functioned as an introduction to
both specification and verification, first using the ACL2s theorem prover [9], and more recently
using the Lean theorem prover [8]. The only prerequisites for the course are a single semester of
programming and discrete mathematics; it was originally envisioned, and is still often realized, as
a second-semester freshman course.

Unfortunately, a phenomenon familiar to those teaching formal methods has stymied this effort:
time spent on verification far surpasses time spent on specification. In an educational context, this
results in the class being either too hard for students to learn, or structured such that the majority
of the semester is dedicated to proofs of relatively uninteresting theorems.

Originally, the course was taught using the custom language Dracula, which is a frontend to the
ACL2 theorem prover [10, 29]. This tool was used both for our class and for an upper-level course
on software engineering at another institution. While the goal was theorem proving, Dracula also
included a mechanism for property-based testing (called DoubleCheck). In a paper summarizing
the first few years of this experiment, Page et al. [29] report that only ten to twenty percent of
students ended up being able to use ACL2 via Dracula effectively. Interestingly, the authors also
report that DoubleCheck, their property-based testing framework, “helps students with one of
the trickiest task[s] of using logic in programming, namely, the transition from ideas to formal
statements” [29]. While the authors had plans, never fully realized, to improve Dracula to address
some issues, recent publications (e.g., a study by Juhošová et al. [20]) indicate that beginners still
face challenges using interactive theorem provers.

More recently, when the course has been taught using Lean, students learn to write proofs
about natural numbers and lists, but little more. Attempting to shift this balance seems impossible
as significant practice with basic theorems over simple inductive types is necessary to build the
skills needed to complete large proofs.

It is tempting to think automationmight help, but after the experiments with Dracula, the course
was taught for many years using ACL2s, which has world-class automation support. This does not
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seem to help. In particular, knowing how to drive sophisticated automatic provers, especially inter-
mediate lemma identification, may be a more advanced skill than constructing proofs manually—
even if the resulting proofs are much smaller.

While the intent of the classwas always to introduce students to formal reasoning about software,
perversely, students using Lean largely reported to us that the class had no bearing on software
development whatsoever (Section 7). A frank assessment of this decades-long experiment is that at
best students were introduced to the idea of mechanized proof, unconnected to the software work
they do in other courses or on internship, and at worst they learn a few details about an esoteric
tool they will never use again.

3 Overview of Our Course Redesign

“This course is about formal specification and how logic can be used to help reason
about software. Logic is presented from a computational perspective using property-
based testing, a technique available via libraries in nearly every programming lan-
guage.”

Review of Propositional Logic (Week 1). The course begins with a review of propositional logic,
but turned into computation: propositional formulae become boolean-valued functions, and truth
tables become exhaustive sets of unit tests.This exercise introduces students to the idea that logical
reasoning can be viewed as computation. Additionally, students see how translating formulae into
code, and truth tables into unit tests, can uncover mistakes just by running the tests.

Atomic Data (Weeks 2–3). The second unit explores the idea of specifications as code, but in the
setting of atomic data such as numbers, strings, etc. Students translate informal descriptions of
how functions should work into boolean expressions that relate inputs and outputs.

Increasing Complexity (Weeks 4–8). The third unit of the class explores both data and proper-
ties of increasing sophistication. Students deal with recursive data, higher-order functions, and
data abstraction via contracts. Additionally, this unit transitions the homework assignments from
introductory practice to somewhat complex projects (Section 5).

Advanced Topics (Weeks 9–12). The latter part of the semester covers mutation and aliasing,
which accompanies an assignment about building an idealized memory allocator (Section 5.3).
Pairing the lecture content, which presents aliasing puzzles, with a large project where aliasing is
a central theme, allows students to explore the concepts deeply even in a relatively short period
of time. Enforcing memory invariants serves to enrich the content and helps with debugging.

This unit of the course also introduces concurrency with a simple message-passing implemen-
tation and accompanying visual debugger, all built into LSL. Students first implement a warm-up
homework using message passing and, once graded, implement the Chandy–Lamport concurrent
snapshotting algorithm (Section 5.4). As with the memory allocator, the project is small enough
to be achievable, but complex enough that students realize that correctly implementing it is much
easier if they write down invariants and ensure they are being preserved as the code runs.

Special Topics (Weeks 13–14). The last two weeks are left for special topics. Typically this means
interactive theorem proving, though different instructors may choose different topics. The struc-
ture of our semester, and the placement of our last exam within the semester, means that this
content is not the subject to any assessment; it serves as bonus material for students who are in-
terested in further enrichment. We found that this is a nice place to introduce tools like Lean, as
students who are interested can learn about them, but the central learning outcomes of the course
are not impacted.
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Unit Tests

Property Tests

Verification

Fig. 1. Gradual Specification

4 The Logical Student Language
Creating a new programming language, especially a pedagogic one, is a substantial undertaking.
The effort is worthwhile if it reduces friction, as LSL does in twoways. First, LSL is a superset of the
pedagogic language used in the first-semester course on programming. Students enter our course
with a full semester of experience with its syntax and semantics and can immediately acquire
new skills without rehashing functional-programming basics. Second, LSL is integrated with the
DrRacket [14] pedagogic IDE—also the same one used in their first course. Thus, the workflow stu-
dents are already familiar with is completely unchanged. LSL also augments DrRacket to support
certain learning objectives. For example, it integrates with Tyche [17], an interface for inspecting
the quality of random generators, to help discover weak property-based tests.

4.1 LSL in a Nutshell
LSL is an extension of the Intermediate Student Language (ISL) from How to Design Programs
(HtDP), the textbook our students use in their introductory programming course [13]. ISL is a sim-
ple pedagogic functional programming language. Traditional introductions to programming teach
language features (e.g., variables, assignment, conditionals, loops) and leave program design as an
implicit skill to be acquired through practice. HtDP treats program design—the craft of construct-
ing correct and maintainable software—explicitly.The language becomes merely a vehicle through
which these universal skills are taught. As such, HtDP provides a sequence of increasingly sophis-
ticated pedagogic languages, including ISL, to maximize learning and minimize distractions [11].
For example, error messages are tailored to freshmen students by employing familiar terminology
instead of technical jargon [22].

LSL adds contracts and property-based testing to ISL, which enables the gradual approach to
specification shown in Figure 1. HtDP focuses on unit tests, or what amounts to pointwise speci-
fications. Such tests do not cover much of the input space, but are a necessary first step. Property-
based tests randomly generate inputs, enabling coverage of a greater amount of the input space.
Getting the properties and generators right can take some work, but yields tangible benefits.

Our preference for contracts over types is due to three unique features of contracts. First, con-
tracts consist of ordinary code and as such allow expressive specifications without the cognitive
overhead of a sophisticated type system. In class, students regularly write specifications that are
dependent, temporal, and intensional. Designing a type system to accommodate all of these proper-
ties, let alone one that is appropriate for beginners, is infeasible. Contracts allow students to freely
explore the space of possible specifications, building on their existing programming intuitions in-
stead of putting them aside. Second, contracts are a precise mechanism for enforcing properties.
To remain decidable, type systems, or any static technique, must approximate program behavior.
Since contracts monitor programs at run time, a violation guarantees that there is a true inconsis-
tency between the specification and a program execution. Third, and relatedly, contracts supply a
concrete counterexample when a program violates its specification. Each error message highlights
the violated contract and comes with a witness to the violation. Students can use this witness to
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debug their program or specification. In contrast, type systems supply error messages in terms of
failure to satisfy a particular syntactic discipline—easy for experienced programmers to resolve,
but less so for novices.

4.2 Basic Contracts in LSL
In HtDP, students follow the Design Recipe, a checklist that includes a step for writing a comment
above each function definition with its signature. Here is a representative example:
;; (List Integer) -> (List Natural)

(define (only-non-negative lon)

(filter (𝜆 (n) (or (zero? n) (positive? n))) lon))

Comments are inert, but their simplicity and flexibility are useful because students can write infor-
mal signatures that may be challenging to express formally (e.g., signatures with refinements or
untagged unions). These specifications are perfectly reasonable, even if they thwart conventional
type systems. Eventually, it becomes valuable to consider how to make such statements formal.
The same example can be realized in LSL with the following contract:
(: only-non-negative (-> (List Integer) (List Natural)))

(define (only-non-negative lon)

(filter (𝜆 (n) (or (zero? n) (positive? n))) lon))

The : annotation associates a contract with the given function name, monitoring the specification
at run time.These annotations mirror the signature conventions in HtDP, providing a smooth path
from informal prose to formal specifications.1 Violations of the contract raise an exception.

Without a program or test cases to exercise the functionality of only-non-negative, the contract
serves no purpose other than documentation. One way to test if the function satisfies the contract
is to use property-based testing. Every contract built into LSL, including higher-order ones, comes
with a generator and shrinker [21]. Thus, students are able to run property-based tests for their
specifications with a single line: (check-contract only-non-negative).

The check-contract form generates random lists of integers based on the domain contract
for the given function, calls the function repeatedly with these arguments, and ensures that the
codomain contract holds. Close integration between the contract system and random-generation
capabilities makes PBT convenient to use for first-year students.

If a property-based test encounters an inconsistency, it reports a concrete, shrunk counterexam-
ple as an error message:
discovered a counterexample

counterexample: (only-non-negative (list -1))

error:

only-non-negative: contract violation

expected: Natural

given: -1

blaming: anonymous-module (as server)

Following DrRacket’s printing conventions, the counterexample can be copy-and-pasted into the
REPL to reproduce the error. Note too that the error has blame information pointing to the party
that violated the contract [15]. The as server parenthetical indicates that the function itself vi-
olated the contract. If a caller of the function gave an invalid argument instead, then the error
would say as client. Additionally, DrRacket highlights the violated contract in the program’s
1Crestani and Sperber [7] explore similar ideas, although LSL is a much larger departure from the teaching languages than
the extensions described in their work.
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source. Tight cooperation between LSL and the DrRacket IDE permits affordances that are es-
pecially useful for freshmen students. Such affordances are one advantage specialized pedagogic
languages have over ordinary libraries.

Strengthening the signature of a function is one way to increase confidence in the correctness
of code. Here is a dependent function contract that ensures the longest-string function returns
a string whose length is greater than or equal to all others in the input list:
(define (longer-than-in? los)

(𝜆 (x) (andmap (𝜆 (s) (>= (string-length x) (string-length s))) los)))

(: longest-string

(Function (arguments [los (NEList String)])

(result (AllOf String (longer-than-in? los)))))

(define (longest-string los) elided )

This dependent function contract has two pieces: one constraining the argument and another con-
straining the return value. The argument is expected to be a non-empty list of strings and is bound
to the variable los for use in the result contract. The result is expected to be a string that satisfies
(longer-than-in? los), which ensures that the string is longer than any other in los.

A programmer can also define custom contracts, the most basic of which is an immediate (or
flat) contract [15]. An immediate is a first-order check: a predicate for determining whether values
satisfy the contract. Immediates stand in contrast to higher-order contracts, like function contracts,
that must interpose on all future interactions with a value. LSL comes with many built-in imme-
diates, and students can define their own:
(define-contract Even

(Immediate (check (𝜆 (x) (and (integer? x) (even? x))))

(generate (𝜆 (fuel) (* 2 (contract-generate Integer fuel))))

(shrink (𝜆 (x)

(let ([y (/ x 2)])

(if (even? y) y (sub1 y)))))))

This is a contract for even numbers that also includes a generator and shrinker for property-based
testing.The check clause contains themandatory predicate.The generate clause expects a function
that takes fuel, a natural number corresponding to how hard the generator should try to construct
a value, and returns a value that must satisfy the contract. This particular generator delegates to
the generator for Integer, via contract-generate, to return an even number. The shrink clause
takes a function that returns, if possible, a smaller value than the one given.

Contracts can also handle the kinds of data definitions seen in languages with algebraic data
types. Here is the definition of a binary tree parameterized by the type of element:
(define-struct leaf [value])

(define-struct node [left right])

(define-contract (Tree X)

(OneOf (Struct leaf [X]) (Struct node [(Tree X) (Tree X)])))

PBT works automatically: if X supports generation, so too will (Tree X).

4.3 Enforcing Data Abstraction
Data abstraction occurs when the implementation details of a particular data type are hidden from
some pieces of code but not others. Specifications about data abstraction fit well in our curriculum.
First, data abstraction is easily motivated as a desirable software-engineering principle. Robust
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system design relies on information hiding to decrease the coupling between components [30].
Second,most programming languages offer data abstractionmechanisms—whether through access
modifiers, existential types, or name mangling. Students should be familiar with the concept and
understand why it matters. Finally, data abstraction provides a nice on-ramp to properties that
are not just about correctness. Many important properties fall into this category, from security
properties to resource constraints.

In type systems, data abstraction is enforced via universal and existential types [25]. The key
difference between the two rests in which pieces of code must treat data abstractly. With univer-
sal types, implementation details are hidden from the server component. With existential types,
implementation details are hidden from the client component. Dynamically enforced analogues,
universal and existential contracts [18, 23], seal and unseal values to ensure programs treat certain
values abstractly. Here is an example of an existential contract:
(define-struct counter-pkg (make incr get))

(define-contract Counter

(Exists (T)

(Struct counter-pkg [(-> T) (-> T T) (-> T Natural)])))

The Counter contract specifies the signatures of three functions contained in a counter-pkg struc-
ture, where T refers to an abstract type. There can be several packages that implement Counter
which keep the representation of T hidden from clients.

Existential contracts are amechanism and not the only one that may be used to achieve data ab-
straction. Most first-year students taking our course concurrently take a course on object-oriented
programming in Java. After discussing data abstraction via existential contracts, students imple-
ment pure objects in LSL using structs with functions (i.e., methods) as fields. In such an encoding,
closures are a data-hiding mechanism [26]. We then talk about these two different forms of data
abstraction and their respective tradeoffs [6].

4.4 Mutation
Up to this point the course covers pure functional programming. Eventually, students must be
exposed to effectful programs, and in particular, programswithmutable state. Our goal is to ensure
students have a deep understanding of mutable state, are made aware of howmutation complicates
reasoning about programs, and have the tools needed to manage that additional complexity.

As in most programming languages, LSL supports both variable and value mutation. Variables
are mutated with the set! form:
(: n Integer)

(define n 1)

(set! n 2)

When a variable is mutated, the contract associated with the variable is checked again.
Value mutation is available for structs, but only when they are explicitly declared as mutable:

(define-mutable-struct posn [x y])

(: p (Struct posn [Integer Integer]))

(define p (posn 1 1))

(set-posn-x! p 2)

The contract on a struct’s field is checked when that field is mutated. Making variable mutation
and value mutation syntactically distinct helps make the concepts distinct in students’ minds.
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Table 1. This table lists the titles of every homework assignment in the course. Homework assignments that
directly address skill transfer are indicated with ⋆.

weeK title
1 Propositional Logic as Code
2 Executable Specifications for Simple Functions
3 More Executable Specifications for Simple Functions
4 Cryptography and Timing Attacks
5 Constant Folding for a Stack-Machine Compiler
6 Generating Mazes
7 SAT Solver using Four Representations of Booleans
8 ⋆ Aliasing Puzzles and PBT Memos
9 Introduction to Message-Passing Concurrency

10 Manual Memory Allocator
11 Chandy–Lamport Snapshot Algorithm
12 ⋆ Using Another PBT Library

4.5 Temporal Properties
Standard contracts fail to account for an important aspect introduced by mutation. Equality of
immutable data is best characterized by structural equality, but equality of mutable data is best
characterized by pointer equality [2]. Consequently, mutable values have a discernible identity
even if their fields change. Fully reasoning about mutation necessitates reasoning about how mu-
table values change over time. From low-level libraries such as the Unix file API in C, to high-level
libraries such as the networking abstractions in Java, temporal constraints crop up all the time.

LSL can readily express temporal properties. Consider a fresh function that is intended to return
a different natural number every time it is called. Simply asserting that fresh returns a natural
does not capture the key invariant about the function. Another kind of contract, known as a trace
contract [27], is needed to enforce freshness:
(: ids unique-list?)

(define ids empty)

(: fresh (-> (AllOf Natural (Record ids))))

(define (fresh) elided )

The (Record ids) contract mutates the variable ids by appending the returned value from fresh

onto the current value of ids each time the function is called. In other words, ids contains the
trace of return values from fresh. When a variable is mutated, here ids via Record, its associated
contract is checked again. Thus, the unique-list? predicate is checked on a sequence containing
every value returned from fresh. This check ensures that fresh never yields a number that it
previously returned.

The trace-contract mechanism can be used to enforce more complex properties. For example, if
a protocol is specified via a state machine, then the trace predicate can run that state machine to
determine if the protocol was violated.

5 A Few Homework Assignments
Table 1 shows the complete list of assignments given in the course. This section summarizes four
of them to show what kinds of specifications and programs students write. Assignments come
from a range of domains: games, security, low-level programming, and distributed systems.
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5.1 Generating Mazes
Task. Students are asked to write and property-test transformations that convert between two

maze representations and develop generators that randomly construct solvable mazes.

Rationale. This assignment has two goals. First, round-trip properties, especially between non-
bijective data representations, are common and useful in real-world applications of PBT [16]. Sec-
ond, naive random generation is often ineffective. Generating mazes by randomly generating lists
of cells does not produce solvable mazes. Hence, students must develop smart generators that
guarantee structural properties of mazes.

Details. One way to represent a maze is as a list that contains the type of a cell (e.g., empty, wall,
exit) paired with a position. This sparse representation of a maze assumes missing cells are walls
and the width (height) is inferred from the maximum x (y) coordinates.

After writing and testing functions over this data representation, it becomes apparent that it
is painful to read and write mazes directly. Working with a human-friendly data representation,
such as the following dense representation, becomes desirable:

'((X X P)

(E X _)

(_ _ _))

Students write conversion functions to and from the dense representation and test the round-trip
property: converting amaze to and from a dense representation yields an equivalentmaze. In doing
so, one realizes that every maze has a unique dense representation, but not a sparse one. Although
not explicitly stated in the assignment, a correct solution must define a non-trivial equality over
mazes to faithfully test the round-trip property.

5.2 Cryptography and Timing Attacks
Task. Given a password-checking function that is susceptible to a timing side-channel attack,

students write a property that detects this vulnerability. They then modify the function so that it
is no longer vulnerable.

Rationale. Intensional properties, which reflect how a computation proceeds and not just what
it computes, are often overlooked in discussions about software specification. Yet there are many
domains where intensional properties are as essential as extensional ones. Security researchers
are particularly attuned to such considerations, where side-channel attacks can leak private infor-
mation. One approach to formally modeling intensional properties is to allow programs to request
intensional information at run time. Once intensional aspects are reified, contracts and tests can
check them like any other ordinary property.

Details. For this homework, students are given an insecure password=? function that returns as
soon as the two input passwords differ. Thus, the time it takes password=? to execute is propor-
tional to the length of the correct prefix of a given password attempt. This leak can be used to
infer what the password should be in far fewer tries than what brute force guessing requires [3].
First, given a way to measure the number of character comparisons a function makes (i.e., a de-
terministic proxy for time), students define a property for secure password checking. The original
password=? function should fail this property. Second, students adapt password=? such that it still
works correctly, but also passes the timing specification. Implementing this modification requires
wasting a precise amount of time on useless character comparisons.
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malloc free defrag

Fig. 2. Memory Operations

5.3 Manual Memory Allocator
Task. Students implement three memory-manipulating functions (malloc, free, defrag) for an

idealizedmemory allocator, and write an imperative fibonacci procedure using these abstractions.

Rationale. Model checking tends to verify temporal properties that stipulate the order in which
events should occur [1]. Such properties are important in larger systems where components must
adhere to an ordered protocol. This assignment concerns temporal properties in a low-level pro-
gramming context.

Details. A bump allocator splits an array of memory cells into two regions: a used portion and a
free portion. The frontier between these two regions is tracked as an index into the array. Alloca-
tion increments the index, returning the address of a free cell to the user. Once the frontier index
reaches the end of memory, defragmentation compacts all active cells and resets the frontier index.
Figure 2 illustrates this process.

Students write a simple memory allocator following the scheme from Figure 2 and then a
fibonacci procedure that uses their allocator. Bugs in the allocator propagate and compute non-
sensical results when executing fibonacci. The final task is to construct a trace contract [27] that
guarantees a memory cell is returned from malloc only if it (1) had never been allocated in the
past or (2) had been allocated but was subsequently freed. Such a contract provides a simulacrum
of what sophisticated tools, such as Valgrind, check about real-world low-level programs [31].

5.4 Chandy–Lamport Snapshot Algorithm
Task. Students are asked to implement the Chandy–Lamport distributed snapshot algorithm

using a purely functional message-passing interface.

Rationale. Specification is useful at varying scales—from the smallest units of code to entire
systems. The most complex programming assignment in our course showcases how specification
works on the larger scale of a distributed system. This assignment serves as an introduction to
concurrent programming for many students and hints at the difficulty of reasoning about and
maintaining invariants in concurrent systems.

Details. Consider a network of banks that continuously transfer money among themselves. At
any point in time, a bank might want to see a snapshot of how much money is in the network and
where it is. Since no individual has a global view of the network, banks must request this infor-
mation from all others in the network. The challenge is to implement an algorithm that computes
a consistent snapshot of the network: intuitively, all money is accounted for in the snapshot. This
problem is well-known in the field of distributed systems and the Chandy–Lamport algorithm is
the standard solution [4].

Students implement Chandy–Lamport using a message-passing library similar to the big-bang
interface from HtDP [12]. They must check that their implementation always provides consistent
snapshots (i.e., no money is lost or gained in the snapshot compared to the starting amount). Doing
so is fairly nontrivial—small mistakes in the implementation can yield subtly incorrect behavior
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(1) What was the main thing that you learned from this course? What do you think the
course is supposed to teach?

(2) What is the connection between logic and computation?
(3) Imagine you are working on a system, written in Java, for processing financial trans-

actions at a credit card company. Are there ideas, skills, or techniques you learned in
this class that you think would help you do a better job implementing this system?

(4) Was there anything in the course that seemed completely irrelevant, or that you could
not imagine applying in any other context?

(5) Have ideas or techniques from the course been useful in other courses?
(6) Are there topics or techniques that have been useful on internships or you think will

be useful on a job?

Fig. 3. InterviewQuestions

that leads to inconsistent snapshots. Debugging by “thinking hard” is, for most students, not pro-
ductive. Describing invariants of the algorithm, writing property tests on smaller pieces of code,
and unit-testing functions, all become useful for achieving a correct implementation.

6 Transferring Skills
Pedagogic languages have advantages over industrial-strength languages in the classroom, but
using them risks tying the skills to the language. Students should come away from our course
with the confidence to apply software specification techniques regardless of the language or tools
they end up using in a job. Skill transfer must be addressed explicitly as students often cannot
decouple the medium from the message.

One way to encourage skill transfer is to have assignments that go beyond the course content.
Two assignments have students use their knowledge and skills outside LSL (Table 1). The first is to
write two memos: one addressed to technically proficient coworkers that analyzes the strengths
and weaknesses of a particular PBT library; the other is addressed to a less technically minded
manager explaining why the chosen PBT library should be adopted. Any language and library
is acceptable, though most students select popular PBT frameworks in Java or Python. Writing
memos reinforces lessons from the course by having students explain the benefits of PBT in their
own words. The second assignment has students redo several of their previous homework solu-
tions using their chosen PBT library. This exercise helps connect concepts from class to real-world
libraries, which often have a higher amount of incidental complexity than LSL.

7 Student Experiences
To help assess our approach, we interviewed students who took our class as well as students who
took the previous version taught with Lean. The Lean version of the course was well liked, but we
suspect this had more to do with the instructor and course logistics than with the material. The
Lean course introduced students to mechanized theorem proving, proceeding from fixed data up
through numbers and lists. Its final assignment was a proof of the correctness of insertion sort.

We interviewed ten students, four who took the Lean course, and six who took our version.
Those who took our course finished it around six months before the interview, whereas students
who took the Lean course finished it a year or more before the interview. Interviews followed
guidelines from our institutional review board, answering the questions in Figure 3.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 264. Publication date: August 2025.



264:12 Cameron Moy and Daniel Patterson

7.1 Lean Course Interviews
While these four students represent only a small window into the experience of the hundreds of stu-
dents who have taken this course, the commonality of their responses is revealing. Although none
reported disliking the course, none could imagine how any skills they learned had any bearing on
software engineering. For a course ostensibly introducing students to the field of formal methods,
with the intention of connecting mathematical reasoning to real software, this is a damning result.

Overall, students considered the purpose of the course was to teach the mechanism of formal
proof: specifically, proofs on small examples. Lean Student 2 said the course was about “learning
how to correctly construct proofs… proofs regarding booleans, and then proofs regarding integers.”
Similarly, Lean Student 1 reported doing proofs of “very basic things… like commutativity or
associativity of multiplication” and that insertion sort “was a huge proof for us.”

When pressed about the skills they were learning, or how they might use them, students re-
ported bleak results. Lean Student 3 explained that “even though Lean was fun, I feel like I ex-
tracted more educational value from doing the on-paper proofs in algorithms.” Lean Student 1
was not sure if the course “taught any practical applications to prove software.” Lean Student 4,
when describing their perspective on the skills they learned, said: “I like [the course]; I can see
why it fits into computer science, but I didn’t see why it fits into the software concentration.”

The question about building a hypothetical payment processor produced universally negative
results, with illuminating responses. Some students noted that they would reach for skills learned
in other classes, e.g., Lean Student 1 said they would “look towards the software side of solutions
like, what are some pre-existing testing libraries… like JUnit,” and Lean Student 4 explained that
“we didn’t really go up to big applications of proving algorithms.” Interestingly, Lean Student 2
stated that “if I were a regular software developer making a transaction processor for credit cards,
then I probablywouldn’t be using [anything from the course], but if I weremaking the libraries that
actually did the math, then I feel like I would.” This gives weight to our suspicion that students
thought the skills they were learning only applied to properties about booleans and numbers—
Lean Student 2 thinks that if one were to implement a math library, then perhaps some of the
skills they learned would be useful, but since it is business logic, the skills are not relevant.

Our final question related to jobs and internships. Lean Student 2 answered most concisely
to the question of whether any skills from the class were useful to them in their job: “admittedly,
no.” Lean Student 4went into more detail, stating “there may be certain applications [for Lean]…
if you need to really prove exhaustively certain applications, but… industry does not work like
that… people prove programs work… largely through testing. I’m working at a finance company
now, and there is nothing related to [Lean].” This demonstrates that Lean Student 4 understood,
in theory, the generalization of the simple properties to larger software systems, but did not find
anything concretely useful given the vast distance between the programs shown in class and the
programs encountered at work. Lean Student 4 elaborated that the techniques used in the class
were “limited to academia” or to “top engineering organizations working on cutting edge research,”
not, implicitly, at an ordinary finance company.

7.2 LSL Course Interviews
As with the first set of interviews, these six students offer a limited view into the experience of the
several hundred that went through the class, and further, the apparent depth of their understanding
of the material varied widely. For some, the main takeaway appeared to be the importance of
carefully thinking about all cases in code and the value of testing. For others, it was clear that
they had learned to recognize the value of extracting logical properties of systems and accepted
that property-based testing was a useful way to validate those. All, though, seemed both to have
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understood that the course was about understanding the precise behavior of code, and all were
able to recognize that the skills transferred.

These responses are in sharp contrast to responses from students in the Lean course, where
the skills they learned, about the construction of formal proofs, seemed inextricably linked to the
small examples through which they were demonstrated. While learning how to construct proofs
may be a useful skill, it is not clear that this does anything directly to increase the likelihood that
students produce reliable software.

When asked what the course was about, LSL Student 1 responded “formalizing how programs
work.” Other students shared similar ideas, with LSL Student 3 saying the “main things that I
learned were thinking about how to check if a function was working correctly.” LSL Student 2
said that they “never really thought about the correctness of programs before taking [the course].”
For LSL Student 6, the main takeaway was “the importance of testing your code.”

Throughout the interviews, details emerged about what the students got out of the course. LSL
Student 4 shared that the course helped them “be very intentional with [their] programs.” For LSL
Student 5, the idealized memory allocator assignment (Section 5.3) made a particularly strong
impression. LSL Student 5 said that learning about mutation and aliasing “would definitely be
useful for pretty much any job” and that hearing about C now conjures a “mental image of how
malloc and free work.”

Most students were able to connect skills learned in the class to our hypothetical scenario involv-
ing credit card transactions. LSL Student 2 mentioned checking “if money is credited into your
account that amount cannot be negative,” and LSL Student 1mentionedmaking sure “people can’t
enter zero for their credit card number.” LSL Student 6 thought about how such a system would
likely have a fraud detection mechanism and could “give the [fraud detection] system a bunch of
inputs to test it and make sure it actually catches the fraudulent ones… or most of the fraudulent
ones.” Other students provided vague answers. For instance, LSL Student 5 told us that in such a
system, skills from the class could help with “making sure all the functions that you have do what
you want them to do.”

Although it was not a direct response to a question, a final interesting statement from LSL
Student 6 was that: “for every job, not just CS, but in general, being able to make sure the work
you’re doing is correct, and does what you actually wanted to do is pretty important.” That this
student made such an observation, when talking about the class, is precisely our goal.

8 Software Specification for All
This report describes our implementation and experience teaching a course dedicated to software
specification. While some specifics may be particular to our institution, there are plenty of broad
lessons for others to consider.

Teach software specification explicitly. Software specification and verification are distinct skills.
Courses that focus on verification tend to have specifications that are simple and thus the skill of
constructing them is not evenworthmention. Software specification in real life is often challenging
and hence worthy of explicit instruction.

Consider where specification fits into existing curricula. We have the luxury of an entire course
devoted to this topic. At other institutions, such modules may have to be integrated into an ex-
isting curriculum. There are plenty of points where this makes sense. In a software-engineering
course, PBT fits well as a supplementary testing technique alongside unit tests. In a course on
typed functional programming, contracts can complement types and may be used to strengthen
type signatures in the absence of full dependent types. Courses on object-oriented programming
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could benefit from a thorough treatment of data abstraction and its enforcement. Courses on im-
perative programming could benefit from a thorough treatment of mutation and how to enforce
temporal constraints. A software security class might discuss how to formalize the notion of a side
channel and detect it at run time. A systems class might discuss correctness properties of a mem-
ory allocator and how automated tools can check them. In short, specification is relevant across
many domains and deserves to be emphasized across the curriculum.

Use real-world examples and larger programs. The interviews confirm that students came away
from the Lean version of the course without seeing its relevance to software construction. This at-
titude seemed to be primarily due to the kinds of specifications encountered in the course, which
barely went beyond simple mathematical properties. Without specifications from actual software
systems, students see no connection to programming. Assignments that draw from specifications
of real-world systems provide a remedy. Even though the programs are simplified, and the pro-
gramming language is not realistic, the specifications can still be thought-provoking.

Provide a gradual path from unit tests to verification. Scaling up specifications demands tech-
niques that scale too. Contracts and property-based testing are a powerful combination that is
both reasonably lightweight (hence appropriate for freshmen) and expressive. In our context, us-
ing a theorem prover to verify that the Chandy–Lamport algorithm results in a consistent snapshot
would be infeasible. As a waypoint between unit tests and full verification, contracts and PBT not
only make the transition smoother but are independently useful techniques to master.

Avoid distractions by using the right tools. Pedagogic tools remove barriers that get in the way of
learning skills. Thus, some infrastructure is needed to deliver a seamless student experience. Many
of the assignments in this course would not be possible without dedicated linguistic support.

LSL works due to our institution’s curriculum, which uses DrRacket and the teaching languages
from HtDP. Similar infrastructure may be created for other educational environments. For exam-
ple, others have adapted the HtDP curriculum to statically typed languages, such as OCaml, by
porting features of the teaching languages as ordinary libraries [32]. Likewise, the functionality
of LSL could be packaged as a library or framework in any host language—especially those with
metaprogramming facilities.2 Nearly every language has a library, or often several, inspired by
QuickCheck [5]. High-quality libraries implementing software contracts are less common, but
plenty of languages have some level of support. For instance, Clojure [19] has a popular contract
library called clojure.spec. A lightweight wrapper around these libraries could easily make them
suitable for beginning students. While using a fit-for-purpose teaching language enables the high-
est level of control, many of the benefits can be achieved, with far less instructor effort, using
well-designed libraries.

Our hope is that these lessons inspire others to contemplate how software specification fits into
their undergraduate curricula. Specification is not a purely academic subject, but a practical skill.
Students deserve an education that makes it relevant to software development.
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