
JFP 34, e3, 10 pages, 2024. c© The Author(s), 2024. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.
doi:10.1017/S0956796824000017

F U N C T I O N A L P E A R L

Knuth–Morris–Pratt illustrated

C A M E R O N M O Y
Northeastern University, Boston, MA 02115, USA

(e-mail: camoy@ccs.neu.edu)

Abstract

The Knuth–Morris–Pratt (KMP) algorithm for string search is notoriously difficult to understand.
Lost in a sea of index arithmetic, most explanations of KMP obscure its essence. This paper
constructs KMP incrementally, using pictures to illustrate each step. The end result is easier to
comprehend. Additionally, the derivation uses only elementary functional programming techniques.

1 Introduction

Both the Knuth–Morris–Pratt and the Boyer–Moore algorithms
require some complicated preprocessing on the pattern that is diffi-
cult to understand and has limited the extent to which they are used.

Robert Sedgewick, Algorithms

String search is a classic problem. Given a string, the pattern, determine if it occurs in
a longer string, the text. String search can be solved in O(n + m) time and O(m) space,
where n is the size of the text and m is the size of the pattern. Unfortunately, the algorithm
that does so, Knuth–Morris–Pratt (KMP) (Knuth et al., 1977), is hard to understand. Its
pseudocode is short, but most explanations of it are not.

Standard treatments, like that of Cormen et al. (2009) or Sedgewick & Wayne (2011),
contain headache-inducing descriptions. Actually, neither even explain the genuine KMP
algorithm. Cormen et al. explain the simpler Morris–Pratt (MP) algorithm and leave
Knuth’s optimization as an exercise. Sedgewick & Wayne present a related algorithm
for minimal DFA construction, with greater memory consumption than KMP, and simply
assert that it can be improved.

Alternatively, KMP can be derived via program transformation (Takeichi & Akama,
1990; Colussi, 1991; Hernández & Rosenblueth, 2001; Ager et al., 2003; Bird, 2010).
Indeed, Knuth himself calculated the algorithm (Knuth et al., 1977, p. 338) from a con-
structive proof that any language recognizable by a two-way deterministic pushdown
automaton can be recognized on a random-access machine in linear time (Cook, 1972).

What follows is a journey from naive string search to the full KMP algorithm. Like other
derivations, we will take a systematic and incremental approach. Unlike other derivations,

https://doi.org/10.1017/S0956796824000017 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796824000017
https://orcid.org/0000-0002-4384-6351
mailto:camoy@ccs.neu.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796824000017&domain=pdf
https://doi.org/10.1017/S0956796824000017

2 C. Moy

Fig. 1. Naive string search (horizontal).

visual intuition will be emphasized over program manipulation. The explanation highlights
each of the insights that, taken together, lead to an optimal algorithm. Lazy evaluation turns
out to be a critical ingredient in the solution.

2 Horizontally naive

The naive O(nm) algorithm for string search attempts to match the pattern at every position
in the text. Consider the pattern mama and the text ammamaa. Figure 1 visualizes the naive
approach on this example.

Each row corresponds to a new starting position in the text. Mismatched characters are
colored red and underlined. The third row matches fully, indicated by the underlined ε,
so the search is successful. If one just wants to determine if the pattern is present or not,
then processing can stop at this point. Related queries, such as counting the number of
occurrences of the pattern, require further rows of computation (as shown).

To summarize, naive search finds, if it exists, the left-most suffix of the text whose prefix
is the pattern:

horizontal pattern text = any done (scanl step init text)
where init :: String

init = text
step :: String -> Char -> String
step acc x = tail acc
done :: String -> Bool
done acc = isPrefixOf pattern acc

https://doi.org/10.1017/S0956796824000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000017

Knuth–Morris–Pratt illustrated 3

The scanl function is similar to foldl but returns a list of all accumulators instead of
just the final one:

scanl f acc [] = [acc]
scanl f acc (x:xt) = acc:(scanl f (f acc x) xt)

The any function determines if some element of the input list satisfies the given
predicate:

any f [] = False
any f (x:xt) = f x || any f xt

Coming back to horizontal, the accumulator is initially the entire text. At each step,
the accumulator shrinks by one character, generating the next suffix. So, the result of scanl
is a list containing all suffixes of the text. Then, any checks to see if some suffix has a prefix
that is the pattern.

In the algorithms that follow, any and scanl remain the same; they differ only in the
choice of init, step, and done.

3 Vertically naive with a set

Figure 2 is identical to Figure 1 except that it uses vertical lines instead of horizontal ones.
This picture suggests a different algorithm. Each column is a set of pattern suffixes, all of
which are candidates for a match. Calculating the next column involves three steps:

1. Remove suffixes that do not match the current position in the text (colored red and
underlined). These suffixes are failed candidates.

2. Take the tail of those that do. These suffixes remain candidates.
3. Add the pattern itself, corresponding to the diagonal line of mama. Doing so starts

a new candidate at each position.

Let us call the result of this procedure the successor of column C on character x. A column
containing the empty string, written as ε, indicates a successful match.

Following this picture yields a new approach. Now, accumulators are columns, columns
are sets of strings, and step calculates successors:

verticalSet pattern text = any done (scanl step init text)
where init :: Set String

init = Set.singleton pattern
step :: Set String -> Char -> Set String
step acc x = init ‘Set.union‘ (Set.map tail candidates)

where candidates = Set.filter (isPrefixOf [x]) acc
done :: Set String -> Bool
done acc = Set.member "" acc

https://doi.org/10.1017/S0956796824000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000017

4 C. Moy

Fig. 2. Naive string search (vertical).

As is, verticalSet consumes more memory than horizontal. While step for
horizontal does not allocate, step for verticalSet allocates an entirely new set.

There is a trick to negate this drawback. In the same way that sets of natural numbers can
be represented using bitstrings, sets of candidate strings can also be represented in binary.
Successors can be calculated using left shift and bitwise or. This optimized algorithm,
known as Shift-Or (Baeza-Yates & Gonnet, 1992), performs exceptionally well on small
patterns. In particular, Shift-Or works well when the length of the pattern is no greater than
the size of a machine word.

Additional notes

String search is equivalent to asking if the regular expression .*pattern.* matches.
Compiling this regular expression to an NFA and simulating it shows that the columns
of Figure 2 are sets of NFA states. The step function is then the NFA transition func-
tion. Equivalently, columns can be viewed as Brzozowski derivatives (Brzozowski, 1964;
Owens et al., 2009) of the regular expression. The step function is then the derivative.

4 Vertically naive with a list

Using a set to represent the accumulator has two drawbacks. First, set operations cannot
be fused together. Ideally, step would traverse the accumulator only once, but with sets it
must perform more than one traversal. Second, done is not a constant-time operation.

https://doi.org/10.1017/S0956796824000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000017

Knuth–Morris–Pratt illustrated 5

Fig. 3. Columns as lists.

Figure 3 is derived from Figure 2 by removing whitespace from the columns and giving
each distinct suffix a unique color and background. This picture suggests representing
columns using lists instead of sets, where the first element of the list is the top of the
column. The verticalSet function can be easily adapted to this new representation:

data List a = Nil | Cons { top :: a, rest :: List a }

verticalList pattern text = any done (scanl step init text)
where init :: List String

init = Cons pattern Nil
step :: List String -> Char -> List String
step Nil x = init
step acc@(Cons t r) x

| check acc x = Cons (tail t) (step r (head t))
| otherwise = step r x

Two features of this snippet may seem unusual now but will be helpful shortly. First,
instead of Haskell’s built-in lists, the code defines a new datatype. This will be useful in
the next section where this datatype is extended. Second, the highlighted expression could
more simply be written as step r x since head t is x in this branch. In the next section,
x will be unavailable, and so step r (head t) is the only option at that point.

Now, step is a straightforward recursive function that iterates over the list just once.
Moreover, each list is automatically sorted by length. Thus, done can be completed in
constant time since it just needs to look at the first element of the list:

done Nil = False
done acc = (top acc) == ""

Finally, the check function determines whether the candidate at the top of acc matches
the current character of the text:

check Nil x = False
check acc x = isPrefixOf [x] (top acc)

For the remaining algorithms, done and check stay the same.

https://doi.org/10.1017/S0956796824000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000017

6 C. Moy

Fig. 4. Column shapes with forward arrows.

Fig. 5. Column shapes with backward arrows.

5 Morris–Pratt

Take another look at Figure 3. There is yet more structure that can be exploited. In
particular, two key properties unlock the secret to KMP:

1. For each pattern suffix, there is only one column “shape” where that suffix is top.
2. The rest field of any column is a prior column.

These properties hold for all choices of pattern and text; both can be proved inductively
using the definition of step. Informally:

1. To start with, there is only one accumulator: init. A new accumulator can only
be generated by calling step acc x when check acc x holds. Doing so yields
a new accumulator, where top has shrunk by one character. Additionally, there is
only one x such that check acc x holds. Thus, there is only one accumulator of
size n, of size n − 1, and so forth. Figure 4 shows the five column “shapes” for the
pattern mama.

2. The rest of column init is empty. All other accumulator values must have been
generated by calling step acc x when check acc x holds. Thus, step returns a
column where rest is step r (head t). This expression returns a prior column.
Figure 5 shows the five columns where rest is indicated by a dashed arrow.

Before, we assumed that columns could be any set of pattern suffixes. There are 2n such
sets. Now we know that only n of these sets can ever materialize. Moreover, each column
can be represented as a pair consisting of a pattern suffix and a prior column. Combining
Figures 4 and 5 yields a compact representation of all possible columns as a graph, pictured
in Figure 6.

All that remains is to construct this graph. Just add a next field for the forward edge

data Tree a = Nil | Node { top :: a, next :: Tree a, rest :: Tree a }

and then compute its value with a “smart” constructor (called make here):

https://doi.org/10.1017/S0956796824000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000017

Knuth–Morris–Pratt illustrated 7

Fig. 6. MP graph.

mp pattern text = any done (scanl step init text)
where make :: String -> Tree String -> Tree String

make "" r = Node "" Nil r

make t r = Node t n r

where n = make (tail t) (step r (head t))
init :: Tree String
init = make pattern Nil
step :: Tree String -> Char -> Tree String
step Nil x = init
step acc@(Node t n r) x

| check acc x = n
| otherwise = step r x

Note how the determination of successor columns has been moved from step (in
verticalList) to the constructor (in mp). As a result, init is now the graph from
Figure 6. Then, step traverses this graph instead of recomputing successors across the
entirety of the text.

In a call-by-value language, this definition would fail because Figure 6 is cyclic. The
circularity arises because init is defined in terms of make, which calls step, which returns
init in the base case. Fortunately, this kind of cyclic dependency is perfectly acceptable
in a lazy language such as Haskell.

This algorithm is called Morris–Pratt (MP), and it runs in linear time. Just a small tweak
delivers the full KMP algorithm.

Additional notes

One perspective is that Figure 6 depicts a two-way DFA (Rabin & Scott, 1959). Backward
arrows represent a set of transitions labeled by � \ {x} where x is the matching character.
These backward arrows do not consume any input (making it a two-way DFA).

Haskell makes cyclic data construction especially convenient, but it is pretty easy in
many eager languages too. Only next needs to be lazy. Appendix A gives a Racket
implementation of KMP that uses delay and force to achieve the desired laziness.

Laziness has another benefit. In an eager implementation, the entire graph is always
computed, even if it is not needed. In a lazy implementation, if the pattern does not occur
in the text, then not of all the graph is used. Thus, not all of the graph is computed.

https://doi.org/10.1017/S0956796824000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000017

8 C. Moy

Fig. 7. KMP graph.

Fig. 8. KMP algorithm.

6 Knuth–Morris–Pratt

Take another look at Figure 6. Suppose the current accumulator is the fourth column
(where the top field is a) and the input character is m. That is a mismatch, so MP goes
back two columns. That is also a mismatch, so it goes back to the first column. That is a
match, so the algorithm ends up at the second column.

Note how a mismatch at column a always skips over column ama because the top values
of the two columns start with the same character. Hence, going directly to column mama
saves a step. Figure 7 shows the result of transforming Figure 6 according to this insight.

Figure 8 shows the code that implements this optimization, delivering the full KMP
algorithm. When constructing a column, KMP checks to see if the first character of top
matches that of the rest field’s top. If so, it uses the rest field’s rest instead. Since this
happens each time a column is constructed, rest is always going to be the “best” column,
that is, the earliest one where top has a different first character.

7 Correctness

One way to test that these implementations are faithful is to check that their traces match
a reference implementation (Danvy & Rohde, 2006). A trace is the sequence of character
comparisons performed during a search. Experiments on a large test suite confirm that
the code given in Sections 5 and 6 implement MP and KMP, respectively. Moreover, the

https://doi.org/10.1017/S0956796824000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000017

Knuth–Morris–Pratt illustrated 9

number of comparisons made in the KMP implementation is always the same or fewer
than in the MP implementation, exactly as expected.

8 Conclusion

Naive string search works row-by-row. Going column-by-column yields a new algorithm,
but it is still not linear time. MP takes advantage of the underlying structure of columns,
representing them as a cyclic graph. This insight yields a linear-time algorithm. KMP
refines this algorithm further, skipping over columns that are guaranteed to fail on a
mismatched character.

Acknowledgments

The author thanks Matthias Felleisen, Sam Caldwell, Michael Ballantyne, and anony-
mous JFP reviewers for their comments and suggestions. This research was supported
by National Science Foundation grant SHF 2116372.

Conflicts of Interest

None.

References

Ager, M., Danvy, O. & Rohde, H. (2003) Fast partial evaluation of pattern matching in strings. In
Partial Evaluation and Semantics-Based Program Manipulation, pp. 3–9.

Baeza-Yates, R. & Gonnet, G. (1992) A new approach to text searching. Commun. ACM 35(10),
74–82.

Bird, R. (2010) Pearls of Functional Algorithm Design. Cambridge University.
Brzozowski, J. (1964) Derivatives of regular expressions. J. ACM 11(4), 481–494.
Cook, S. (1972) Linear time simulation of deterministic two-way pushdown automata. Inf. Process.

71, 75–80.
Colussi, L. (1991) Correctness and efficiency of pattern matching algorithms. Inf. Comput. 95,

225–251.
Cormen, T., Leiserson, C., Rivest, R. & Stein, C. (2009) Introduction to Algorithms. MIT.
Danvy, O. & Rohde, H. (2006) On obtaining the Boyer–Moore string-matching algorithm by partial

evaluation. Inf. Process. Lett. 99(4), 158–162.
Hernández, M., & Rosenblueth, D. (2001) Development reuse and the logic program derivation

of two string-matching algorithms. In Conference on Principles and Practice of Declarative
Programming, pp. 38–48.

Knuth, D., Morris, J. & Pratt, V. (1977) Fast pattern matching in strings. SIAM J. Comput. 6(2),
323–350.

Owens, S., Reppy, J. & Turon, A. (2009) Regular-expression derivatives re-examined. J. Funct.
Program. 19(2), 173–190.

Rabin, M. & Scott, D. (1959) Finite automata and their decision problems. IBM J. Res. Dev. 3(2),
114–125.

Sedgewick, R. & Wayne, K. (2011) Algorithms. Addison-Wesley Professional.
Takeichi, M. & Akama, Y. (1990) Deriving a functional Knuth-Morris-Pratt algorithm. J. Inf.

Process. 13(4), 522–528.

https://doi.org/10.1017/S0956796824000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000017

10 C. Moy

A Racket code

;; → Tree
(struct nil ())
;; String, Tree, Tree → Tree
(struct node (top next rest))

;; String, String → Bool
(define (knuth-morris-pratt pattern text)

(define (make t r)
(define n

(delay
(cond

[(equal? t "") (nil)]
[else (make (string-rest t) (step r (string-first t)))])))

(define r*
(cond

[(equal? t "") r]
[(check? r (string-first t)) (node-rest r)]
[else r]))

(node t n r*))
(define init (make pattern (nil)))
(define (step acc x)

(match acc
[(nil) init]
[(node t n r) (if (check? acc x) (force n) (step r x))]))

(fold-until init step done? text))

;; Tree → Bool
(define (done? acc)

(match acc
[(nil) false]
[(node t _ _) (equal? t "")]))

;; Tree, Char → Bool
(define (check? acc x)

(match acc
[(nil) false]
[(node t _ _) (and (not (equal? t "")) (equal? (string-first t) x))]))

;; Tree, (Tree, Char → Tree), (Tree → Bool), String → Bool
(define (fold-until acc step done? text)

(cond
[(done? acc) true]
[(equal? text "") false]
[else (define acc* (step acc (string-first text)))

(fold-until acc* step done? (string-rest text))]))

;; String → Char
(define (string-first s) (string-ref s 0))
;; String → String
(define (string-rest s) (substring s 1))

https://doi.org/10.1017/S0956796824000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000017

	Functional Pearl
	Introduction
	Horizontally naive
	Vertically naive with a set
	Vertically naive with a list
	Morris–Pratt
	Knuth–Morris–Pratt
	Correctness
	Conclusion
	Racket code

