
Contract Systems Need Domain-Specific Notations
Cameron Moy #

PLT @ Northeastern University, Boston, MA, USA

Ryan Jung1 #

Northeastern University, Boston, MA, USA

Matthias Felleisen #

PLT @ Northeastern University, Boston, MA, USA

Abstract
Contract systems enable programmers to state specifications and have them enforced at run time.
First-order contracts are expressed using ordinary code, while higher-order contracts are expressed
using the notation familiar from type systems. Most interface descriptions, though, come with
properties that involve not just assertions about single method calls, but entire call chains. Typical
contract systems cannot express these specifications concisely. Such specifications demand domain-
specific notations. In response, this paper proposes that contract systems abstract over the notation
used for stating specifications. It presents an architecture for such a system, some illustrative
examples, and an evaluation in terms of common notations from the literature.

2012 ACM Subject Classification Software and its engineering → Domain specific languages

Keywords and phrases software contracts, domain-specific languages

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2025.14

Category Pearls/Brave New Ideas

Related Version Full Version: https://doi.org/10.5281/zenodo.15285750

Supplementary Material Software: https://doi.org/10.5281/zenodo.15285740

Funding This work was supported by NSF grant SHF 2116372.

1 From General-Purpose to Domain-Specific Notations

Eiffel’s contract system assumes that programmers can formulate Boolean expressions to
articulate simple pre-conditions and post-conditions for methods [33, 34]. Such expressions
suffice to state constraints that quotidian type systems cannot express. Here is an example,
from Eiffel’s documentation, of a method that sets the seconds field of a clock object:

set_seconds (s: INTEGER)
require

valid_argument_for_seconds : 0 <= s and s <= 59
do

seconds := s
end

By monitoring the pre-condition, Eiffel’s contract system can signal an error when control
enters the method, not after seconds has been set and retrieved elsewhere. Eiffel’s syntax
has require and ensure keywords that cleanly separate specifications from implementations.

Findler and Felleisen [16] generalize Eiffel’s design to modern, higher-order languages
with first-class functions and objects. They realize that such a generalization necessitates

1 Currently working in industry.

© Cameron Moy, Ryan Jung, and Matthias Felleisen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 14; pp. 14:1–14:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:camoy@ccs.neu.edu
https://orcid.org/0000-0002-4384-6351
mailto:jung.ry@northeastern.edu
https://orcid.org/0009-0000-1428-2545
mailto:matthias@ccs.neu.edu
https://orcid.org/0000-0001-6678-1004
https://doi.org/10.4230/LIPIcs.ECOOP.2025.14
https://doi.org/10.5281/zenodo.15285750
https://doi.org/10.5281/zenodo.15285740
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Contract Systems Need Domain-Specific Notations

creating wrappers around behavioral values. Here is the code for checking that a derivative
function takes real-valued functions to real-valued functions:

(define (derivative unsafe-f)
(define (check-real->real g)

(lambda (x)
(check-real (g (check-real x)))))

(define f (check-real->real unsafe-f))
(check-real->real (lambda (x) compute derivative)))

Programmers should never read, let alone write, such complex code. Contract systems, such
as the one found in Racket [14, 19], therefore supply the familiar notation from type systems
to eliminate these awkward and repetitive patterns:

(define/contract (derivative f)
(-> (-> real? real?) (-> real? real?))
(lambda (x) compute derivative))

In other words, developers may use the -> notation as a shorthand for the tedious wrappers
in the first version. In Eiffel, contract-specific notations are mere conveniences, but here the
notation is essential—writing complex higher-order contracts without them is infeasible.

Moy and Felleisen [37] present an extension of higher-order contracts, dubbed trace
contracts, that can express and monitor properties across multiple function and method calls.
The idea looks straightforward: collect a trace of method-call events and check the trace
with a functional predicate whenever it is updated.

Consider the HasNext property that Java programmers must respect when they use an
iterator: each call to next must follow a call to hasNext [39]. A typical implementation
would equip the class with an extra field to determine whether a violation has occurred:

class Iterator {
private boolean canCallNext = false;

public boolean hasNext () {
this. canCallNext = true;

method body
}

public Element next () {
if (! canCallNext)

throw new Exception (" HasNext property violated ");

this. canCallNext = false;
method body

}
}

Comingling run-time checks with proper functionality in this way is a technique known as
defensive programming. As Meyer [33, 34] argued long ago, comingling is bad for the person
who maintains the implementation, bad for the person who programs to the interface, and
bad for the person who wants to implement the interface differently.

By contrast, a contract system brings relief to all three groups. It enables the developer
of an interface to state contracts for cross-cutting specifications and attach them to concrete
implementations. A contract, independent of any particular implementation, confers two
critical advantages:

C. Moy and R. Jung and M. Felleisen 14:3

1. Developers can program to interfaces that express constraints explicitly as code.
2. Contracts are compiled to run-time checks that monitor implementations of interfaces, so

developers can trust that specification violations are reported in a timely fashion.

(provide
(contract-out [an-iterator-object has-next/c]))

(define has-next/c
(object-trace/c

#: satisfies (re (star (seq 'has-next (opt 'next))))
[has-next (->m boolean?) 'has-next]
[next (->m any/c) 'next]))

definition of the iterator

Figure 1 Checking the HasNext Property

With trace contracts, the creator of an iterator class can express the HasNext property as
a contract and gain all the benefits thereof. Figure 1 shows a module that exports an iterator
object and, in doing so, attaches a contract that concisely states the HasNext property with
the regular expression (hasNext, next?)∗ over the alphabet of method names. Other than
the usual fully parenthesized syntax of Racket, the regular expression is rendered directly.
The use of a problem-specific notation, here regular expressions, clarifies the developer’s
intent much better than comingled code, and permits the automated construction of dynamic
checks. Each method, after the signature given by ->m, is associated with an event. An event
is a value to be added to the trace when that method is called. Here, the events are just
atomic symbols: 'has-next and 'next.

Which brings us to a brave new idea: contract systems should be abstracted over domain-
specific notations for specifications. In other words, it should be easy to plug in any number
of domain-specific specification languages into a contract system. This paper illustrates the
idea with trace contracts as the enforcement mechanism and a variety of domain-specific
specification languages, which together yield domain-specific contracts (DSCs). The remainder
of the paper describes DSCs and the underlying architecture in detail, shows how it works
with a simple example (Section 2), presents a more sophisticated example from a real-
world API (Section 3), describes a general plan for implementing DSCs in different host
languages (Section 4), and evaluates a Racket implementation of DSCs (Section 5).

2 Domain-Specific Contracts in Action

Many interface specifications employ temporal terminology to constrain sequences of method
calls. Consider the MapIterator property from Java’s API [40]. This property states that an
Iterator, created from a Collection, which is itself derived from a Map, cannot be used
after the Map has been mutated. The word “after” suggests a temporal relationship—a need
to look back at whether a mutating method of Map has previously been called.

An interface, therefore, should use a matching formal language, such as temporal logic, to
state the property. Given that such statements tend to look at past events, Past-Time Linear
Temporal Logic (PLTL) [31] is one suitable choice for stating the MapIterator contract. Indeed,
the definition of satisfaction for PLTL formulas employs finite traces of past events—just
like trace contracts.

ECOOP 2025

14:4 Contract Systems Need Domain-Specific Notations

PLTL comes with the primitive temporal operators •ϕ (pronounced “previous”) and
ϕ Sψ (pronounced “since”). Otherwise, PLTL looks like first-order logic. All other temporal
operators, for example ♦ϕ (pronounced “once”), are derived notions. With these operators,
an invalid sequence of method-call events is easy to express: next ∧ ♦ mutate. In prose,
calling the next method of an iterator is invalid if the map has been mutated.

One contribution of this paper is a number of libraries, including one for PLTL, that
developers can use in contracts. So, suppose a developer wishes to release a collections library
that states and enforces the MapIterator property. Realizing this desire calls for three steps.

First, the developer imports the trace contract library and the PLTL library:
(require trace-contract)
(require logic/pltl)

Importing trace-contract brings in, among other forms, object-trace/c. As the intro-
duction mentions, object-trace/c constructs an object contract that records a trace of
method-call events. This trace is checked by a predicate every time a new element is added.

Second, the developer formulates and names the PLTL formula associated with the
MapIterator property:
(define-pltl map-iterator-violation

(∧ 'next (♦ 'mutate)))

Using the PLTL library, a developer can formulate the predicate as the above temporal
formula, matching the informal prose found in Java’s documentation. To use a named PLTL
formula, a programmer must use the pltl form, which translates it to a (state) machine
representation. A machine acts as a predicate over traces, i.e., it can check whether a trace
satisfies or refutes a formula:
> (define s1 (list 'next 'next 'mutate 'next))
> (machine-accepts? (pltl map-iterator-violation) s1)
#true

Third, the developer combines a PLTL expression with object-trace/c to create an
enforceable contract. Figure 2 shows a first attempt at such a contract for MapIterator.

(define map-iterator/c
(object-trace/c

#: refutes (pltl map-iterator-violation)
[next (->m any/c) 'next]))

(define map-collection/c
(object-trace/c

[iterator (->m map-iterator/c)]))

(define map/c
(object-trace/c

[keys (->m map-collection/c)]
[remove (->m any/c void?) 'mutate]
[set (->m any/c any/c void?) 'mutate]))

Figure 2 First Attempt: Checking the MapIterator Property

The three displayed definitions express a specification involving three methods across two
classes, with an intervening class that bridges the gap. Two methods from the Map class—

C. Moy and R. Jung and M. Felleisen 14:5

remove and set—mutate the Map. The intent with these contracts is that any iterator
derived from a collection of keys becomes unusable when the underlying map is mutated.
The #:refutes clause requests that the PLTL formula named map-iterator-violation is
translated into a predicate over the trace of method-call events. If the contract ever discovers
that the formula is satisfied, then the system signals a violation.

As is, these contracts are not quite right. An object-trace/c contract knows only about
method calls for the current object. Therefore, map-iterator/c sees only calls to the next
method and is unaware of any mutations to the underlying map.

(define (map-iterator/c map/c)
(object-trace/c

#: refutes (pltl map-iterator-violation)
#:include map/c
[next (->m any/c) 'next]))

(define (map-collection/c map/c)
(object-trace/c

[iterator (->m (map-iterator map/c))]))

(define map/c
(object-trace/c

[keys (->m (map-collection/c this-contract))]
[remove (->m any/c void?) 'mutate]
[set (->m any/c any/c void?) 'mutate]))

Figure 3 Checking the MapIterator Property

Figure 3 shows how to adapt these contracts to inform the map-iterator/c contract of
the other relevant method calls. To express this relationship, the contracts for collection and
iterator objects become functions that accept the map/c contract itself. The object-trace/c
form uses the keyword this-contract which, similar to this for objects, refers to the
object-trace/c contract itself. While the map-collection/c function just passes this
contract through to the map-iterator/c function, the latter actually makes use of it. The
#:include clause informs the contract system that events from the trace for map/c are to
be injected into the trace for map-iterator/c. Consequently, map-iterator-violation,
which refers to the 'mutate event, now works correctly in the #:refutes clause.

These contracts look simple, but the underlying property is sophisticated. Consider the
scenario where an iterator is created, the underlying map is mutated, and then another
iterator is created. It should be the case that the first iterator is invalidated, while the second
one is usable. In other words, these two iterators require independent pieces of state. Some
events, such as mutations to the underlying map, are shared with both. Other events, such
as calls to next, are particular to a specific iterator and are not shared. All this careful state
management is handled automatically.

Conversely, manually constructing defensive checks to correctly keep track of this infor-
mation is difficult. Appendix A shows an implementation of defensive checks for MapIterator,
similar to the defensive code shown in Section 1. The code is complex and takes several
pages to explain. By contrast, Figure 3 is nearly self-explanatory.

ECOOP 2025

14:6 Contract Systems Need Domain-Specific Notations

3 Real Code Needs a Mixture of Domain-Specific Notations

Interfaces should be expressed as directly as possible, using the notation most appropri-
ate for the property at hand. Sometimes a single interface benefits from mixing several
domain-specific notations. The DSCs presented in this paper are flexible enough to allow a
heterogeneous mixture of notations because they all compile to the same uniform mechanism
for capturing and checking traces of events.

This section presents a series of contracts that ensure TCP sockets are used correctly.
Consider an idealized TCP interface, similar to the one found in Java, which consists of four
classes: a TCP manager, a TCP listener, an input stream, and an output stream. A TCP
manager, when given a port number, is responsible for creating a TCP listener that deals
with the given port. The purpose of a TCP listener is to accept client connections. For each
connected client, a TCP listener produces an input and output stream for receiving and
sending data, respectively.

Many languages, including Java, guarantee the following properties of TCP sockets:

StreamClose. Input and output streams can be used until either the stream itself is closed
or the underlying TCP listener is closed.
PortExclusivity. At any point in the program, there can be at most one active TCP listener
on each port.

The Java standard library uses defensive programming to enforce these properties.
Instead, DSCs can nicely express both properties, but they warrant two different notations.

The StreamClose property can be expressed as a regular expression:

(define-re port-re
(seq (star 'use) (opt (union 'close-stream ‘(close-listener ,_)))))

This regular expression accepts traces of method-call events that use a stream (input or
output) until it has been closed, or the underlying listener is closed. There is one unusual
feature here, which is the close listener event. In all prior examples, events were symbolic
names of methods carrying no additional data. The close listener event also carries the port
number of the corresponding listener, which is simply ignored in port-re using a wildcard
pattern. Why the close listener event carries a port number will be clarified momentarily.

The PortExclusivity property is not easily expressed as a regular expression. Another
formalism, known as quantified event automata (QEA [4]), is a good match:

(define manager-qea
(qea

(∀ port)
(start ready)
[-> ready ‘(listen ,port) listening]
[-> listening ‘(close-listener ,port) ready]))

A QEA is similar to an ordinary finite-state automaton, but it is enriched with quantifiers. By
quantifying over a variable, a QEA describes a family of automata: one per instantiation of
all quantified variables. Intuitively, manager-qea constructs a two-state automaton for every
possible port number. These automata are created on demand, though, to avoid unnecessary
overhead. Each automaton starts in the ready state and transitions to the listening state
when a new TCP listener is created on that port. When the listener is closed, the automaton
moves back to the ready state. Each listener event must carry a port number so the event
can be dispatched to the appropriate automaton.

C. Moy and R. Jung and M. Felleisen 14:7

(define (input-stream/c listener/c)
(object-trace/c

#: satisfies port-re
#: include listener/c
[read-byte (->m byte?) 'use]
[peek-byte (->m byte?) 'use]
[close (->m void?) 'close-stream]))

(define (output-stream/c listener/c)
(object-trace/c

#: satisfies port-re
#: include listener/c
[write-byte (->m byte? void?) 'use]
[close (->m void?) 'close-stream]))

(define (tcp-listener/c manager/c port)
(object-trace/c

#:extend manager/c
[close (->m void?) ‘(close-listener ,port)]
[accept (->m (values (input-stream/c this-contract)

(output-stream/c this-contract)))]))

(define tcp-manager/c
(object-trace/c

#: satisfies manager-qea
[listen (->dm ([port (integer-in 0 65535)])

[res (tcp-listener/c this-contract port)])
‘(listen ,port)]))

Figure 4 The TCP Interface

Using object-trace/c, these logical specifications can be connected to the TCP interface
itself; see Figure 4. Two differences from the example in Figure 3 are worth pointing out.

First, tcp-manager/c uses the dependent method contract form ->dm [48] to produce an
event that is dependent on the argument given to listen. This form permits naming the
arguments and result, binding those names for use in the event constructor. Here, the listen
event contains the port argument.

Second, tcp-listener/c uses #:extend to contribute events to the parent manager/c
contract. As shown in Figure 3, #:include allows events to flow from “ancestor” to
“descendant” object. By contrast, the #:extend keyword allows events to flow in the other
direction, from “descendant” to “ancestor” object. Specifically, the TCP manager (i.e.,
the parent) must be aware if a TCP listener (i.e., the child) is closed on a particular port,
because then that port becomes available for listening once again according to PortExclusivity.
Using #:extend manager/c tells the contract to communicate close listener events from the
listener to the manager. It turns out that StreamClose requires information to flow in the
other direction because input and output streams (i.e., the children) must be closed if the
underlying listener (i.e., the parent) is closed. This direction is covered using #:include
listener/c. In sum, this example demonstrates that object-trace/c can accommodate
information flow in both directions, even within the same interface, and can mix distinct
notations to check all desired properties.

ECOOP 2025

14:8 Contract Systems Need Domain-Specific Notations

w0 w1 w2 w3 ...

values

u0 u1 u2 u3 ...

values

v0 v1 v2 v3 ...

values

ϕ ∈ Φ

component1
ψ ∈ Ψ

component2

θ ∈ Θ

component3

�ow

Figure 5 A System with Domain-Specific Contracts

4 Implementing Domain-Specific Contracts

Implementing DSCs demands two ingredients: a low-level contract system and a mechanism
for embedding domain-specific syntax. If a language lacks such a mechanism, a developer
can use design patterns to construct embedded languages [41].

Figure 5 graphically summarizes how DSCs work. Each component is combined with a
logical formulas (the gray frame). The component’s developers choose the most appropriate
logic to use, based on the property to be enforced. These logic languages come with translators
that turn these specifications into predicates, which then become pieces of trace contracts. In
the diagram, the enforcement mechanism comes into play with the sequences of values that
components exchange. The contract code checks the sequence of values that a component
receives and sends out. Gray borders on values in Figure 5 indicate that values may acquire a
proxy layer that contains specification-checking code from the component’s interface [16, 50].
A proxy interposes on interactions with the underlying object, e.g., a method call, and
performs dynamic checks.

This section starts with a brief tutorial of Racket contracts, focusing on trace contracts
(Section 4.1). Next, the section introduces essential features of Racket’s domain-specific
language (DSL) implementation system (Section 4.2) and what features readers should
watch out for when implementing DSCs (Section 4.3). Lastly, the section gives some hints
concerning the adaptation of this blueprint to languages with different DSL-programming
facilities and contract systems (Section 4.4).

4.1 Low-Level Contract Mechanisms

For enforcement, DSCs rely on low-level contract mechanisms for stating and checking various
kinds of properties: plain pre-conditions and post-conditions for functions; higher-order
contracts for imposing invariants on foreign and behavioral values; and trace contracts for
checking properties about sequences of calls.

In an untyped programming language, simple software contracts provide the programmer
with the means to check type-like properties; in typed languages, they supplement method
signatures not expressible in the type system. In Racket, contracts are also first-class values:
they can be named, composed, and attached to values.

C. Moy and R. Jung and M. Felleisen 14:9

Higher-order contracts [16] go beyond plain assertions and describe invariants of behavioral
values—such as objects—generating blame information2 when dynamic3 checks detect a
violation. Here is a vanilla object contract for iterators:

(define iterator/c
(object/c

[has-next (->m boolean?)]
[next (->m any/c)]))

This contract specifies the method names along with a contract for the inputs and outputs of
each method. When iterator/c is attached to an object, it ensures that the object comes
with the expected methods and wraps it in a proxy. This wrapper performs checks on the
inputs and outputs of the methods according to the stated expectations in method contracts
(->m). Here, neither method consumes any arguments; both return one value.

An object contract merely enforces the pre-conditions and post-conditions on method
arguments and results. It neither states nor checks the HasNext property. To do so requires
the trace-contract extension to Racket’s higher-order contract system.

A trace contract [37] collects values that flow through certain contract positions and
enforces properties of the collected sequence. Hence, trace contracts can check temporal
properties such as the HasNext property. Figure 6 shows such a contract.

(define iterator/c
(trace/c ([evts symbol?])

(object/c
[has-next (and/c (->m boolean?) (apply/c [evts 'has-next]))]
[next (and/c (->m any/c) (apply/c [evts 'next]))])

(full (evts) has-next?)))

(define (has-next? s [okay? #false])
(match s

[(stream) #true]
[(stream-cons 'has-next s*) (has-next? s* #true)]
[(stream-cons 'next s*) (and okay? (has-next? s* #false))])))

Figure 6 Checking the HasNext Property

The iterator/c contract is constructed with trace/c, which consists of three parts:

1. a declaration of a trace variable (evts) and its element type;
2. a contract (here an object/c contract); and
3. a predicate clause (full).

The declared trace variable names the trace of collected events. Annotations within the object
contract push symbols into this trace whenever the corresponding method is called. Concretely,
apply/c pushes the symbols 'has-next and 'next into evts when the corresponding method
is called. Whenever a symbol is added to evts, the trace contract runs the predicate from

2 In a higher-order context, values enter contracts as they flow from one component to another. A contract
violation may take place in the receiving component or in some other component, unrelated to the two
involved in the contract. Hence, tracking the provenance of values is critical so that a contract violation
can be related to a contract attachment [16].

3 On occasion they can be statically verified [38, 53], but this direction is beyond the scope of this paper.

ECOOP 2025

14:10 Contract Systems Need Domain-Specific Notations

the third part on the entire trace of events. For the iterator contract, the predicate ensures
that the trace does not have two consecutive 'next symbols.

Importantly, each time a trace contract is attached to a value, it initializes a new trace
just for that value. That means, different iterators have distinct traces that are separate
from one another. State management is completely left to the trace-contract system and not
the programmer. Hence, predicates over traces are plain (testable) functions.

Clearly, the direct use of this low-level contract mechanism “drowns” the essence of the
iterator contract. By contrast, with a bit of training, every programmer can comprehend the
contract in Figure 1 much more quickly.4 First, it uses object-trace/c which provides a
thin layer of syntactic sugar over the repetitive apply/c contracts. Second, it uses a one-line
regular expression over method names instead of a recursive predicate.

Other features of object-trace/c are more complicated to desugar. Trace contracts, as
originally implemented, were not expressive enough to support the #:include clause from
Figure 3. The original implementation restricted contracts such that a predicate clause could
only depend on traces from the same trace/c form. To support #:include, the underlying
trace-contract system had to be modified to remove this restriction, allowing predicate clauses
to depend on an arbitrary trace.

4.2 Domain-Specific Languages via Macros

Nearly all modern Lisp-like languages [9, 19, 23, 46, 47], and many languages outside the
Lisp family [6, 13, 42], support syntactic abstraction via macros. A Lisp-style macro is a
programmer-defined transformation from one syntax tree to another. In its most basic form,
a macro is just a simple rewrite rule. But some languages, and Racket in particular, take the
idea much further. Racket enables language-oriented programming [14] through macros, so
programmers can construct rich DSLs and comingle expressions in these DSLs, without ever
leaving the host language.

Racket provides one particularly useful tool for constructing DSC implementations: the
syntax-spec library [2, 3]. Two features of syntax-spec make it suitable for creating new
DSCs. First, developers can declaratively specify the language grammar, making it straight-
forward to develop and maintain the Racket-like syntax of DSCs. Second, syntax-spec is
binding aware, meaning it understands the scope of variable declarations. It can thus reliably
provide services such as rename refactoring or determine the free variables of a formula.

Figure 7 shows the Backus–Naur form (BNF) representation of the PLTL grammar and the
syntax-spec definition for the same grammar in Racket. These grammars directly correspond
to each other and it is easy to go back and forth. In order to make the syntax-spec grammar
binding aware, a developer adds binding specifications such as the one for the exists form.
Here, the binding specification states that in ∃x.ϕ, the variable x is bound in ϕ.

Implementing the static semantics of a DSC is almost as straightforward as declaring
its grammar. Take the monitorability criteria of PLTL [5], which says that a well-formed
PLTL formula can be turned into a predicate over a trace if it satisfies the judgment on the
left side of Figure 8. The equivalent Racket code is on the right side of the figure. Once
again, the differences between these two are superficial. The Racket implementation pattern
matches on the syntax using the syntax-parse system [10]. Each rule in the monitorability

4 Most programmers are familiar with regular expressions, but other specification languages are less
well-understood. For example, LTL is known to pose challenges for developers [21, 22]. Employing such
specification languages may necessitate more training on the part of programmers.

C. Moy and R. Jung and M. Felleisen 14:11

ϕ ∈ Formula = p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ | •ϕ | ϕ Sϕ

(syntax-spec
(nonterminal pltl-formula

#: allow-extension pltl-macro
#: binding-space pltl-space
(neg f:pltl-formula)
(disj2 f1:pltl-formula f2:pltl-formula)
(conj2 f1:pltl-formula f2:pltl-formula)
(exists x:pltl-var f:pltl-formula)
#: binding (scope (bind x) f)
(previous f:pltl-formula)
(since f1:pltl-formula f2:pltl-formula)
p:pltl-pat))

Figure 7 Grammar of PLTL (Simplified)

judgment corresponds to a branch in the match. In the PLTL pattern case, the function
uses the free variables (fvs) feature mentioned earlier.5

Finally, if a formula satisfies the static semantics, it can be translated into a predicate.
Figure 9 shows a simple translation for PLTL. It translates each formula into a tree of structs,
which is then run using the PLTL interpreter provided by the library.

4.3 Features To Observe
While the use of syntax-spec greatly facilitates the declaration and translation of DSCs,
this very simplicity obscures a number of aspects that come “for free” but may have to be
realized separately in alternative implementations. When implemented with syntax-spec,
domain-specific contracts signal syntax errors at the appropriate level, have direct support
from the IDE, and are syntactically extensible.

Static Errors

A syntax-spec DSC implementation can automatically synthesize reasonable syntax errors
for the new notation. For example, ill-formed PLTL formulas are identified like this:

> (define-pltl ϕ

(S 'next))
expected more terms in: (S 'next)

In ϕ, the S operator expects another operand, so the error points out an arity mismatch.
Similarly, a syntax-spec implementation can issue an informative message when static

checking fails. As mentioned in the preceding subsection, a syntactically well-formed PLTL
formula may be invalid because it cannot be translated into a predicate (as is):

> (define-pltl ψ

(∃ (t) (¬ (• t)))
not monitorable in: (¬ (• t))

5 A straightforward feature to add to this static semantics is a monitorability search procedure. Some
tools, such as MonPoly [5], attempt to rewrite nonmonitorable formulas into monitorable ones if possible.
The same can easily be done with DSCs, immediately after the monitorability check fails.

ECOOP 2025

14:12 Contract Systems Need Domain-Specific Notations

ρ ⊢ ϕ ρ ⊢ ψ

ρ ⊢ ϕ ∨ ψ

ρϕ ⊢ ϕ ρψ ⊢ ψ ρϕ ⊆ ρψ

ρϕ ∪ ρψ ⊢ ¬ϕ ∧ ψ

ρϕ ⊢ ϕ ρψ ⊢ ψ ρϕ ⊆ ρψ

ρϕ ∪ ρψ ⊢ ¬ϕSψ

ρϕ ⊢ ϕ ρψ ⊢ ψ ρϕ ⊆ ρψ

ρϕ ∪ ρψ ⊢ ϕSψ

ρϕ ⊢ ϕ ρψ ⊢ ψ

ρϕ ∪ ρψ ⊢ ϕ ∧ ψ

ρ ∪ {x} ⊢ ϕ

ρ ⊢ ∃x.ϕ

ρ ⊢ ϕ

ρ ⊢ •ϕ
ρ = fv(p)
ρ ⊢ p

(define (monitorable? stx)
(syntax-parse stx

[(disj2 f g)
(and (equal? (fvs #'f) (fvs #'g))

(monitorable? #'f)
(monitorable? #'g))]

[(conj2 (neg f) g)
(and (subset? (fvs #'f) (fvs #'g))

(monitorable? #'f)
(monitorable? #'g))]

similar cases
[(conj2 f g)

(and (monitorable? #'f)
(monitorable? #'g))]

[(exists (x:id ...) f)
(monitorable? #'f)]

similar cases
[(neg _) #false]
[p #true]))

Figure 8 Static Semantics for PLTL (Simplified)

(define-syntax (translate stx)
(syntax-parse stx

[(_ (neg f)) #'(neg-s (translate f))]
[(_ (disj2 f g)) #'(disj2-s (translate f) (translate g))]

similar cases
[(_ (exists (x ...) f)) #'(exists-s (set 'x ...) (translate f))]
[(_ x:id) #'x]
[(_ p) #'(translate-pattern p)]))

Figure 9 Translator for PLTL (Simplified)

Even if a PLTL formula is well-formed and valid, it can still be misused:

> (+ ψ 13)
cannot use PLTL formula here: ψ

The define-pltl form creates definitions in a separate binding space, as required by the one-
line #:binding-space option in Figure 7. Languages, including domain-specific notations,
are often composed of several syntactic categories that are mixed at particular interface points.
For example, Java has a syntactic category of expressions and types that are interleaved
in a certain way; definitions created in one do not exist in the other. The syntax-spec
implementation of PLTL creates its own binding space, distinct from the one for expressions,
meaning that a reference to a PLTL name from an expression context signals a static error.

User Extensibility

PLTL comes with just two primitive temporal operators. Although derived operators add no
expressive power to the logic, they are necessary for writing concise specifications. While
the PLTL library could provide direct support for such derived operators, doing so has the

C. Moy and R. Jung and M. Felleisen 14:13

serious downside of complicating the static semantics, the translator, and the runtime system,
which would have to deal with each kind of operator separately.

Instead, a syntax-spec implementation of a DSC can be made syntactically extensible
with a single annotation: #:allow-extension. This #:allow-extension option opens up
the pltl-formula nonterminal for simple macro extensibility. Using this capability, a user
can define additional operators in a straightforward manner:

(define-pltl-rule ⊤
(? (λ _ #true)))

(define-pltl-rule (♦ ϕ)
(S ⊤ ϕ))

The syntax-spec-generated define-pltl-rule form defines a syntactic transformation that
rewrites all instances of ⊤ and ♦ϕ in a PLTL formula: ⊤ is rewritten to a predicate that
always returns #true, meaning a machine that succeeds on all traces of collected events; and
♦ is rewritten to a formula that requires nothing to be true until ϕ holds.

These syntactic transformations are seamlessly integrated into PLTL. For example, a
user can write a utility library with these abbreviations and export them for use in other
modules. In short, user-extensible transformations make the PLTL library flexible to use
and simplify its implementation tremendously.

IDE Integration

The syntax-spec library facilitates the integration of DSC implementations with Racket
IDEs. One such IDE is DrRacket [15]; another one is Racket Mode for Emacs.6

Figure 10 IDE Services for PLTL

Figure 10 shows two such services. First, when a user hovers over an identifier, arrows are
drawn from the binding occurrence of an identifier to every reference (Figure 10, left). Here,
the definition of ♦ points to its use in the formula. The IDE has a rich understanding of the
binding structure of the DSC, which can be used to support reliable program transformations
including rename refactorings. Second, if a DSC comes equipped with documentation, as
PLTL does, this documentation can be displayed directly in the IDE. When the cursor is
placed inside an identifier with recognized documentation, a box containing a summary of
the documentation appears in the upper-right corner of the IDE. For define-pltl, that
summary is the grammar of primitive PLTL forms (Figure 10, right). This service is available
because Racket’s documentation language Scribble [18] is binding aware.

6 This major mode is maintained by Greg Hendershott; see https://racket-mode.com.

ECOOP 2025

https://racket-mode.com

14:14 Contract Systems Need Domain-Specific Notations

Compositionality

It is also possible for users to compose contracts that may have been written independently
into a single interface contract. For example, the iterator contract from Figure 3 can easily
be augmented to additionally check the HasNext property, even though these specifications
may have been defined separately:

(define (map-iterator*/c map/c)
(and/c has-next/c (map-iterator/c map/c)))

The and/c form comes from Racket’s contract library and enforces that values satisfy both
conjuncts (in order). It may compose any kind of contract that compiles to the already-
mentioned proxy mechanism in Racket.

Blame Assignments

In the case of Racket and the DSCs in this paper, contracts have a blame-assignment
mechanism [16]. That is, once a dynamic contract check discovers a violation, it raises an
exception that assigns blame to a particular component. Here is an excerpt from the error
message that explains a violation of the HasNext property:

> (define m (new map%))
> (define c (send m keys))
> (define t (send c iterator))
> (send t next)
next: contract violation
blaming: top level

An iterator created from a collection has its next method called without a corresponding
call to has-next. The contract system issues a blame assignment that points to the method
that failed and the component that violated the specification—here, the top-level code. This
information might be useful for tracking down the source of bugs in large systems [27, 28, 29].

4.4 Ingredients for Adding DSCs to a Programming Language
The DSC architecture is generic and should apply to many programming languages, with
varying degrees of ease. It requires two essential ingredients: (1) facilities for creating
embedded DSLs for the desired logics, such as macros; and (2) a mechanism for dynamically
checking logical formulas, such as contracts. The quality of these ingredients in a language
determines how easy it is to instantiate this architecture and how many of the features
from the preceding subsection can be realized. For example, a programming language
with powerful metaprogramming facilities reduces the notational overhead on programmers;
without such facilities, a DSC implementer may have to resort to shallow or deep embedding
techniques [20], which may impose an extra burden on developers.

Metaprogramming

A metaprogramming system enables programmers to extend their language with new linguis-
tic constructs and collect them in libraries or frameworks. Ideally, it permits blurring the
distinction between built-in constructs and user-defined ones. Importantly, metaprogramming
facilities exist inside the programming language. Depending on the chosen language, metapro-
gramming facilities can be used in the small and large: from quick syntactic abbreviations
all the way up to full feature-rich special-purpose DSLs. For DSCs, the metaprogramming

C. Moy and R. Jung and M. Felleisen 14:15

facilities must be powerful enough to create the embedded DSLs necessary for expressing
logical specifications.

Different languages have vastly different metaprogramming mechanisms. Some languages
provide lightweight syntactic metadata: decorators in Python and annotations in Java. In
other languages, such as Ruby, the syntax is sufficiently flexible and the semantics sufficiently
dynamic that a DSC notation can be built without any explicit language support. Another
major class of metaprogramming facilities are those based on (syntax-tree) macros: compile-
time rewriting rules. Before code generation, the compiler applies these rules to obtain the
program in a core syntax—a process called macro expansion. Languages in the Lisp family,
such as Clojure [23], are especially well-known for macros, but others including Rust and
Scala have adopted them too. Parenthetical syntax is not necessary [17].

Racket is well-suited for defining DSCs as it provides a great deal of support for language-
oriented programming [14]. While its advanced macro system essentially makes up a nearly
complete compiler API, the implementation of a DSC needs few of these capabilities.

Dynamic Checking

A contract system consists of a notation and a run-time mechanism for dynamically checking
a program’s behavior. The notation has to provide the means to identify relevant events,
e.g., “the first argument to the method call o.m,” and the predicate that should hold of such
events, e.g., “is a positive integer.” These statements are usually understandable as ordinary
program code—Boolean-valued assertions—and are easily translated into run-time checks.
The runtime system issues a descriptive error when any of these checks fail.

Modern contract systems permit programmers to monitor specifications over any kind
of value, including higher-order values such as objects, functions, and even the kind of
first-class classes found in Python, Racket, and Ruby. The corresponding run-time checks
rely on proxies that wrap values flowing through contracts and contain the Boolean-valued
run-time checks. Direct support for proxy values is available in a number of languages, e.g.,
JavaScript [51]. Even if proxies are unavailable, implementing proxies in some dynamic
languages does not require explicit support. Ruby, for example, supports objects that can
interpose on all send method invocations. Such a facility has been used to implemented
higher-order contracts [49]. So, while contracts are implemented as a core feature in some
languages, such as Eiffel [33, 34], they can often be implemented as a library, especially if
proxies are available.

Racket comes with a pioneering higher-order contract system [16]. The contract notation
is realized as an embedding, via a rich set of contract combinators; the base contracts are
predicates as in any other system. With trace contracts [37], programmers can articulate
predicates over traces of values that flow through particular points in a contract. Trace con-
tracts make it particularly straightforward to bridge the gap between the DSC specifications
presented here and the low-level contract system itself.

5 Evaluating the Domain-Specific Contracts Approach

An assessment of the DSC idea and its instantiation with trace contracts must address
a few aspects: (1) whether DSCs can accommodate existing logic notations; (2) what
developer-facing features these implementations provide; and (3) how precisely DSCs can
report specification violations. The first two points call for identifying and implementing a
corpus of logic notations for specifications in the literature (Section 5.1) and for a qualitative
assessment of them along several dimensions (Section 5.2). The last point is a matter of

ECOOP 2025

14:16 Contract Systems Need Domain-Specific Notations

implementation quality; an extensive test suite can validate that the blame assignment
points to the problematic party for some common example properties from the literature
(Section 5.3). In addition, this section relates the DSC idea to prior work (Section 5.4).

5.1 Corpus of Logics

The literature proposes a wide variety of logic notations for specifications that are suitable
to check with trace contracts. Here are six common ones:

Past-Time Linear Temporal Logic (PLTL) is a past-time variant of the more common
future-time linear temporal logic; see Section 2.

Regular Expressions (RE) are a simple formalism equivalent in expressive power to finite
state machines [26]; they are a well-known way for specifying parts of the behavior of a
software system [45].

Finite State Machines (NFA, DFA) have a finite number of states and transitions between
them. A deterministic finite-state machine (DFA) denotes the sequences of events that,
when run on the state machine, follow a unique path that ends in an accepting state [43].
A non-deterministic finite-state machine (NFA) denotes the sequences of events that,
when run on the state machine, end in an accepting state along some path.

Quantified Event Automata (QEA) resemble DFAs but are augmented with extra fea-
tures [4]. As the name suggests, the machine supports quantification. Conceptually, a
QEA represents a family of automata—one for every possible instantiation of quantified
variables. Practical implementations of QEA more efficiently compute transitions via a
compact representation of this family of automata.

Stream Logic (SL) describes properties by defining stream equations [11]. A stream is a
sequence of events that is accessible with a finite lookback. The dynamic checks for SL
specifications compute the value for each stream at the current index, making use of the
static dependencies of equations to solve them in the correct order. Irrelevant values, i.e.,
ones that are beyond the finite lookback, are automatically discarded.

All these formalisms have been implemented for use in Racket DSCs.

5.2 Qualitative Assessment

The implementations of these six logic notations have distinct qualities from the perspective
of language creators and users. This subsection reports those qualities in terms of four
dimensions: binding positions, definitions, static semantics, and macro extensibility. Figure 11
summarizes the discussion in a table.

PLTL RE DFA NFA QEA SL
Binding Rules ✓ × × × ✓ ✓

Definitions ✓ ✓ × × × ×
Static Semantics ✓ × × × × ✓

Macro Extensible ✓ ✓ × × × ×

Figure 11 Summary Qualitative Assessment of Logic DSLs

C. Moy and R. Jung and M. Felleisen 14:17

Binding Positions

Some DSLs are variable-free; others come with variable declarations that introduce binding
positions and determine the scope of a declaration. Since the syntax-spec system comes
with a binding-rules mechanism, it allows DSC creators to specify which pieces of a formula
are variable references, which are binding positions, and the scope of bindings. By declaring
the binding structure, DSC implementations can automatically support IDE services, static-
semantics passes, and translations into predicates.

Logic notations without quantification, i.e., RE, DFA, and NFA, do not require binding
rules. Specifically, the state-machine notations do not use an up-front declaration of states;
if they did, binding rules would be required. By contrast, both PLTL and QEA come with
variable quantification, and quantified variables are binders. In SL, equations must reference
other equations or primitive event streams. The binding rules for SL guarantee that there
are no free variables referencing an undefined stream.

Separate Definitions

For some logic notations, formulas can be defined piecemeal via the binding space mechanism.
Developers can build up libraries of reusable formulas that others can then compose into
specifications of modules, classes, and other components. For such compositional notations,
definition forms are a highly useful mechanism. While the state-machine notations from
the literature do not seem compositional, both RE and PLTL greatly benefit from the
introduction of definition forms.

Static Semantics

Some specification notations impose criteria that determine whether well-formed formulas
are valid. If an implementation can enforce such static-semantics constraints, it is superior
to plain frameworks or functional libraries because it informs developers at compile time
about basic mistakes, instead of delaying the discovery of specification mistakes until run
time. Programmers can thus avoid unexpected run-time errors and dynamic debugging due
to invalid specifications.

While Racket’s syntax-spec library automatically guarantees that logical specifications
are well-formed and closed with respect to any binding rules, the static semantics of DSCs
must be written as an additional check. Of the investigated notations, PLTL and SL must
satisfy such criteria. Section 4 covers the monitorability criteria for PLTL. For SL, the DSL
implementation statically checks that the dependency graph of the stream equations has no
closed walk with a total weight of zero, where the weights are determined by indices into
streams. This check statically generates the dependency graph from the stream equations
via local macro expansion, even when references to streams are embedded inside Racket
sub-expressions.

Macro Extensibility

When logical formulas are compositional, programmers benefit from a macro-extensible
language. The RE and PLTL notations make heavy use of this feature because many useful
operators can be derived from a small set of primitive operators. By expanding the surface
syntax to a small core language, the implementation can be organized like an ordinary
compiler (as in functional languages such as Haskell, ML, or Scheme). Equally important,

ECOOP 2025

14:18 Contract Systems Need Domain-Specific Notations

macro extensibility enables users to create syntactic abstractions when plain functional
abstractions do not suffice to hide repeated patterns in formulas.

In summary, the implementation of these specification notations preserve all desirable
aspects (e.g., the static checks) and, indeed, go beyond usual implementations, offering users
additional affordances. Furthermore, DSCs are embedded into the host, meaning the host’s
IDEs (DrRacket, Emacs) support DSCs essentially as well as plain Racket programs. When
implemented correctly, users do not notice any friction.

5.3 Blame Assignment
One claimed benefit of contracts is that error messages come with blame information
identifying the source of the specification violation. Blame assignment in higher-order
settings, and even more so for temporal properties, is subtle. In general, blame assignment
points to the components that contribute to a violation of a specification.

To understand whether blame assignment from the underlying contract system works
well for DSCs, it is necessary to adapt examples from the literature and to test violations on
sample code snippets. That is, unit tests should validate that the Racket implementation
actually produces blame assignments in accordance with the source of the bug.

Property Logic / SLOC Description

MapIterator PLTL (7), RE (1) An iterator constructed from a collection, which is
itself constructed from a map, is invalidated once the
underlying map is mutated.

HasNext QEA (6), RE (1) A call to the has-next method must precede every call
to the next method.

HashCode QEA (5), SL (7) An object’s hash-code must not change so long as it is
being used as a key in a map.

ClosedReader SL (8) A call to the read method of a reader object must not
take place after the underlying input stream has been
closed.

SetFromMap SL (6) Creating a set from a map renders the latter unusable.

RemoveOnce RE (1) An iterator’s remove method can be called only once
per invocation of the next method.

StreamClose RE (1) A stream may be used until it is closed or the underlying
TCP listener is closed.

PortExclusivity QEA (5) Listeners can be created for a port, so long as there is
no active listener already associated with that port.

Figure 12 Sample Properties

Figure 12 list some sample properties from the literature, which logics they were imple-
mented in, and how many lines it took to write each formula. All explain properties of the
Java API that are stated informally but may or may not be checked via the assertion system.
Other systems can enforce these properties [30], and so can the Racket realization of DSCs.

The test suite for the Racket implementation contains adaptations for all these properties.
The corresponding code come with components that violate the properties. Unit tests ensure
that checking these DSC specifications catches all violations and that the relevant blame
assignment points to the buggy component.

C. Moy and R. Jung and M. Felleisen 14:19

5.4 Prior Work

Dimoulas et al. [12] present the first and only analysis in the contract-systems literature
that explicitly mentions the need for a contract-specific notation. Their analysis explains a
contract system as resting on three pillars: (1) a notation for expressing contracts; (2) a set of
interposition points in the run-time system that allows inspecting values; and (3) a syntactic
mechanism for attaching contracts to values. Generally speaking, research on contracts has
tightly coupled the three, associating one contract notation with specific interposition points
and attachment mechanisms. Instead, the DSC architecture proposes that any language with
contracts benefits from a loose coupling between contract notations on the one hand, and
attachment mechanisms and interposition points on the other.

JavaMOP [7], a run-time verification system, is the only existing system with a similarly
loose coupling. From a high-level perspective, JavaMOP rests on an aspect-like interposition
system, dubbed monitor-oriented programming (MOP) [32]. Since JavaMOP is a run-time
verifier, programmers do not formulate method-level or even class-level contracts, but whole-
program properties. The JavaMOP framework compiles these properties into monitoring
code snippets that are woven into the program at appropriate join points and that send
values to a parallel property-checking process.

Unlike other run-time verification systems, JavaMOP permits programmers to choose
the property notation best suited to the task and, indeed, allows them to create and plug in
their own notation. From this angle, JavaMOP resembles the Racket implementation of the
DSC architecture.

However, three differences stand out. First, the DSC proposal is intended to be realizable
in any programming language. As detailed in Section 4, an implementation can be realized
with minimal effort in languages with macro systems such as Racket, Clojure, Julia, Rust, or
Scala. In languages without macro systems, an implementation may require a bit more labor,
depending on existing features, but using conventional techniques for embedding domain-
specific languages make DSCs feasible, even without significant engineering resources. Second,
the end-product of DSCs is more convenient for programmers to use than a toolchain-based
solution such as JavaMOP. A library can be installed directly from a language’s package
manager and used immediately. Finally, DSCs provide additional benefits beyond what
JavaMOP delivers, e.g., IDE integration and blame assignment (from the underlying contract
system, if available). The remainder of this section provides a detailed comparison.

Logic Plugins

JavaMOP users can develop their own logic plugins to add new, possibly domain-specific,
specification languages. These plugins are essentially ordinary compilers from the surface
syntax to Java code. Constructing such a compiler requires the use of traditional compiler
generator tools, such as a parser generator, and a solid understanding of the semantics and
behavior of the target language. As a result, developing a new logic or extending an existing
one is challenging and not a lightweight exercise.

In the context of the proposed architecture, DSCs rely on the host language’s existing
metaprogramming facilities or established DSL implementation patterns. In a language
with a macro system, such as Racket, new DSCs with sophisticated features can be created
easily with a combination of declarative grammar specifications and recursive functions.
And, if the host allows for declarative DSL specifications, these DSCs are maintainable in a
straightforward manner.

ECOOP 2025

14:20 Contract Systems Need Domain-Specific Notations

Linguistic Integration

A byproduct of JavaMOP’s extra-linguistic approach is that logical specifications are syntac-
tically isolated from the rest of the program. JavaMOP specifications are typically added as
comments to the code or as entirely separate text files. As a consequence, these artifacts end
up as second-class citizens within a software project.

By contrast, DSCs make logical specifications an integrated part of the underlying project;
they exist within the program. As such, all host-language tools continue to work with logical
specifications. Notably, DrRacket’s existing IDE services seamlessly extend to DSC code.

Trace Management

JavaMOP takes a global perspective on monitoring. System events are captured and stored
in a global sequence. This monitoring strategy is central to the run-time verification
approach. Since checking globally generated traces requires a slicing technique, JavaMOP’s
implementation makes slicing independent of the underlying logic to reduce the burden
on the developer of a new logic notation [7, 24]. In the end, however, the program-global
property approach remains an obstacle to reasoning about code in a compositional manner.
Slicing also requires a notion of equality on objects which, if one is not defined already, relies
on pointer equality. Depending on pointer equality for objects violates a key principle of
object-oriented programming [8].

Contracts, by contrast, often eliminate the need for slicing because the state for a given
value is freshly initialized when the value passes through an attachment boundary. Monitoring
is local. Thus, the MapIterator property from Section 2 can be attached to a specific object
and remains quantifier free; the equivalent formula in JavaMOP requires quantifiers and
hence a slicing implementation in the monitoring process. Localized monitoring also unlocks
unique advantages such as blame assignment (if the underlying contract system provides
it). Slicing is still occasionally useful in contracts. For example, Section 3 shows slicing
based on port numbers. A notion of equality is defined for port numbers, so the principles of
object-oriented design are maintained.

Run-time Enforcement

As originally published, JavaMOP supported only one run-time enforcement mechanism. The
AspectJ [25] weaver would statically inject monitoring code into a system based on the given
specification. This requires AspectJ as a compile-time dependency and alters the ordinary
build process for a Java project. Now, JavaMOP supports a dynamic enforcement mechanism
known as the JavaMOP agent. With this mode, an instrumented JVM supplies the means to
record system events during execution. The JavaMOP agent offers some advantages over the
static approach, but requires a specialized runtime. Both of these mechanisms are somewhat
unique to Java and are not readily available in other languages.

Contracts use a completely different implementation approach. While first-order contracts
essentially get away with Boolean-valued assertions, higher-order and trace-contract systems
rely on proxy objects to monitor a running program. If the language does not support proxy
objects directly, implementing a reasonable approximation is feasible. The key is that proxies
enable a simple, local-enforcement mechanism, which is crucial for blame assignment in
higher-order settings.

C. Moy and R. Jung and M. Felleisen 14:21

6 A Future for Domain-Specific Contracts

Racket makes it straightforward to instantiate the DSC idea. It comes with an expressive
library of contract combinators and a powerful facility for creating domain-specific notations.
Leveraging the latter allows the creators of DSCs to implement notations with little effort
and translate them to contract expressions. End-users can employ a library that provides
DSCs just like any other dependency—critically, while continuing to use, and benefiting
from, existing IDEs.

While the Racket implementation is particularly straightforward, several programming
languages offer similar combinations of metaprogramming and contract features. For example,
Clojure has ported most of Racket’s contract system and comes with its own macro system.
Scala too has a rich metaprogramming system for embedding DSLs [44] and could be equipped
with a contract system based on Java’s assertion system.

This paper has discussed the DSC idea only in the context of trace contracts with
temporal specification languages. However, the idea of combining contracts with domain-
specific specification languages goes far beyond that particular instantiation. For example,
effect-handler contracts [36] combined with an authorization logic [1] yields authorization
contracts [35] that can enforce security properties. Or, network-aware contracts [52] combined
with a DSL for describing the legal moves of a game [12] yields the rule checker for an
implementation of an online game. Indeed, there are plenty of other combinations not yet
studied and worthy of exploration from the DSC perspective. Contracts and DSLs are useful
alone. But together, they are better.

References
1 Owen Arden, Jed Liu, and Andrew C. Myers. Flow-Limited Authorization. In Computer

Security Foundations (CSF), 2015. doi:10.1109/csf.2015.42.
2 Michael Ballantyne and Matthias Felleisen. Injecting Language Workbench Technology

into Mainstream Languages. In Eelco Visser Commemorative Symposium (EVCS), 2023.
doi:10.4230/OASIcs.EVCS.2023.3.

3 Michael Ballantyne, Mitch Gamburg, and Jason Hemann. Compiled, Extensible, Multi-
Language DSLs (Functional Pearl). In International Conference on Functional Programming
(ICFP), 2024. doi:10.1145/3674627.

4 H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. Rydeheard. Quantified Event
Automata: Towards Expressive and Efficient Runtime Monitors. In Formal Methods (FM),
2012. doi:10.1007/978-3-642-32759-9_9.

5 David Basin, Felix Klaedtke, and Eugen Zălinescu. The MonPoly Monitoring Tool. In
Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification
Tools (RV-CuBES), 2017. doi:10.29007/89hs.

6 Eugene Burmako. Scala Macros: Let Our Powers Combine! In Workshop on Scala, 2013.
doi:10.1145/2489837.2489840.

7 Feng Chen and Grigore Roşu. MOP: An Efficient and Generic Runtime Verification Framework.
In Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), 2007.
doi:10.1145/1297027.1297069.

8 William R. Cook. On Understanding Data Abstraction, Revisited. In Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), 2009. doi:10.1145/1640089.
1640133.

9 Ryan Culpepper. Fortifying Macros. Journal of Functional Programming (JFP), 2012.
doi:10.1017/s0956796812000275.

10 Ryan Culpepper and Matthias Felleisen. Fortifying Macros. In International Conference on
Functional Programming (ICFP), 2010. doi:10.1145/1863543.1863577.

ECOOP 2025

https://doi.org/10.1109/csf.2015.42
https://doi.org/10.4230/OASIcs.EVCS.2023.3
https://doi.org/10.1145/3674627
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.29007/89hs
https://doi.org/10.1145/2489837.2489840
https://doi.org/10.1145/1297027.1297069
https://doi.org/10.1145/1640089.1640133
https://doi.org/10.1145/1640089.1640133
https://doi.org/10.1017/s0956796812000275
https://doi.org/10.1145/1863543.1863577

14:22 Contract Systems Need Domain-Specific Notations

11 B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson, B. Finkbeiner, H.B. Sipma,
S. Mehrotra, and Z. Manna. LOLA: Runtime Monitoring of Synchronous Systems. In Temporal
Representation and Reasoning (TIME), 2005. doi:10.1109/TIME.2005.26.

12 Christos Dimoulas, Max S. New, Robert Bruce Findler, and Matthias Felleisen. Oh Lord,
Please Don’t Let Contracts Be Misunderstood (Functional Pearl). In International Conference
on Functional Programming (ICFP), 2016. doi:10.1145/2951913.2951930.

13 Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann. Sugarj:
Library-Based Syntactic Language Extensibility. In Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), 2011. doi:10.1145/2048066.2048099.

14 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzi-
lay, Jay McCarthy, and Sam Tobin-Hochstadt. A Programmable Programming Language.
Communications of the ACM (CACM), 2018. doi:10.1145/3127323.

15 Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krishna-
murthi, Paul Steckler, and Matthias Felleisen. DrScheme: A Programming Environment for
Scheme. Journal of Functional Programming (JFP), 2002. doi:10.1017/S0956796801004208.

16 Robert Bruce Findler and Matthias Felleisen. Contracts for Higher-Order Functions. In
International Conference on Functional Programming (ICFP), 2002. doi:10.1145/581478.
581484.

17 Matthew Flatt, Taylor Allred, Nia Angle, Stephen De Gabrielle, Robert Bruce Findler,
Jack Firth, Kiran Gopinathan, Ben Greenman, Siddhartha Kasivajhula, Alex Knauth, Jay
McCarthy, Sam Phillips, Sorawee Porncharoenwase, Jens Axel Søgaard, and Sam Tobin-
Hochstadt. Rhombus: A New Spin on Macros without All the Parentheses. In Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), 2023. doi:10.1145/3622818.

18 Matthew Flatt, Eli Barzilay, and Robert Bruce Findler. Scribble: Closing the Book on Ad
Hoc Documentation Tools. In International Conference on Functional Programming (ICFP),
2009. doi:10.1145/1596550.1596569.

19 Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-1, PLT Design
Inc., 2010. https://racket-lang.org/tr1/.

20 Jeremy Gibbons and Nicolas Wu. Folding Domain-Specific Languages: Deep and Shallow
Embeddings (Functional Pearl). In International Conference on Functional Programming
(ICFP), 2014. doi:10.1145/2628136.2628138.

21 Ben Greenman, Siddhartha Prasad, Antonio Di Stasio, Shufang Zhu, Giuseppe De Giacomo,
Shriram Krishnamurthi, Marco Montali, Tim Nelson, and Milda Zizyte. Misconceptions
in Finite-Trace and Infinite-Trace Linear Temporal Logic. In Formal Methods, 2024. doi:
10.1007/978-3-031-71162-6_30.

22 Ben Greenman, Sam Saarinen, Tim Nelson, and Shriram Krishnamurthi. Little Tricky
Logic: Misconceptions in the Understanding of LTL. The Art, Science, and Engineering of
Programming, 2023. doi:10.22152/programming-journal.org/2023/7/7.

23 Rich Hickey. A History of Clojure. In History of Programming Languages (HOPL), 2020.
doi:10.1145/3386321.

24 Dongyun Jin, Patrick O’Neil Meredith, Dennis Griffith, and Grigore Rosu. Garbage Collection
for Monitoring Parametric Properties. In Programming Language Design and Implementation
(PLDI), 2011. doi:10.1145/1993498.1993547.

25 Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An Overview of AspectJ. In European Conference on Object-Oriented Programming
(ECOOP), 2001. doi:10.1007/3-540-45337-7_18.

26 S.C. Kleene. Representation of Events in Nerve Nets and Finite Automata. In Automata
Studies. Princeton University Press, Princeton, N.J., 1956. doi:10.1515/9781400882618-002.

27 Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas. How To Evaluate
Blame For Gradual Types. In International Conference on Functional Programming (ICFP),
2021. doi:10.1145/3473573.

https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1145/2951913.2951930
https://doi.org/10.1145/2048066.2048099
https://doi.org/10.1145/3127323
https://doi.org/10.1017/S0956796801004208
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/3622818
https://doi.org/10.1145/1596550.1596569
https://racket-lang.org/tr1/
https://doi.org/10.1145/2628136.2628138
https://doi.org/10.1007/978-3-031-71162-6_30
https://doi.org/10.1007/978-3-031-71162-6_30
https://doi.org/10.22152/programming-journal.org/2023/7/7
https://doi.org/10.1145/3386321
https://doi.org/10.1145/1993498.1993547
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1145/3473573

C. Moy and R. Jung and M. Felleisen 14:23

28 Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas. How To Evaluate
Blame For Gradual Types, Part 2. In International Conference on Functional Programming
(ICFP), 2023. doi:10.1145/3607836.

29 Lukas Lazarek, Alexis King, Samanvitha Sundar, Robert Bruce Findler, and Christos Dimoulas.
Does Blame Shifting Work? In Principles of Programming Languages (POPL), 2020. doi:
10.1145/3371133.

30 Owolabi Legunsen, Wajih Ul Hassan, Xinyue Xu, Grigore Roşu, and Darko Marinov. How Good
are the Specs? A Study of the Bug-Finding Effectiveness of Existing Java API Specifications.
In Automated Software Engineering (ASE), 2016. doi:10.1145/2970276.2970356.

31 Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. The Glory Of The Past. In Logics of
Programs, 1985. doi:10.1007/3-540-15648-8_16.

32 Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Roşu. An
Overview of the MOP Runtime Verification Framework. International Journal on Software
Tools for Technology Transfer, 2011. doi:10.1007/s10009-011-0198-6.

33 Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.
34 Bertrand Meyer. Applying “Design by Contract”. Computer, 1992. doi:10.1109/2.161279.
35 Scott Moore, Christos Dimoulas, Robert Bruce Findler, Matthew Flatt, and Stephen Chong.

Extensible Access Control with Authorization Contracts. In Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA), 2016. doi:10.1145/2983990.2984021.

36 Cameron Moy, Christos Dimoulas, and Matthias Felleisen. Effectful Software Contracts. In
Principles of Programming Languages (POPL), 2024. doi:10.1145/3632930.

37 Cameron Moy and Matthias Felleisen. Trace Contracts. Journal of Functional Programming
(JFP), 2023. doi:10.1017/S0956796823000096.

38 Phúc C. Nguyễn, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn. Soft Contract
Verification for Higher-Order Stateful Programs. In Principles of Programming Languages
(POPL), 2018. doi:10.1145/3158139.

39 Oracle. Iterator(Java SE 23 & JDK 23). https://docs.oracle.com/en/java/javase/23/
docs/api/java.base/java/util/Iterator.html, 2024.

40 Oracle. Map (Java SE 23 & JDK 23). https://docs.oracle.com/en/java/javase/23/docs/
api/java.base/java/util/Map.html, 2024.

41 Terence Parr. Language Implementation Patterns: Create Your Own Domain-Specific and
General Programming Languages. Pragmatic Bookshelf, 2009.

42 The Rust Project. The Rust Reference: Procedural Macros. https://doc.rust-lang.org/
reference/procedural-macros.html, 2024.

43 M. O. Rabin and D. Scott. Finite Automata and their Decision Problems. IBM Journal of
Research and Development, 1959. doi:10.1147/rd.32.0114.

44 Tiark Rompf and Martin Odersky. Lightweight Modular Staging: A Pragmatic Approach to
Runtime Code Generation and Compiled DSLs. In Generative Programming and Component
Engineering (GPCE), 2010. doi:10.1145/1868294.1868314.

45 Usa Sammapun and Oleg Sokolsky. Regular Expressions for Run-Time Verification. In
Automated Technology for Verification and Analysis (ATVA), 2003.

46 Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton Van Straaten, Robby Findler, and
Jacob Matthews. Revised6 Report on the Algorithmic Language Scheme. Journal of Functional
Programming, 2009. doi:10.1017/s0956796809990074.

47 Guy L. Steele. Common Lisp the Language. Digital Press, 1990.
48 T. Stephen Strickland, Christos Dimoulas, Asumu Takikawa, and Matthias Felleisen. Contracts

For First-Class Classes. Transactions on Programming Languages and Systems (TOPLAS),
2013. doi:10.1145/2518189.

49 T. Stephen Strickland, Brianna M. Ren, and Jeffrey S. Foster. Contracts For Domain-Specific
Languages In Ruby. In Dynamic Languages Symposium (DLS), 2014. doi:10.1145/2661088.
2661092.

ECOOP 2025

https://doi.org/10.1145/3607836
https://doi.org/10.1145/3371133
https://doi.org/10.1145/3371133
https://doi.org/10.1145/2970276.2970356
https://doi.org/10.1007/3-540-15648-8_16
https://doi.org/10.1007/s10009-011-0198-6
https://doi.org/10.1109/2.161279
https://doi.org/10.1145/2983990.2984021
https://doi.org/10.1145/3632930
https://doi.org/10.1017/S0956796823000096
https://doi.org/10.1145/3158139
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/Iterator.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/Iterator.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/Map.html
https://doc.rust-lang.org/reference/procedural-macros.html
https://doc.rust-lang.org/reference/procedural-macros.html
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1017/s0956796809990074
https://doi.org/10.1145/2518189
https://doi.org/10.1145/2661088.2661092
https://doi.org/10.1145/2661088.2661092

14:24 Contract Systems Need Domain-Specific Notations

50 T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt.
Chaperones and Impersonators: Run-Time Support for Reasonable Interposition. In Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA), 2012. doi:10.1145/
2384616.2384685.

51 Tom Van Cutsem and Mark S. Miller. Proxies: Design Principles for Robust Object-oriented
Intercession APIs. In Dynamic Languages Symposium (DLS), 2010. doi:10.1145/1869631.
1869638.

52 Lucas Waye, Stephen Chong, and Christos Dimoulas. Whip: Higher-Order Contracts for
Modern Services. In International Conference on Functional Programming (ICFP), 2017.
doi:10.1145/3110280.

53 Dana N. Xu, Simon Peyton Jones, and Koen Claessen. Static Contract Checking for Haskell.
In Principles of Programming Languages (POPL), 2009. doi:10.1145/1480881.1480889.

https://doi.org/10.1145/2384616.2384685
https://doi.org/10.1145/2384616.2384685
https://doi.org/10.1145/1869631.1869638
https://doi.org/10.1145/1869631.1869638
https://doi.org/10.1145/3110280
https://doi.org/10.1145/1480881.1480889

	1 From General-Purpose to Domain-Specific Notations
	2 Domain-Specific Contracts in Action
	3 Real Code Needs a Mixture of Domain-Specific Notations
	4 Implementing Domain-Specific Contracts
	4.1 Low-Level Contract Mechanisms
	4.2 Domain-Specific Languages via Macros
	4.3 Features To Observe
	4.4 Ingredients for Adding DSCs to a Programming Language

	5 Evaluating the Domain-Specific Contracts Approach
	5.1 Corpus of Logics
	5.2 Qualitative Assessment
	5.3 Blame Assignment
	5.4 Prior Work

	6 A Future for Domain-Specific Contracts

