
53

Corpse Reviver: Sound and Efficient Gradual Typing via

Contract Verification

CAMERON MOY, Northeastern University, USA

PHÚC C. NGUYỄN∗, University of Maryland, USA

SAM TOBIN-HOCHSTADT, Indiana University, USA

DAVID VAN HORN, University of Maryland, USA

Gradually typed programming languages permit the incremental addition of static types to untyped pro-
grams. To remain sound, languages insert run-time checks at the boundaries between typed and untyped
code. Unfortunately, performance studies have shown that the overhead of these checks can be disastrously
high, calling into question the viability of sound gradual typing. In this paper, we show that by building on
existing work on soft contract verification, we can reduce or eliminate this overhead.

Our key insight is that while untyped code cannot be trusted by a gradual type system, there is no need
to consider only the worst case when optimizing a gradually typed program. Instead, we statically analyze
the untyped portions of a gradually typed program to prove that almost all of the dynamic checks implied
by gradual type boundaries cannot fail, and can be eliminated at compile time. Our analysis is modular, and
can be applied to any portion of a program.

We evaluate this approach on a dozen existing gradually typed programs previously shown to have pro-
hibitive performance overhead—with a median overhead of 2.5× and up to 80.6× in the worst case—and
eliminate all overhead in most cases, suffering only 1.5× overhead in the worst case.

CCS Concepts: • Software and its engineering → Formal software verification; Functional languages.

Additional Key Words and Phrases: gradual typing, contract verification, Typed Racket

ACM Reference Format:

Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn. 2021. Corpse Reviver: Sound
and Efficient Gradual Typing via Contract Verification. Proc. ACM Program. Lang. 5, POPL, Article 53 (Janu-
ary 2021), 28 pages. https://doi.org/10.1145/3434334

1 STATIC VERIFICATION TO AVOID DYNAMIC COSTS

Gradual typing [Siek and Taha 2006; Tobin-Hochstadt and Felleisen 2006] has become a popular ap-
proach to integrate static types into existing dynamically typed programming languages [Chaud-
huri et al. 2017; Microsoft Corp. 2014; Stripe Inc. 2019; Tobin-Hochstadt and Felleisen 2008]. It
promises to combine the benefits of compile-time static checking such as optimization, tooling,
and enforcement of invariants, while accommodating the existing idioms of popular languages
such as Python, JavaScript, and others.

The technology that enables this combination to be safe is higher-order contracts [Findler and
Felleisen 2002], which allow the typed portion of a program to protect its invariants, even when

∗Now at Google.

Authors’ addresses: Cameron Moy, Northeastern University, Boston, MA, USA; Phúc C. Nguyễn, University of Maryland,
College Park, MD, USA; Sam Tobin-Hochstadt, Indiana University, Bloomington, IN, USA; David Van Horn, University of
Maryland, College Park, MD, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).
2475-1421/2021/1-ART53
https://doi.org/10.1145/3434334

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3434334
https://doi.org/10.1145/3434334

53:2 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%

Fig. 1. Overhead of gradual typing over an entire benchmark suite. The purple () curve is Typed Racket
and the orange () curve is SCV-CR. The log-scaled x-axis indicates slowdown factor compared to the fully
untyped configuration, while the y-axis indicates the percent of configurations incurring that slowdown.
Each benchmark is allocated an equal proportion of the y-axis. Higher is better.

higher-order values such as functions, objects, or mutable values flow back and forth between com-
ponents. Contracts also support blame, that specifies which component failed when an invariant
is violated. In sound gradually typed languages, when one of the generated contracts fails, blame
always lies with an untyped component.

Unfortunately, dynamic enforcement of types comes at a cost, since run-time checks must be
executed whenever values flow between typed and untyped components. Furthermore, when a
higher-order value crosses a type boundary, the value must be wrapped. This imposes overhead
from wrapper allocation, indirection, and checking.

Recent large-scale studies, as well as significant anecdotal evidence, have found this cost to be
unacceptably high [Greenman et al. 2019; Takikawa et al. 2016]. Some real programs, when mi-
grated in a specific way, exhibit slowdowns over 20×, likely rendering them unusable for their
actual purpose. Even less-problematic examples often exhibit significant slowdowns. Research im-
plementations designed for speed often perform much better, but still suffer an up to 8× slow-
down [Kuhlenschmidt et al. 2019].

Faced with this obstacle, many systems abandon some or all of the semantic advantages of grad-
ual typing, in several cases giving up entirely on run-time enforcement of types [Greenman and
Felleisen 2018]. TypeScript [Microsoft Corp. 2014], Flow [Chaudhuri et al. 2017], MyPy [Lehtos-
alo 2017], and others omit dynamic checks, making their type systems unsound. Others, such as
Grace [Black et al. 2012], Sorbet [Stripe Inc. 2019], and Reticulated Python [Vitousek et al. 2014],
keep some dynamic checking, but give up the full soundness guarantee offered by gradual typing.
Yet other systems, such as Safe TypeScript [Rastogi et al. 2015], Nom [Muehlboeck and Tate 2017],
Thorn [Wrigstad et al. 2010], and Dart [Google Inc. 2018], limit interoperability between typed and
untyped code to avoid some expensive checks. Abandoning either soundness or interoperability
may seem pragmatic, but loses both the benefits of sound checking for error reporting and de-
bugging as well as precluding the possibility of type-based optimization [Tobin-Hochstadt et al.
2017].

We offer a new approach to the dilemma of gradual type enforcement without giving up either
the semantic benefits of soundness or efficient execution. Our key idea is that dynamic contracts

are statically useful. Our tool, SCV-CR, statically verifies contracts generated by Typed Racket, an
existing gradually typed language, eliminating those that cannot fail at run time. These contracts
generate significant, useful information which can be used to reason about the static behavior
of all code, even in the absence of static types. In particular, contracts characterize the allowable

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

Corpse Reviver: Sound and Efficient Gradual Typing via Contract Verification 53:3

interactions between typed and untyped code, which can be used to validate that untyped code
respects the type abstractions of its typed counterparts.

Building on a sound and precise higher-order symbolic execution system for a large subset of
Racket [Nguyễn et al. 2018], SCV-CR eliminates almost all of the contracts generated by Typed
Racket across a dozen preexisting benchmarks [Greenman et al. 2019]. As shown in Figure 1, after
our optimizations, almost no performance overhead remains, despite the presence of catastrophic
overhead even in some simple benchmarks we study. In short, this work focuses on eliminating
checks that are not going to fail, rather than worrying about their expense, and we show that this
direction holds significant promise for making gradual typing performant.

Furthermore, by leveraging the notion of blame [Findler and Felleisen 2002], our analysis and
optimization is fully modular. Any single module can be analyzed in isolation, and potential fail-
ures from one module, or even one contract in a module, do not prevent the optimization of other
contracts in the module.

The standard soundness result for typed programming is often sloganized as “well-typed pro-
grams don’t go wrong.” It has been adapted in the setting of gradually typed programming to
“well-typed modules can’t be blamed” [Tobin-Hochstadt and Felleisen 2006]. Essentially, things
can go wrong at run time, but it is always the untyped code’s fault. This is a lovely property, but
one that perhaps paints untyped code too broadly as unreasonable. Research on gradually typed
languages usually treats untyped modules as code for which all bets are off. If we can’t statically
know anything about the untyped code, then optimizations must focus on the mechanisms en-
forcing the disciplines of the typed code within the untyped code, leading to a wide variety of
enforcement strategies.

Our work begins instead from the hypothesis that “untyped modules can be blamed, but usually
aren’t.” In other words, untyped code may not follow the static discipline of a given type system,
but it often does follow that discipline dynamically. Moreover, the static requirements, formulated
as dynamic contracts, can be validated against untyped code. What is needed is a verification
method able to closely model dynamic idioms of untyped languages, for which we find higher-
order symbolic execution a good fit.

Contributions. This paper contributes:

• the idea that dynamic contracts are statically useful for optimizing gradually typed programs
by verifying contracts against the untyped portions of a program;

• a technique for reducing the problem of optimizing a gradually typed program into the
problem of modular contract verification, formalized in a simple gradually typed calculus;

• a tool that implements these ideas, integrating Typed Racket and an existing contract verifi-
cation system based on higher-order symbolic execution;

• and an evaluation demonstrating the effectiveness of our approach on a variety of programs
from the canonical gradual typing benchmark suite, omitting only those beyond the scope
of the symbolic execution engine we employ.

The overall performance of our system is visualized in the cumulative distribution function
(CDF) plot in Figure 1. This plot follows the conventions of Takikawa et al. [2016], and represents
the normalized percentage of configurations (on the y-axis) that have less than the given slowdown
(on the x-axis, log-scale).1 For example, Typed Racket 7.8 runs 45% of benchmark configurations
with less than 2× slowdown.With SCV-CR, 95% of benchmark configurations have less than 1.1×

1The percent is normalized such that all benchmarks are weighed equally, even though some may contain many more
configurations than others.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

53:4 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn

#lang typed/racket

(provide (struct-out stream)

stream-unfold

stream-get)

(struct: stream

([first : Natural]

[rest : (-> stream)]))

(: stream-unfold

(-> stream (values Natural stream)))

(define (stream-unfold st)

(values (stream-first st)

((stream-rest st))))

(: stream-get (-> stream Natural Natural))

(define (stream-get st i)

(define-values (hd tl)

(stream-unfold st))

(if (= i 0)

hd

(stream-get tl (sub1 i))))

(a) The fully typed streams module.

#lang typed/racket

(require "streams.rkt")

(: count-from (-> Natural stream))

(define (count-from n)

(stream n (𝜆 () (count-from (add1 n)))))

(: sift (-> Natural stream stream))

(define (sift n st)

(define-values (hd tl) (stream-unfold st))

(if (= 0 (modulo hd n))

(sift n tl)

(stream hd (𝜆 () (sift n tl)))))

(: sieve (-> stream stream))

(define (sieve st)

(define-values (hd tl) (stream-unfold st))

(stream hd (𝜆 () (sieve (sift hd tl)))))

(: primes stream)

(define primes (sieve (count-from 2)))

(stream-get primes 6666)

(b) The fully typed main module.

Fig. 2. The fully typed configuration of ॹ९५ॼ५.

slowdown compared to the fully untyped configuration. As this plot makes clear, SCV-CR reduces
overhead to nearly zero in almost all cases, and completely eliminates all overhead above 1.5×.

In the remainder of this paper, we describe our approach, why it works well on gradual typing,
and provide an extensive evaluation. We begin with an example-driven overview of how contract
verification can eliminate gradual typing dynamic checks (§2). Next, we formalize our ideas (§3)
in a simple gradually typed language of modules and functions, which compiles to the language
of contracts considered by Nguyễn et al. [2018], and show how the soundness of our optimizer is a
corrollary of the soundness result for their symbolic executor. Then, we describe the implementa-
tion (§4), including integration with Typed Racket, use of an existing symbolic execution engine,
and subsequent optimization. We evaluate our tool (§5) on a dozen preexisting benchmarks drawn
from How to Evaluate the Performance of Gradual Typing Systems by Greenman et al. [2019], elab-
orating on the summary given in Figure 1. Finally, we conclude with a perspective on how our
results point to potential improvments in gradual typing evaluation.

2 EXAMPLES AND INTUITION

This section explains how sound type enforcement significantly slows down a simple gradually
typed program, and describes how contract verification helps eliminate this overhead.

2.1 A Small Benchmark

The ॹ९५ॼ५ program is a synthetic benchmark constructed as a small example that exhibits major
performance problems in a gradually typed setting. It computes prime numbers using the Sieve
of Eratosthenes algorithm over a lazy stream data structure. Only one boundary is present in the
program, between the streams library and the main driver module.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

Corpse Reviver: Sound and Efficient Gradual Typing via Contract Verification 53:5

Figure 2a shows the streams module that implements an infinite stream as a structure contain-
ing the next element in the stream, and a thunk that computes the rest of the stream when applied.
Stream operations include stream-unfold that returns a stream’s next element and forces its rest,
and stream-get that returns the stream’s 𝑖th element.

Figure 2b shows the main module that computes prime numbers as an infinite stream, and
queries the 6666th prime. Included are three ancillary functions: count-from returns an infinite
stream of natural numbers starting from a lower bound, sift filters out elements divisible by a
given number, and sieve filters out elements that are divisible by a preceding element. All prime
numbers can be computed by filtering the naturals starting at 2 with sieve.

A gradually typed language permits a programmer to incrementally add types to a program
while still allowing mixed-typed configurations to run. In Typed Racket, the units of migration
are whole modules, so for ॹ९५ॼ५ there are 4 runnable configurations. Figure 2 is the fully typed
configuration after migrating both untyped modules.

We chose this example because it is relatively small, and the interaction between main and
streams involve wrapped functions that incur substantial slowdown from dynamic checks.

2.2 Source of the Slowdown

Consider a point along the migration path between the fully untyped and fully typed configu-
rations. Suppose streams is typed and main is untyped. To ensure streams is protected when
interacting with main, Typed Racket generates contracts that enforce the type invariants on val-
ues that flow from untyped to typed modules, as shown in Figure 3. In our example, each time the
untyped main module invokes the stream constructor, the first element is checked against a flat
contract to ensure that it is a natural number. This obligation is discharged immediately, yielding
either a contract violation or passing the value forward.The rest of the stream, a thunk, is wrapped
in a proxy [Strickland et al. 2012] to guarantee that it returns a stream when called.

Unfortunately, in this configuration, an enormous number of values flow through the boundary
between the untyped and typed modules. Computing the 6666th prime number results in just un-
der 45 million thunk allocations and applications. In general, computing the 𝑛th prime requires at
least a quadratic number of calls to sift, implying a significant amount of checking and wrapping.

2.3 Contract Verification

Eliminating run-time checks requires verifying the untyped main using the contracts generated
by the typed streams. Specifically, the contracts from streams that enforce its client’s behavior
are:

• natural? and (-> stream?) for the stream constructor’s arguments,
• stream? for stream-unfold’s argument,
• and stream? and natural? for stream-get’s arguments.

If we can prove that main never violates these contracts, then they are redundant and can be
eliminated without changing the program’s behavior. Verification of main involves approximating
arbitrary interactions with it through symbolic execution. If main is blame-free during symbolic
execution, it must also be blame-free in any concrete execution, by the soundness of higher-order
symbolic execution [Nguyễn et al. 2018].

Because main does not export any values, the only possible interaction with main is running it,
and the only non-trivial expressions to evaluate are the last two, constructing the infinite prime
stream, and querying the 6666th element. We consider how each function application in these two
expressions are symbolically evaluated:

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

53:6 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn

#lang racket

(provide

(contract-out

[stream-get (-> stream? natural? natural?)]

[stream-unfold (-> stream? (values natural? stream?))]

[struct stream ([first natural?] [rest (-> stream?)])]))

...

Fig. 3. The fully typed streams module as an untyped module with explicit contracts for the ॹ९५ॼ५ bench-
mark. The elided code is the same as the corresponding code in Figure 2a, minus the type annotations.

count-from. To define primes, main calls count-from with 2, in turn calling the stream con-
structor with 2 and a thunk that recursively calls count-from. The former satisfies the flat contract
natural?, and the latter is wrapped in higher-order contract (-> stream?). Consequently, count-
from returns a stream containing a natural number, and a guarded thunk whose return value will
be monitored to satisfy stream?.

sieve. When sieve is applied to this result, the stream is passed to stream-unfold, whose
argument contract stream? is satisfied. From main’s point of view, the stream-unfold function
is opaque; its behavior is described only by its contract. Therefore, symbolic execution simulates
the arbitrary ways stream-unfold could interact with its context—how it can return and use its
higher-order argument. Here, the approximation of stream-unfold repeatedly explores applica-
tions of the stream’s rest, its rest’s rest, and so on. Each time a new stream flows to the unknown,
its guarded thunk correctly applies the stream constructor to a natural number and a thunk, and
returns a stream that satisfies stream?. When stream-unfold returns, its contract guarantees that
hd is a natural number, and tl is a stream.The sieve function then applies the stream constructor
on the symbolic value hd satisfying contract natural? and thunk wrapped in the higher-order
contract (-> stream?).

stream-get. In the call to stream-get, main satisfies both of the argument contracts stream?
and natural?. Since stream-get is opaque from main’s point of view, the stream primes is ex-
plored arbitrarily as before. When the guarded thunk in streams is forced, it triggers recursive
calls to sieve and sift, whose symbolic execution proceeds similarly. At all points in symbolic
execution, applications to the stream constructor correctly have the first argument be a natural
number, and the second argument be a thunk that produces a stream when forced. Moreover, all
applications of stream-unfold and stream-get also respect the functions’ contracts.

Although symbolic execution may need to explore an infinite state space, we allow termination
by applying well-studied techniques for systematically finitizing an existing semantics to obtain a
sound over-approximation [Darais et al. 2017; Van Horn and Might 2010]. Soundness means that
an over-approximated symbolic execution that terminates with no blame on main implies that
main is blame-free in the concrete.

2.4 Optimization and Evaluation

In the case of ॹ९५ॼ५, all contracts are fully verified in every configuration. Soundness of the verifier
permits us to safely bypass all contracts generated by Typed Racket, since they cannot be violated
at run time. A configuration may, in general, fail to verify completely. This requires identifying
contracts that do not verify and keeping them in the compiled program.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

Corpse Reviver: Sound and Efficient Gradual Typing via Contract Verification 53:7

1×
3233 ± 11

1×
3217 ± 5

51.3×
164877 ± 1709

1×
3247 ± 10

26.6×
85538 ± 1305

1×
3213 ± 16

1×
3216 ± 7

1×
3190 ± 11

1.1×
55 ± 1

1.1×
59 ± 2

1.2×
59 ± 1

0.9×
50 ± 0

47.1×
2326 ± 10

1.1×
59 ± 1

2.4×
118 ± 2

0.9×
51 ± 1

59.8×
2955 ± 16

1×
56 ± 1

46.8×
2312 ± 7

1×
56 ± 1

2.3×
115 ± 3

1×
54 ± 1

60×
2966 ± 7

1×
57 ± 1

48.4×
2389 ± 13

1×
57 ± 1

2.2×
109 ± 1

1.1×
59 ± 1

58.4×
2884 ± 15

1×
56 ± 0

48.4×
2390 ± 8

1×
58 ± 1

2.2×
109 ± 1

1×
56 ± 1

58.6×
2895 ± 20

1×
56 ± 1

1.1×
52 ± 1

1×
56 ± 0

1×
49 ± 0

1×
55 ± 0

Fig. 4. Performance lattices for sieve (left) and zombie (right). Each point in the lattice is a configuration of
the benchmark, where a white box is an untyped module and a black box is a typed module. The numbers
below indicate the slowdown factor for Typed Racket 7.8 on the left and SCV-CR on the right with the mean
execution time and standard deviation for each configuration in milliseconds. Red indicates a slowdown
≥ 3× and green indicates a slowdown ≤ 1.25×. Note that all SCV-CR entries are green.

The left side of Figure 4 is a performance lattice that visualizes the performance improvement
for all configurations of ॹ९५ॼ५. Each point in the lattice represents a configuration of the program,
consisting of a box for each module. A white box is an untyped module and a black box is a typed
module. Performance lattices are ordered by the subset relation on the set of typed modules, so
the fully untyped configuration is the bottom element of the lattice, while the fully typed configu-
ration is the top element. Below each configuration are two numbers: the left corresponds to the
unoptimized overhead of the configuration compared to the fully untyped version, and the right
corresponds to the configuration’s overhead after optimization with SCV-CR. Since all configu-
rations fully verify, gradual typing imposes no overhead at all. Hence, the performance of every
SCV-CR optimized program is approximately 1×—exactly the same as the fully untyped configu-
ration.2

3 A MODEL OF OPTIMIZED GRADUAL TYPING

In this section, we present a core model of our approach. We start by giving a model of a gradually
typed language by way of translation to an untyped language with contracts and then demonstrate
an optimization strategy based on contract verification. The strategy is proved sound and modular.

We then show an optimizer which soundly removes contracts based on the results of SCV,
whose soundness follows directly from the theorems of [Nguyễn et al. 2018]. While this model is
simple, it demonstrates the essential ideas behind our approach, and shows how the correctness
of our optimizer can be derived directly from the soundness of the underlying tools.

2There are a few longer running configurations in ঀॵॳ२९५, but they are all close to 1× in absolute terms.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

53:8 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn

𝑃 ∶∶= �⃗�
𝑀 ∶∶= (module 𝑋 ԉ ԇ⃗ 𝐹) | (module 𝑋 ⃗Ԉ 𝐸)

ԇ ∶∶= Ԉ | (require/typed 𝑋 ԉ)

Ԉ ∶∶= (require 𝑋)

ԉ ∶∶= Int | Bool | (-> ԉ ԉ)

𝐸 ∶∶= 𝑋 | 𝐼 | 𝐵 | 𝑂 | (𝐸 𝐸) | (if 𝐸 𝐸 𝐸) | (𝜆 (𝑋) 𝐸)

𝐹 ∶∶= 𝑋 | 𝐼 | 𝐵 | 𝑂 | (𝐹 𝐹) | (if 𝐹 𝐹 𝐹) | (𝜆 (𝑋 : ԉ) 𝐹)

𝑂 ∶∶= int? | bool?
𝐵 ∶∶= #t | #f
𝐼 ∶∶= 0 | -1 | 1 | …

𝑋 ∈ Identifier

Fig. 5. 𝜆TR, a simple gradual language with modules.

3.1 A Calculus of Gradually Typed Modules

To begin, we start with a simple model capturing the essence of Typed Racket (𝜆TR) and will show
how to compile it to an untyped language with contracts (𝜆Con). The complete syntax of 𝜆TR is
given in Figure 5. As a running example, consider the following program:

(module t1 (-> Int Int) (𝜆 (x : Int) x))

(module u1 (require t1) (t1 5))

(module u2 (require t1) (𝜆 (_) (t1 #f)))

(module main (u2 #f))

The language is module-based: each program consists of a sequence of modules. For simplicity,
each module exports a single identifier, whose definition is given in the module body. A module
may import identifiers from any previously defined module. We assume each program contains a
main module, which is the entry point of the program. In the example program, four modules are
defined: t1, u1, u2, and main.

Each module is either typed or untyped. Typed modules, such as t1, include a type annota-
tion and may import identifiers from any previously defined module using either the require or
require/typed form (although t1 does not). The require form is used to import an identifier
from a typed module; the type of the identifier is given by the annotation in the defining module.
The require/typed form is used to import an identifier from an untyped module and must be
accompanied by a type annotation.

An untypedmodule, such as u1, u2, and main, lacks a type annotation and only uses the require
form, which can be used to import identifiers from typed or untyped defining modules.

Programs are well-formed, written ⊢ 𝑃 ∶ ok, whenever eachmodule is syntactically valid within
the context of the previously occurringmodules. Untypedmodules are syntactically valid when the
body expression is closed in the context of its required modules. Typed modules are syntactically
valid when the body expression is well-typed in the context of its required modules. The ⊢ 𝑃 ∶ ok
judgment is defined in Figure 6. In the case of a typed module, it relies on a typing judgment for
expressions, which is standard and omitted, and a metafunction TyEnv(ԇ⃗, �⃗�) that computes a
type environment (a list of variable and type pairs) from a given set of require statements and

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

Corpse Reviver: Sound and Efficient Gradual Typing via Contract Verification 53:9

⊢ 𝜖 ∶ ok
⊢ �⃗� ∶ ok TyEnv(ԇ⃗, �⃗�) ⊢ 𝐹 ∶ ԉ

⊢ �⃗�(module 𝑋 ԉ ԇ⃗ 𝐹) ∶ ok
⊢ �⃗� ∶ ok Env(⃗Ԉ, �⃗�) ⊢ 𝐸 ∶ closed

⊢ �⃗�(module 𝑋 ⃗Ԉ 𝐸) ∶ ok

TyEnv(𝜖, �⃗�) = ∅
TyEnv((require 𝑋)ԇ⃗, �⃗�) = 𝑋 ∶ ԉ , TyEnv(ԇ⃗, �⃗�)

if lookup(�⃗�, 𝑋) = (module 𝑋 ԉ _ _)

TyEnv((require/typed 𝑋 ԉ)ԇ⃗, �⃗�) = 𝑋 ∶ ԉ , TyEnv(ԇ⃗, �⃗�)
if lookup(�⃗�, 𝑋) = (module 𝑋 _ _)

Env(𝜖, �⃗�) = ∅
Env((require 𝑋)ԇ⃗, �⃗�) = 𝑋, Env(ԇ⃗, �⃗�) if lookup(�⃗�, 𝑋) = 𝑀 ′

Fig. 6. Typing judgment for 𝜆TR.

module definitions. When a typed module is required via require, the type of the module is re-
trieved and added to the environment. When an untyped module is required via require/typed,
the type of the module is given by its annotation and added to the environment. In the case of an
untyped module, the judgment relies on a closed judgment for expressions, which is standard and

omitted, and a metafunction Env(⃗Ԉ, �⃗�) that computes a name environment (a list of variables)
from a given set of require statements and module definitions.

3.2 Translating Types to Contracts

Aswith Typed Racket itself, rather than providing a direct implementation of our gradual language,
we give it a semantics via translation to an underlying untyped language with contracts. Here, we
borrow the language of contracts from Nguyễn et al. [2018], dubbed 𝜆Con and simplified slightly
in Figure 7.3 By reusing this language, we inherit and apply the soundness results for symbolic
execution presented by Nguyễn et al. [2018] as well. In our development, we use let freely in this
language; it is an abbreviation for the standard encoding using 𝜆.

𝐸 ∶∶= … | (mon𝑋
𝑋 𝐶 𝐸) | blame𝑋

𝑋
𝐶 ∶∶= 𝑂 | (-> 𝐶 𝐶)

Fig. 7. 𝜆Con, an untyped language with con-
tracts. This is a subset of 𝜆S [Nguyễn et al. 2018].

The 𝜆Con language consists of the expression
language 𝐸 of 𝜆TR extended with a new form

(mon
𝑋+
𝑋− 𝐶 𝐸) that wraps the value produced by 𝐸

with the contract 𝐶 , where 𝑋+ is the positive party
to the contract, responsible for the behavior of the
value, and 𝑋− is the negative party to the contract,
responsible for the behavior of the context. A con-
tract, 𝐶 , is either a “flat” contract 𝑂, which is a pred-
icate, or a “function” contract, (-> 𝐶 𝐶′). A value satisfies a flat contract whenever the predicate
holds of it; a value satisfies a function contract when it is a function that produces a value sat-
isfying the codomain contract when applied to a value satisfying the domain contract. Should a

value fail to satisfy a contract at runtime, a terminal blame𝑋
𝑋′ state is reached indicating 𝑋 broke

a contract with 𝑋′.
3The major simplifications are omitting first-class and dependent contracts, mutable variables, and a few primitive
operations.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

53:10 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn

Cp(𝑃) = Cm(𝑃 , 𝑃)

Cm((module 𝑋 ⃗Ԉ 𝐸) �⃗�, 𝑃) = (let [𝑋 Cru(⃗Ԉ, 𝑃 , 𝑋, 𝐸)] Cm(�⃗�, 𝑃))
Cm((module 𝑋 ԉ ԇ⃗ 𝐹) �⃗�, 𝑃) = (let [𝑋 Cr(ԇ⃗, 𝑋,Ce(𝐹))] Cm(�⃗�, 𝑃))

Cm(𝜖, 𝑃) = main

Cru((require 𝑋) ⃗Ԉ, �⃗� , 𝑋′, 𝐸) = Cru(⃗Ԉ, �⃗�, 𝑋′, 𝐸)
if lookup(𝑋, �⃗�) = (module 𝑋 _ _)

Cru((require 𝑋) ⃗Ԉ, �⃗� , 𝑋′, 𝐸) = (let [𝑋 (mon
𝑋
𝑋′ Ct(ԉ) 𝑋)] Cru(⃗Ԉ, �⃗�, 𝑋′, 𝐸))

if lookup(𝑋, �⃗�) = (module 𝑋 ԉ _ _)

Cru(𝜖, �⃗�, 𝑋′, 𝐸) = 𝐸

Cr((require 𝑋) ԇ⃗, 𝑋′, 𝐸) = Cr(ԇ⃗, 𝑋′, 𝐸)
Cr((require/typed 𝑋 ԉ) ԇ⃗, 𝑋′, 𝐸) = (let [𝑋 (mon

𝑋
𝑋′ Ct(ԉ) 𝑋)] Cr(ԇ⃗, 𝑋′, 𝐸))

Cr(𝜖, 𝑋′, 𝐸) = 𝐸

Ct(Int) = int? Ct(Bool) = bool?

Ct((-> ԉ1 ԉ2)) = (-> Ct(ԉ1) Ct(ԉ2))

Fig. 8. Translation from gradually typed modules to contracts.

Our basic translation strategy is to replace each module with a single let binding, nested appro-
priately to maintain the sequence of modules, and to translate each require to a binding scoped
to the relevent module. At the boundaries between typed and untyped code, types are translated
to contracts which serve to dynamically monitor the interaction.

The core of the translation is presented in Figure 8.The Cp(𝑃) function translates a full program,

by translating a sequence of modules in the context of the full program. The Cm(�⃗�, 𝑃) function
translates a sequence of modules one-by-one, building a nested let expression for each.TheCr and
Cru functions translate collections of require forms, for typed and untyped modules respectively,
and are the places where monitors are inserted. Finally, Ct translates types to contracts, and Ce

(omitted) strips type annotations.
The two places where contracts are inserted are when an untyped module requires a typed

one (the second case of Cru), and where a typed module uses require/typed to depend on an
untypedmodule (the second case of Cr). In each case, the required module is the positive party, and
the negative party is the module containing the require. Other require forms need no contracts,
and indeed no new binding at all.

Continuing our running example, the translation of the full program to 𝜆Con is

(let [t1 (𝜆 (x) x)]

(let [u1 (let [t1 (mont1u1 (-> int? int?) t1)] (t1 5))]

(let [u2 (let [t1 (mont1u2 (-> int? int?) t1)] (𝜆 (_) (t1 #f)))]

(let [main (u2 #f)]

main))))

We see the bindings corresponding to each module and each require, as well as the two monitors
implied by the use of the typed t1 module in u1 and u2. Since both u2 and main are untyped, no
monitor is added there.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

Corpse Reviver: Sound and Efficient Gradual Typing via Contract Verification 53:11

We assume the operational semantics of 𝜆Con programs as given by [Nguyễn et al. 2018]. Infor-
mally, the example program computes as follows, resulting in the blaming of u2 for violating the
type of t1:

(u2 #f) → ((mon
t1
u2 (-> int? int?) t1) #f)

→ (mon
t1
u2 int? (t1 (mon

u2
t1 int? #f)))

→ (mon
t1
u2 int? (t1 (if (int? #f) #f blame

u2
t1)))

→ blame
u2
t1

3.3 Analysing Programs Modularly

At this point, we could apply symbolic execution to the fully translated program, determine which
contracts cannot fail, and eliminate them. However, this would be unrealistic in two ways. First,
not all parts of a program are fully available at compilation time—other components may be linked
in dynamically or provided as libraries. Second, we want a modular analysis, one in which we can
analyze and optimize a single module without the expense of examining the whole program.

Fortunately, the symbolic execution approach already provides the key tool needed to make this
possible: an opaque expression, written •, that behaves soundly and non-deterministically as an
abstraction of all possible expressions. To integrate it into our system, we simply allow it as both
a typed and an untyped expression, with any type, and translate it to itself.

To perform a modular analysis in our running example, considering only module u1, we adjust
our initial gradually typed program to

(module t1 (-> Int Int) •)

(module u1 (require t1) (t1 5))

(module u2 (require t1) •)

(module main •)

This maintains full type information, and the code for the relevant module, but omits all other
expressions. The translation to 𝜆Con produces

(let [t1 •]

(let [u1 (let [t1 (mont1u1 (-> int? int?) t1)] (t1 5))]

(let [u2 (let [t1 (mont1u2 (-> int? int?) t1)] •)]

(let [main •]

main))))

Note that the contract boundary generated for u2’s use of t1 is preserved, as implied by our defini-
tions. This boundary is not relevant to optimizing u1, since it cannot result in an error that blames
u1, and is thus omitted in our implementation.

The symbolic execution semantics proceeds just like the standard semantics, leading to the ap-
plication of (t1 5):

(t1 5) → ((mon
t1
u1 (-> int? int?) •) 5)

At this point, non-determinism arises since • represents both function and non-function values. In

the case of a non-function, the program steps to blamet1u1. In the case of a function value, reduction

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

53:12 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn

proceeds:

→ (mon
t1
u1 int? (• (mon

u1
t1 int? 5)))

→ (mon
t1
u1 int? (• 5))

→ (mon
t1
u1 int? •)

→ (if (int? •) • blame
t1
u1)

Again we have reached a point of non-determinism: (int? •) produces both true and false, so the

result is either • or blamet1u1.
In summary, symbolic execution of this program produces multiple possible results. First, the

whole program might succeed, with the unknown value produced by main as the final answer.
Second, the contract monitor wrapped around t1 might fail, either because t1 did not evaluate
to a function, or because the function produced a non-integer when called with 5. These two
possibilities are in reality ruled out by the type system, but since the types have been erased, the
symbolic executor considers them anyway. Finally, the evaluation of one of the opaque expressions
might error in some way, but this is ignored by the symbolic executor and accounted for in its
soundness theorem.

The result is that we can rule out one possibility—u1 cannot violate its contract with t1. Be-
low, we show how our optimizer makes use of that result to produce a program with equivalent
behavior but hopefully improved performance.

3.4 Eliminating Contracts That Cannot Be Blamed

With a translated program and an analysis result in hand, we proceed to optimization. Our ap-
proach reads off results from the soundness theorem for symbolic execution of 𝜆Con [Nguyễn et al.
2018, Corollary 3.3], and use them to choose optimizations. If we know that no execution of the

program can result in blame
𝑋
𝑋′ , then we can optimize all contracts in the program on that basis,

eliminating monitors with those parties.
The key rules for optimization are given in Figure 9. The opt(𝐸, 𝑋, 𝑋′) function optimizes an

expression 𝐸 to remove contracts between 𝑋 and 𝑋′. The helper function copt(𝐶, 𝑠) optimizes
𝐶 to remove obligations of the positive (or negative) party when 𝑠 is + (or -). The necessity of
tracking both parties arises from higher-order contracts, where the producer of a function is the
consumer of its arguments.

opt((mon𝑋
𝑋′ 𝐶 𝐸), 𝑋, 𝑋′) = (mon

𝑋
𝑋′ copt(𝐶, +) 𝐸)

opt((mon𝑋′
𝑋 𝐶 𝐸), 𝑋, 𝑋′) = (mon

𝑋′
𝑋 copt(𝐶, -) 𝐸)

opt((mon𝑋1
𝑋2

𝐶 𝐸), 𝑋, 𝑋′) = (mon
𝑋1
𝑋2

𝐶 𝐸)

Other cases recur structurally.

copt(int?, +) = any/c

copt(bool?, +) = any/c

copt(string?, +) = any/c

copt((-> 𝐶1 𝐶2), 𝑠) = (-> copt(𝐶1,flip(𝑠)) copt(𝐶2, 𝑠))
copt((-> any/c any/c), +) = any/c

Fig. 9. Contract optimization rules.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

Corpse Reviver: Sound and Efficient Gradual Typing via Contract Verification 53:13

The rules for opt are straightforward, simply recurring on all expression other than monitors,
and calling copt where appropriate. The rules for copt simply drop first-order contracts when the
positive party can be trusted, and recurs on function contracts with the usual reversal of parties
in the domain. Finally, if both domain and range are trivial, and the positive party can be trusted
to produce a function, no contract is needed at all.

Recall that our analysis demonstrated that our running example cannot result in blame
u1
t1. Simi-

larly, we can analyze t1 in isolation and show that it can never be blamed by either u1 or u2. We
therefore can optimize and simplify our running example program to

(let [t1 (𝜆 (x) x)]

(let [u1 (t1 5)]

(let [u2 (let (t1 (mont1u2 (-> int? any/c) t1)) (𝜆 (_) (t1 #f)))]

(let [main (u2 #f)]

main))))

No contracts between t1 and u1 remain, but t1 continues to check that u2 provides integers. This
remaining contract then fails at run time, as shown above.

This simple example nonetheless demonstrates the advantages provided by modularity and
blame-tracking. We are able to optimize precisely while analyzing modularly, and remove parts
of contracts while keeping others, even when they correspond to the same underlying type, as for
t1.

3.5 Soundness

An advantage of building our approach on an existing sound symbolic executor system is that the
soundness results can be lifted straightforwardly to our setting.We begin by defining an evaluation
function for 𝜆Con with opaque expressions, reusing the semantics of Nguyễn et al. [2018]. We
collapse all higher-order values to the token procedure, following Felleisen et al. [2009], to avoid
committing to particular syntactic results in the presence of optimization.

eval(𝐸) ∋
⎧{{
⎨{{⎩

𝐼, load(𝐸) ⟼→ ((𝐼, −), −, −, −)}
𝐵, load(𝐸) ⟼→ ((𝐵, −), −, −, −)}
blame

𝑋
𝑋′ , load(𝐸) ⟼→ (blame𝑋

𝑋′ , −, −, −)}
procedure, load(𝐸) ⟼→ (𝑎, −, −, −)} otherwise

We additionally recall the precision relation on expressions, 𝐸 ⊑ 𝐸′, which states that 𝐸′

replaces some portions of 𝐸 with opaque expressions, and extend it to 𝜆TR—see Appendix 7 for
the full definition.

We can now state a soundness theorem for our modular analysis.

T८५ॵR५ॳ 3.1 (Sॵॻॴ४ॴ५ॹॹ ॵ६ ॳॵ४ॻॲ१R १ॴ१ॲॿॹ९ॹ). If 𝐸 ⊑ 𝐸′ and all monitors between 𝑋 and

𝑋′ in 𝐸 are in 𝐸′, and blame𝑋
𝑋′ ∉ eval(𝐸′) then blame

𝑋
𝑋′ ∉ eval(𝐸).

PRॵॵ६. Application of Corrollary 3.3 from [Nguyễn et al. 2018]. □

This states that as long as we maintain the relevant contracts, replacing other portions of the
program with opaque expressions preserves the soundness of the analysis results for the labels in
question.

T८५ॵR५ॳ 3.2 (Sॵॻॴ४ॴ५ॹॹ ॵ६ ॵॶॺ९ॳ९ঀ१ॺ९ॵॴ). If 𝑃 , 𝑃 ′ ∈ 𝜆TR with 𝑃 ⊑ 𝑃 ′ and 𝑋 a concrete

module in 𝑃 ′ and blame𝑋
𝑋′ ∉ eval(Cp(𝑃 ′)) then eval(Cp(𝑃)) = eval(opt(Cp(𝑃), 𝑋, 𝑋′)).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

53:14 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn

source

main streams

main streams

target

main streams

require

require

require

same

analyze
bypass

explicate

analyze

(a) An untyped main requiring a typed streams.

source

main streams

main streams

target

main streams

require/typed

require require

require require

explicate

analyze
bypass

same

same analyze

(b) A typed main requiring an untyped streams.

Fig. 10. A diagram of how SCV-CR optimizes the two mixed-typed configurations of ॹ९५ॼ५. Orange () rep-
resents a typedmodule, lighter blue () represents an untypedmodule, darker blue () indicates contracted
exports, and red () shows an import that bypasses contracts.

PRॵॵ६. Since all monitors are generated by the translation to 𝜆Con, they are necessarily all

present here. Therefore, we can apply Theorem 3.1 to show that 𝑃 cannot produce blame𝑋
𝑋′ , justi-

fying our optimization. □

Since opt(−, 𝑋, 𝑋′) can be usedmultiple times to produce greater optimization, we further note
that repeated optimization is sound. We write opt𝑛(−, 𝑋, 𝑋′) to indicate 𝑛 repeated applications
of opt(−, 𝑋, 𝑋′)

CॵRॵॲॲ१Rॿ 3.3 (Sॵॻॴ४ॴ५ॹॹ ॵ६ ॳॻॲॺ९ॶॲ५ ॵॶॺ९ॳ९ঀ१ॺ९ॵॴॹ). If 𝑃 , 𝑃 ′ ∈ 𝜆TR with 𝑃 ⊑ 𝑃 ′ and 𝑋 a

concrete module in𝑃 ′ and blame𝑋
𝑋′ ∉ eval(Cp(𝑃 ′)) then eval(Cp(𝑃)) = eval(opt𝑛(Cp(𝑃), 𝑋, 𝑋′))

for any 𝑛.
PRॵॵ६. Induction on 𝑛. □

4 IMPLEMENTATION

We implemented SCV-CR as a tool for Typed Racket that takes a mixed-typed source program
as input and outputs optimized bytecode. This process can be broken down into three phases:
extraction, verification, and optimization.

4.1 Extraction

Typed Racket is Racket’s sound gradually typed sister language. Operationally, it typechecks a
fully macro-expanded program and outputs untyped Racket syntax that can be compiled normally.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

Corpse Reviver: Sound and Efficient Gradual Typing via Contract Verification 53:15

To ensure soundness, contracts are inserted at the boundary between untyped and typed compo-
nents. Problematically, contract verification after a program has been fully expanded is infeasible.
Racket’s contract system is not a privileged part of the language, but is implemented as a normal li-
brary. As such, contract forms are expanded into primitive checks. Such a low-level representation
is not suitable for verification.

We instead intercept contracts generated inside of Typed Racket, before expansion occurs, and
explicitly attach those contracts to an erased variant of the typed module.4 Concretely, this trans-
forms the code from Figure 2a into a configuration resembling Figure 3. Here, implicit contracts
attached by Typed Racket are made explicit in the syntax, where they can manifest in two different
ways, corresponding to the two different kinds of mixed-type interaction that must be monitored.

The first situation occurs when an untyped component calls a typed function. Imagine if an
untyped main module imported the typed streams module as in Figure 10a. Here, main could call
stream-unfold with an argument that is not a stream, an error that must be guarded against at
run time. Generally, if a typed module is used by an untyped one, all function arguments must be
checked against their type annotations at run time. The converted module in Figure 3 makes these
checks explicit—it protects itself from untyped clients by exporting its bindings with a contract
via the contract-out form.

The second scenario occurs when a typed module calls an untyped function. Consider a typed
main module requiring an untyped streams module as in Figure 10b. A call to stream-unfold

must now check its return value instead of its argument. Type annotations are associated with the
imported library via the require/typed form, and values returning from the untyped module are
checked against this annotation. To make this explicit, SCV-CR defines a submodule that attaches
contracts to the imported library. A typed client only interacts with an untyped library through
this proxy module.

Note that the inserted contracts are unoptimized. In Figure 3, contracts on the domain of the
provided functions are retained even though they could never be violated at run time. Type sound-
ness permits eliminating contracts in every position where a typed component is responsible. This
would allow us to safely eliminate contracts in every positive position in Figure 3, and every neg-
ative position in the dual scenario. These contracts are kept as-is because contract verification
thrives on more information, not less. Thus, more contracts helps the verifier by further refining
symbolic values.

One final complication is handling library dependencies. If a module relies on a large external
library, we do not want to analyze its source. This would be prohibitively time consuming. Instead,
a programmer can mark imports with an opaque require that SCV-CR handles specially. There is
no difference between a normal import and an opaque one at run time, but it statically informs
the contract verifier that the dependency should not be analyzed. During verification, any values
from opaque modules are treated as entirely unknown.

4.2 Verification

We apply prior work on contract verification using higher-order symbolic execution to confirm
that Typed Racket generated contracts are respected [Nguyễn et al. 2018]. Although symbolic exe-
cution is traditionally used for bug-finding instead of verification, due to the lack of a termination
guarantee, it can be turned into a verifier by applying well-studied methods for systematically
deriving sound, finite abstractions of an operational semantics [Darais et al. 2017; Van Horn and

4In actuality, types are not syntactically erased, but effectively disabled using the Typed Racket no-check language. Our
examples omit this detail for clarity.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

53:16 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn

Might 2010]. Verification of a function f, potentially wrapped in a contract, proceeds by apply-
ing a symbolic function to f, effectively putting it in an unknown context exhibiting arbitrary
interactions. Soundness of symbolic execution guarantees that the absence of blame on f in the
abstraction implies that no concrete interactionwith f can blame the function. Nguyễn et al. [2018]
develop a contract verifier for Racket called SCV that we build upon in SCV-CR.

The verifier SCV supports additional language features beyond 𝜆TR presented in Figure 5, such
as more base values (e.g. the numeric tower, sets, hash tables, etc.), mutable state, first-class con-
tracts, and dynamic parameters. SCV does not know about Typed Racket’s types (e.g. union types),
although it handles well the contracts that Typed Racket generates.

Both typechecking and symbolic execution predict run-time behaviors of programs. Correspond-
ingly, Typed Racket and SCV are accompanied by soundness theorems. In the case of Typed Racket,
soundness states that well-typed programs cannot be blamed at run time. Similarly, SCV’s sound-
ness result states that a verified module cannot be blamed at run time. Typed Racket’s theorem is
limited to typed modules, while SCV’s theorem applies to any module under verification. There-
fore, the contract extraction procedure of §4.1 permits SCV to reason about both typed and untyped
modules.

Analysis of typed and untyped modules is necessary to achieve any performance gains beyond
the optimizations that Typed Racket can already perform. Type soundness already allows the elimi-
nation of positive contract positions in a typed module. If SCVwas only to analyze a typed module
in isolation, the best possible result would be to match what Typed Racket already does. Any ad-
vantage for contract verification can only arise from reasoning about untyped modules, where the
type system has no knowledge.

Despite the need to analyze both typed and untyped modules, this does not imply a whole-
program assumption. To the contrary, both contract verification and our optimization procedure
are modular. Central to the modularity our approach is the concept of blame from higher-order
contracts [Findler and Felleisen 2002]. Blame allows the analysis to pinpoint which module is
the source of a contract violation, and thus partitions modules by whether they potentially fail.
Without blame, modularity would be impossible. Consequently, our optimization only bypasses
contracts that are proven not to blame the target module. Fewer modules available for analysis
mean only a lose in optimization opportunity, never soundness.

The modular nature of the underlying contract verifier also enables our analysis to be incremen-

tal. To eliminate contracts at a boundary, only the two parties involved need to be analyzed—others
need not be examined. This makes our approach suitable for application to large code bases when
a non-incremental analysis that requires access to the whole program would be prohibitively ex-
pensive on an on-going basis.

4.3 Optimization

When all contracts are verified, such as each configuration of the ॹ९५ॼ५ benchmark, we may safely
bypass contracts that blame either of the two modules. For the configuration in Figure 10a, this
amounts to modifying how the untyped code requires the typed code. Bindings that are always
used safely can bypass contract checking, while potentially unsafe uses will be imported with
contracts as normal. A similar process holds for the configuration in Figure 10b.

When some contracts fail to verify, the verifier reports contract positions that could be blamed
at run time. This may be due to a violation that could manifest in a concrete execution, or due to
the inherent approximation in any non-trivial static analysis. Contract verification is not all-or-
nothing. Failure to verify does not mean all contracts are kept—only those which may incur blame.
Failure to verify every contract in a configuration does not prevent us from eliminating almost all
of them. As §5 demonstrates, this is sufficient to gain substantial performance improvements.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

Corpse Reviver: Sound and Efficient Gradual Typing via Contract Verification 53:17

From SCV’s list of contract positions, we must determine which contracts to retain. Typed
Racket generates auxiliary contract definitions that are used and shared among contracts that
are ultimately attached to a module’s exports. To determine which contracts may be eliminated,
we construct a directed graph of contract dependencies. Any contract that is reachable from one
that cannot be verified must be kept.

Our optimization procedure also takes advantage of the knowledge that typed modules are
proven safe by Typed Racket. In particular, we ignore any result from the contract verifier that
blames a typed module since this must be a false positive. About 42% of blame results in the
benchmark suite are ignored because they are known to be a false positive. We have not been
able to measure a benefit from this optimization since none of the ignored results introduced an
expensive contract check. SCV-CR also ignores blame from contracts other than Typed Racket’s,
such as those coming from Racket’s standard library, since those contracts cannot be eliminated.

After optimization, SCV-CR outputs bytecode. There are two reasons for this choice: one prag-
matic, and one technical. Pragmatically, outputting bytecode means SCV-CR can be used as a
drop-in replacement for Racket’s existing make command. A developer can replace a single line
in their build script and get an optimized program. The technical reason is to preserve the lexical
information contained in the source program’s syntax. Contract definitions can, for example, rely
on unexported identifiers from other modules. Writing, for example, optimized source code to a
file would lose this critical information.

5 EVALUATION

We claim that contract verification of gradually typed programs can eliminate effectively all the
overhead of enforcing higher-order soundness. To evaluate this claim, we compare Typed Racket
7.8 to SCV-CR. Our benchmark suite is standard for assessing the feasibility of gradual typing.The
artifact for SCV-CR is freely available, along with instructions for reproducing these results.5

5.1 Benchmark Programs

We use the benchmark suite first developed by Takikawa et al. [2016] and expanded by Greenman
et al. [2019].6 Our evaluation pits SCV-CR against Typed Racket on 12 of the 20 programs in the
benchmark suite. The remaining 8 programs use object-oriented features that are not supported
by SCV. We made other minor changes to the programs to avoid features not supported by the
contract verifier. For example, keyword arguments were changed to positional arguments. All
measurements, including baseline performance numbers, were made with respect to this modified
suite. It exhibits the same performance characteristics as the unmodified suite.

Each benchmark consists of several modules with both a typed and untyped variant.This results
in 2𝑛 possible configurations for a program with 𝑛 modules.

5.2 Two Benchmarks in Detail

ॹॻ६६९ॾॺR५५ is a benchmark that originates from a library for computing Ukkonen’s suffix tree
algorithm. The primary source of performance overhead is due to a contract boundary between
the library of data structures and functions formanipulating these structures. For the configuration
in which all modules are untyped except for the data module, the primary overhead is due to a
single struct accessor. Here is the definition of a label structure:

5The most up-to-date installation instructions are available at: https://camoy.github.io/corpse-reviver/, with correspond-
ing source code at: https://github.com/camoy/corpse-reviver/. An archival version of the artifact can be found at: https:
//zenodo.org/record/4074932.
6The benchmark release version is 6.0, released July 20 2020.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

https://camoy.github.io/corpse-reviver/
https://github.com/camoy/corpse-reviver/
https://zenodo.org/record/4074932
https://zenodo.org/record/4074932

53:18 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn

(struct label

([datum : (Vectorof (U Char Symbol))]

[i : Natural]

[j : Natural])

#:mutable)

This definition automatically generates an accessor function for the datum field. If this function
is exported, it is protected with the following contract:

(-> label? (vectorof (or/c symbol? char?)))

According to Racket’s contract profiler [Andersen et al. 2018], this contract constitutes approx-
imately 70% of the running time for this configuration. Because SCV verifies that all calls to this
accessor respect the contract’s negative position, label?, the accessor can be exported as-is with-
out a wrapper.

Another benchmark, ঀॵॳ२९५, was ported to Typed Racket from the original benchmark suite for
SCV. Initially, themost significant overheadwas due to the accumulation of higher-order wrappers
from frequent boundary crossings. This issue was alleviated by recent performance improvements
made to Racket’s contract system [Feltey et al. 2018]. Despite these substantial gains, Table 1 indi-
cates that ঀॵॳ२९५ still has a mean overhead of 54.2×. In the case of a fully untyped configuration
except for the zombie module, overhead is mostly due to a contract attached to world-on-tick.
This function is protected by a (-> world/c (-> world/c)) contract where world/c is defined
as follows:

(recursive-contract

(-> symbol?

(or/c

(cons/c 'stop-when (-> boolean?))

(cons/c 'to-draw (-> image?))

(cons/c 'on-tick (-> world/c)

(cons/c

'on-mouse

(-> real? real? string? world/c))))))

The world/c contract enforces that each world “object” be a function that accepts “messages”
as symbols, and returns a corresponding “method” paired with the same message that it receives.
This seemingly redundant encoding was introduced in the ঀॵॳ२९५ variant used in the gradual
typing benchmarks, and differs from the original encoding using dependent contracts [Nguyễn
et al. 2014]. Typed Racket does not generate dependent contracts, and a simple intersection type
would generate a case-> contract whose cases could be first-order indistinguishable, violating
a general requirement of case-> contracts. Such an encoding introduces a minor challenge to
the original implementation of SCV, because it requires that at most one higher-order disjunct is
provided to or/c.

To verify the modified version of ঀॵॳ२९५, we generalize SCV to accept more or/c contracts,
closely matching Racket’s semantics. Instead of requiring no more than one higher-order disjunct,
we accept any pair of contracts as disjuncts, as long as the disjuncts are first-order distinguishable
at each monitoring site. When monitoring a value against a disjunctive contract, it is first checked
against the first-order parts of each disjunct. Execution proceeds with the first-order satisfied dis-
junct if there is no ambiguity, and raises an error otherwise. In this case, each cons/c contract has
a tag as its first component, which is easily distinguished from one another.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

Corpse Reviver: Sound and Efficient Gradual Typing via Contract Verification 53:19

Table 1. Maximum and mean overhead for Racket 7.8 and SCV-CR for each benchmark. Red indicates a
slowdown ≥ 3× while green indicates a slowdown ≤ 1.25×. The offline performance mean and standard
deviation of SCV-CR for analysis (symbolic execution) and compilation (expansion, typechecking, and byte-
code compilation). The total number of modules in each configuration and source lines of code for the fully
untyped configuration.

Racket SCV-CR Analyze Compile # Mod. LOC
Benchmark Max Mean Max Mean Mean ± 𝜎(̃s) Mean ± 𝜎(̃s)

६ॹॳ 3.0 1.8 1.1 0.8 9 ± 1 12 ± 3 4 185
७R५७ॵR 2.2 1.9 1.3 1.2 49 ± 4 64 ± 6 13 970
K३६१ 4.2 2.6 1.0 1.0 15 ± 1 25 ± 3 7 230
ॲॴॳ 1.1 0.8 1.1 0.8 23 ± 1 35 ± 5 6 514

ॳॵRॹ५३ॵ४५ 1.6 1.2 1.0 0.8 7 ± 2 7 ± 3 4 174
ॹ९५ॼ५ 50.7 19.7 1.0 1.0 2 ± 1 3 ± 2 2 35
ॹॴ१K५ 18.3 10.4 1.2 1.0 17 ± 6 17 ± 3 8 157

ॹॻ६६९ॾॺR५५ 33.8 16.2 1.1 0.9 10 ± 1 16 ± 3 6 517
ॹॿॴॺ८ 80.6 39.1 1.2 1.0 19 ± 1 26 ± 4 10 847
ॺ५ॺR९ॹ 18.9 8.3 1.5 1.1 24 ± 15 20 ± 3 9 247
ঀॵॳ२९५ 54.2 24.9 1.0 1.0 11 ± 3 11 ± 3 4 309
ঀॵR४ॵঀ 3.5 2.2 1.0 0.9 36 ± 2 47 ± 6 5 1400

5.3 Experimental Setup

We ran our experiment on a Linux machine with an Intel Xeon E3 processor running at 3.10
GHz with 32 GB of RAM. All measurements were taken with Racket 7.8. This release includes
improvements made by Feltey et al. [2018] to the run-time representation and performance of
contracts.

For each benchmark, all 2𝑛 configurations were measured with 10 iterations each, except for
७R५७ॵR. Due to the large number of possible configurations in this benchmark, we instead took 10
random samples of 130 configurations each, resulting in a total of 1300 random configurations. A
random sample of configurations can approximate the true performance of an exponentially large
number of configurations [Greenman and Migeed 2017; Greenman et al. 2019]. When sampling,
we used the same configurations for the baseline and SCV-CRmeasurements and did not resample.

5.4 Results

Figure 1 summarizes the results of our performance evaluation across the entire benchmark suite.
Summary statistics for this evaluation are tabulated in Table 1. The worst overhead incurred by
gradual typing with SCV-CR is a slowdown of 1.5×. Only 36% of benchmark configurations
without contract verification are within this slowdown factor, while the largest overhead exceeds
80.6× overhead.

Figure 11 shows the overhead plots for each benchmark. An overhead plot represents the perfor-
mance feasibility of a gradual type system for a particular program.The log-scaled x-axis indicates
performance overhead as a factor of the benchmark’s fully untyped configuration, and the y-axis
indicates the percent of all configurations that are within this slowdown factor. Both the unop-
timized performance in purple, and the performance with SCV-CR in orange, are plotted on the
same axes.

Take the ॹ९५ॼ५ benchmark as an example. Its baseline performance begins at 50%, meaning
only two of the four configurations are within a 1× slowdown of the fully untyped configuration.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

53:20 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn

fsm

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%

16 configurations

kcfa

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%

128 configurations

morsecode

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%

16 configurations

snake

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%

256 configurations

synth

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%

1,024 configurations

zombie

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%

16 configurations

gregor

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%

1,300 configurations

lnm

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%

64 configurations

sieve

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%

4 configurations

suffixtree

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%

64 configurations

tetris

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%

512 configurations

zordoz

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%

32 configurations

Fig. 11. Overhead of gradual typing for each benchmark individually. The purple () curve is Typed Racket
and the orange () curve is SCV-CR. Each point (𝑥, 𝑦) indicates an 𝑥-factor slowdown over the fully untyped
configuration for 𝑦% of configurations. Dashed lines between 1 and 2 occur at increments of 0.2 and between
2 and 10 at increments of 2.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

Corpse Reviver: Sound and Efficient Gradual Typing via Contract Verification 53:21

fsm

000000000 111111111 222222222 333333333 444444444
000000000

0.40.40.40.40.40.40.40.40.4

0.8 s0.8 s0.8 s0.8 s0.8 s0.8 s0.8 s0.8 s0.8 s

320 points

kcfa

000000000 111111111 333333333 555555555 777777777
000000000

333333333

5.9 s5.9 s5.9 s5.9 s5.9 s5.9 s5.9 s5.9 s5.9 s

2,560 points

morsecode

000000000 111111111 222222222 333333333 444444444
000000000

2.22.22.22.22.22.22.22.22.2

4.4 s4.4 s4.4 s4.4 s4.4 s4.4 s4.4 s4.4 s4.4 s

320 points

snake

000000000 222222222 444444444 666666666 888888888
000000000

6.36.36.36.36.36.36.36.36.3

12.6 s12.6 s12.6 s12.6 s12.6 s12.6 s12.6 s12.6 s12.6 s

5,120 points

synth

000000000 222222222 555555555 777777777 101010101010101010
000000000

191919191919191919

38.1 s38.1 s38.1 s38.1 s38.1 s38.1 s38.1 s38.1 s38.1 s

20,480 points

zombie

000000000 111111111 222222222 333333333 444444444
000000000

1.51.51.51.51.51.51.51.51.5

3 s3 s3 s3 s3 s3 s3 s3 s3 s

320 points

gregor

000000000 333333333 666666666 999999999 131313131313131313
000000000

0.40.40.40.40.40.40.40.40.4

0.7 s0.7 s0.7 s0.7 s0.7 s0.7 s0.7 s0.7 s0.7 s

26,000 points

lnm

000000000 111111111 222222222 333333333 444444444 555555555 666666666
000000000

0.70.70.70.70.70.70.70.70.7

1.5 s1.5 s1.5 s1.5 s1.5 s1.5 s1.5 s1.5 s1.5 s

1,280 points

sieve

000000000 111111111 222222222
000000000

83.783.783.783.783.783.783.783.783.7

167.4 s167.4 s167.4 s167.4 s167.4 s167.4 s167.4 s167.4 s167.4 s

80 points

suffixtree

000000000 111111111 222222222 333333333 444444444 555555555 666666666
000000000

646464646464646464

128 s128 s128 s128 s128 s128 s128 s128 s128 s

1,280 points

tetris

000000000 222222222 444444444 666666666 999999999
000000000

9.99.99.99.99.99.99.99.99.9

19.8 s19.8 s19.8 s19.8 s19.8 s19.8 s19.8 s19.8 s19.8 s

10,240 points

zordoz

000000000 111111111 222222222 333333333 444444444 555555555
000000000

1.31.31.31.31.31.31.31.31.3

2.5 s2.5 s2.5 s2.5 s2.5 s2.5 s2.5 s2.5 s2.5 s

640 points

Fig. 12. Exact timemeasurements for each configuration execution. Purple () corresponds to Typed Racket
and orange () to SCV-CR. The x-axis is binned by the number of typed modules in a configuration, and
the y-axis is time to execute in seconds.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

53:22 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn

From Figure 4, these are the fully untyped configuration itself and the fully typed configuration.
We never see the CDF reach 100% since this would occur at 50.7×, beyond the x-axis’s range.
By contrast, the CDF for SCV-CR steeply rises to 100%. This corresponds to no overhead at all.
Orange areas in the plot are roughly proportional to the performance improvement of SCV-CR
over Typed Racket.

While SCV-CR makes gains across all benchmarks, some speed-ups are more noticeable than
others. ॳॵRॹ५३ॵ४५ has a maximum overhead of 1.6×—an amount that may already be acceptable
to developers.7 Here, contract verification yields modest, but potentially useful gains. However,
the performance improvements of SCV-CR become more significant in benchmarks exhibiting
pathological performance degradations like ॹॿॴॺ८ and ঀॵॳ२९५. The mean overhead of ঀॵॳ२९५ is
54.2×, a slowdown that would likely make ঀॵॳ२९५, a video game, completely unusable. In this
case, sound gradual typing without SCV-CR is infeasible.

Figure 12 displays exact run-time plots that show all this information in granular detail. Every
point is a single execution of a configuration. The x-axis is binned according to how many typed
modules are in a configuration and points are jittered within this bin for clarity, while the y-axis
is the exact run-time of the configuration in seconds. Rows of 10 points are frequently visible in
these plots, and typically correspond to different iterations of the same configuration.

5.5 Limitations and Future Work

Our technique is strictly limited to the constructs supported by the underlying contract verifier.
Language features like keyword arguments and Racket’s object system are not handled by SCV.
Thus, modules making use of these features must either be refactored to avoid them, or marked
as opaque so the verifier does not attempt to analyze them. Improvements to the verifier would
permit us to optimize more programs. This includes increasing the precision of SCV’s analysis by,
for example, encoding more domain-specific knowledge.
SCV-CR does not rely on specific facts derived from typechecking. It only takes advantage of the

knowledge that typed module are blame free. Additionally, we do not perform any optimizations
beyond bypassing contracts. Integrating facts derived by the typechecker and the contract verifier
for additional elimination and optimization is future work.

We do not claim to have solved the gradual typing performance problem. Our evaluation demon-
strates that contract verification can eliminate the bulk of overhead on a standard benchmark suite.
While this result suggests that contract verification is a promising approach, furtherwork is needed
to prove that this technique can scale to large applications.

6 RELATEDWORK

Early on, developers of gradual type systems realized that the dynamic checks involved could have
significant performance impacts. This was initially noted by Herman et al. [2010] in the context of
space efficiency [Clinger 1998], since the build-up of dynamic checks can inhibit proper tail calls,
and led to the development of space-efficient approaches to gradual typing [Feltey et al. 2018;
Greenberg 2016; Siek and Wadler 2010; Tsuda et al. 2020]. Other run-time performance problems
were also noticed, spurring the development of monotonic references [Siek et al. 2015; Swamy
et al. 2014] as a run-time enforcement mechanism, for example. Subsequently, Takikawa, Green-
man, and their collaborators [Greenman et al. 2019; Takikawa et al. 2015, 2016] made three major
contributions that focused attention on the problem: the design of a method for analyzing and

7This judgment is domain-specific. For some applications, 2× overhead may be unacceptable, while in others a 10× slow-
down may be acceptable. There is no magic constant. For their Sorbet system, Stripe allows only a 7% slowdown before
paging developers. In our evaluation, only 24% of Typed Racket configurations are within this slowdown, compared to
90% of SCV-CR-optimized configurations.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

Corpse Reviver: Sound and Efficient Gradual Typing via Contract Verification 53:23

reporting gradual typing performance, the creation of a suite of gradual typing benchmarks, and
the demonstration that Typed Racket as of 2015 had substantial performance problems.

Since then, work in addressing gradual typing’s performance challenges has proceeded in three
directions: developing new run-timemechanisms, restricting the expressiveness of the system, and
relaxing the guarantees of sound interoperation.

Run-Time Improvements. Many approaches to improving the run-time performance of gradual
typing attempt to execute existing dynamic checks more efficiently.This can take the form of more
efficient underlying virtual machines, such as the Pycket tracing JIT [Bauman et al. 2017], more
efficient compilation of contracts [Feltey et al. 2018], or entirely new compilers for gradually typed
languages [Kuhlenschmidt et al. 2019].

None of these systems are able to totally eliminate the overhead of gradual typing—each suffers
from at least a 10× slowdown in the worst case. By taking a static verification perspective, instead
of dynamic optimization, SCV-CR is able to remove expensive contracts instead of optimizing
them. For those contracts that remain, improved run-time techniques may help accelerate them,
but we leave that investigation to future work.

Restricted Languages. In contrast to languages that optimize slow run-time checks, other grad-
ually typed languages restrict interoperation to make slow run-time checks impossible. This in-
cludes systems such as Nom [Muehlboeck and Tate 2017] and C# [Bierman et al. 2010] that require
all data to be created in the typed code and use nominal type tags for dynamic checks. Other sys-
tems limit what can flow across boundaries [Google Inc. 2018; Richards et al. 2017, 2015; Swamy
et al. 2014; Wrigstad et al. 2010].

In contrast to these approaches, SCV-CR imposes no limits on the Typed Racket type system,
on what kinds of untyped programs can be used together with typed modules, or on what values
can flow across boundaries.

Relaxed Soundness. The most popular method for avoiding run-time overhead is of course to
entirely omit the dynamic checks needed for soundness. This is the approach taken by almost all
of the popular gradual type systems developed outside of academia, including TypeScript, MyPy,
Flow, Hack, and others. The Sorbet system for Ruby includes some dynamic checks, although the
documentation is unclear on exactly what is checked.

Vitousek et al. [2017] show that by inserting first-order dynamic checks throughout a program,
a limited notion of soundness can be achieved, while avoiding the potentially costly wrappers
found in other gradual type systems. Subsequently, Greenman and Felleisen [2018] characterized
this approach and others, while showing that a preliminary implementation for Typed Racket
was helpful in some benchmarks. Vitousek et al. [2019] demonstrate that with static elimination
of redundant checks, plus the addition of a JIT compiler, almost all remaining overhead can be
eliminated, although still without the full guarantees of soundness or the precise error reporting
of other gradual type systems.

Our results demonstrate that with static contract verification, there’s no need to compromise
on soundness or expressivity: the performance results of §5 are as good or better than any other
system with even limited soundness, while retaining the semantics of Typed Racket.

Run-Time Check Elimination. Many systems have been designed to analyze untyped languages
such as Scheme [Aiken et al. 1994; Cartwright and Fagan 1991; Flanagan and Felleisen 1999; Hen-
glein 1994; Wright and Cartwright 1997], or existing languages with contract systems [Meunier
et al. 2006; Vytiniotis et al. 2013; Xu 2012; Xu et al. 2009], to avoid possible run-time errors, sim-
ilar to the SCV system [Nguyễn et al. 2018, 2014; Nguyễn and Van Horn 2015] we build on. A
discussion of the relations between these systems is provided by Nguyễn et al. [2017].

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

53:24 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn

7 CONCLUSION: A PATH TO REVIVAL

The landmark study on the empirical performance of run-time enforcement of sound gradual types
by Takikawa et al. [2016] paints a negative picture, justifiably concluding that “in the context of
current implementation technology, sound gradual typing is dead.” This thesis is supported by
benchmarking results over an exhaustive enumeration of all possible gradual typed configurations
of a program—demonstrating that the cost of enforcing soundness is overwhelming and that for
almost all benchmarks there is no path from a fully untyped program to a fully typed program with

acceptable performance overhead. Such a result casts doubt on the vision of gradual typing as a
means for incrementally fortifying programs with the benefit of static types.

In the ensuing years, researchers have sought to improve the implementation technology of
enforcement so as to drive down run-time cost. Many of these enhancements target pathological
cases identified by Takikawa et al. [2016]. None, however, achieve across the board acceptability
numbers.

In this paper, we have taken a different tack. Rather than improving run-time enforcementmech-
anisms, we seek to remove their use when possible. Using lightweight formal methods based on
contract verification, we find that type abstractions enforced on untyped code can be effectively
validated statically and thereby eliminated.The results are promising—across the benchmark suite,
the average overhead is acceptable in all cases, and even the worst case performance is acceptable
in all but a few cases. There are no pathological cases and any path through the lattice of configu-
rations from untyped to typed programs exhibit at most a 1.5× slowdown. All of this is achieved
without improving run-time mechanisms, which are orthogonal and can offer complementary ben-
efits.

Traditional perspectives on gradual typing suggest that statically reasoning about code should
only be the purview of the typed portion of a program.This paper shows that there is considerable
promise in statically reasoning about the untyped portion in a gradually typed program, particularly
in the context of the invariants generated by typed components.While the untyped portion of code
may not adhere to a particular static type system, type abstractions may still be validated by other
means. Contract verification appears to be a fruitful approach.

Work remains before we can conclude that our promising results fully resolve the tension be-
tween soundness and performance for gradual typing. Our evaluation omits benchmarks that use
Racket’s object-oriented language extensions, since those features are not handled by the SCV tool
we build on. Furthermore, Racket programs are mostly functional, which can ease the task of static
analysis. Extensions to object-oriented programs, and to other gradually typed languages such as
JavaScript or Python, which would dispell these worries, await future work.

A Note on Benchmark Selection. We began with the hypothesis that in many gradually typed
programs, the untyped as well as the typed code can be shown not to have run-time type errors.
Our hypothesis led us to an implementation that is highly effective on the most widely used suite
of gradual typing benchmarks.

However, perhaps we should be unsurprised by this outcome. After all, the benchmarks we
use were constructed by first taking programs that are fully typeable, and then removing some
of the types. Thus every program is (nearly) typeable by construction! Moreover, this is both the
consistent approach taken to develop the benchmark suite [Greenman et al. 2019] and thus used
in several other gradual typing evaluations [Bauman et al. 2017; Feltey et al. 2018], but is also
the standard approach to generate benchmarks for other gradual type systems [Greenman and
Felleisen 2018; Kuhlenschmidt et al. 2019; Muehlboeck and Tate 2017; Richards et al. 2017; Vitousek
et al. 2019, 2017]. None include benchmarks that are not known to be typeable.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

Corpse Reviver: Sound and Efficient Gradual Typing via Contract Verification 53:25

In our case, the threat to the validity of our evaluation is somewhat mitigated by the substantial
differences between SCV’s analysis and Typed Racket’s—that some module is in-principle typeable
with Typed Racket implies no particular result for SCV. However, this is clearly a potential threat
to the validity of our results, and to the results of gradual typing optimization research in general.

We suggest that future gradual typing benchmark developers, and gradual type system imple-
mentors and evaluators, consider programs beyond the easily typed. We need benchmarks that
cannot be 100% verified, even in principle, because they contain potential run-time errors reachable
with certain inputs. This is likely to be the case in every realistic system, and should be considered
in research and evaluation.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers and artifact evaluators of POPL 2021. This work was
partially supported by the National Science Foundation grants CCF 1763922 and CCF 1846350.
Thanks to Ben Greenman for assistance with benchmarking, Temur Saidkhodjaev for testing the
artifact, Michael Hicks for the benchmarking machine, and Matthias Felleisen for his support.

A APPROXIMATION

𝐸 ⊑ 𝐸 𝐹 ⊑ 𝐹
free(𝐸) ⊆ {𝑋}
(𝜆 (𝑋) 𝐸) ⊑ •

free(𝐹) ⊆ {𝑋}
(𝜆 (𝑋 : ԉ) 𝐹) ⊑ • 𝐼 ⊑ • 𝐵 ⊑ •

𝑂 ⊑ •
𝐸 ⊑ 𝐸′

(𝜆 (𝑋) 𝐸) ⊑ (𝜆 (𝑋) 𝐸′)
𝐹 ⊑ 𝐹 ′

(𝜆 (𝑋 : ԉ) 𝐹) ⊑ (𝜆 (𝑋 : ԉ) 𝐹 ′)

𝐸1 ⊑ 𝐸′
1 𝐸2 ⊑ 𝐸′

2
(𝐸1 𝐸2) ⊑ (𝐸′

1 𝐸′
2)

𝐹1 ⊑ 𝐹 ′
1 𝐹2 ⊑ 𝐹 ′

2
(𝐹1 𝐹2) ⊑ (𝐹 ′

1 𝐹 ′
2)

𝐸1 ⊑ 𝐸′
1 𝐸2 ⊑ 𝐸′

2 𝐸3 ⊑ 𝐸′
3

(if 𝐸1 𝐸2 𝐸3) ⊑ (if 𝐸′
1 𝐸′

2 𝐸′
3)

𝐹1 ⊑ 𝐹 ′
1 𝐹2 ⊑ 𝐹 ′

2 𝐹3 ⊑ 𝐹 ′
3

(if 𝐹1 𝐹2 𝐹3) ⊑ (if 𝐹 ′
1 𝐹 ′

2 𝐹 ′
3)

𝐸 ⊑ 𝐸′

(mon𝑋
𝑋′ 𝐶 𝐸) ⊑ (mon𝑋

𝑋′ 𝐶 𝐸′)
𝐹 ⊑ 𝐹 ′

(module 𝑋 ԉ ԇ⃗ 𝐹) ⊑ (module 𝑋 ԉ ԇ⃗ 𝐹 ′)

𝐸 ⊑ 𝐸′

(module 𝑋 ⃗Ԉ 𝐸) ⊑ (module 𝑋 ⃗Ԉ 𝐸′) 𝜖 ⊑ 𝜖
�⃗� ⊑ �⃗� ′ 𝑀 ⊑ 𝑀 ′

�⃗�𝑀 ⊑ �⃗� ′𝑀 ′

Fig. 13. Approximation between expressions, modules, and programs.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1763922
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1846350

53:26 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn

REFERENCES

Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. 1994. Soft Typing with Conditional Types. In Principles of

Programming Languages (POPL). DOI:http://dx.doi.org/10.1145/174675.177847

Leif Andersen, Vincent St-Amour, Jan Vitek, and Matthias Felleisen. 2018. Feature-Specific Profiling. Transactions on

Programming Languages and Systems (TOPLAS) (2018). DOI:http://dx.doi.org/10.1145/3275519

Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-Hochstadt. 2017. Sound Gradual Typing: Only
Mostly Dead. In Object-Oriented Programming, Systems, Languages and Applications (OOPSLA). DOI:http://dx.doi.org/
10.1145/3133878

Gavin Bierman, Erik Meijer, and Mads Torgersen. 2010. Adding Dynamic Types to C#. In European Conference on Object-

Oriented Programming (ECOOP). DOI:http://dx.doi.org/10.1007/978-3-642-14107-2_5

Andrew P. Black, Kim B. Bruce, Michael Homer, and James Noble. 2012. Grace: The Absence of (Inessential) Difficulty.
In New Ideas, New Paradigms, and Reflections on Programming and Software (Onward!). DOI:http://dx.doi.org/10.1145/
2384592.2384601

Robert Cartwright and Mike Fagan. 1991. Soft Typing. In Programming Language Design and Implementation (PLDI). DOI:
http://dx.doi.org/10.1145/113445.113469

Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levi. 2017. Fast and Precise Type Checking
for JavaScript. In Object-Oriented Programming, Systems, Languages and Applications (OOPSLA). DOI:http://dx.doi.org/
10.1145/3133872

William D. Clinger. 1998. Proper Tail Recursion and Space Efficiency. In Programming Language Design and Implementation

(PLDI). DOI:http://dx.doi.org/10.1145/277650.277719

David Darais, Nicholas Labich, Phúc C. Nguyễn, and David Van Horn. 2017. Abstracting Definitional Interpreters (Func-
tional Pearl). In International Conference on Functional Programming (ICFP). DOI:http://dx.doi.org/10.1145/3110256

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009. Semantics Engineering with PLT Redex.

Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler, and Vincent St-Amour. 2018. Collapsible Con-
tracts: Fixing a Pathology of Gradual Typing. In Object-Oriented Programming, Systems, Languages and Applications

(OOPSLA). DOI:http://dx.doi.org/10.1145/3276503

Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-Order Functions. In International Conference on

Functional Programming (ICFP). DOI:http://dx.doi.org/10.1145/581478.581484

Cormac Flanagan andMatthias Felleisen. 1999. Componential Set-Based Analysis. Transactions on Programming Languages

and Systems (TOPLAS) (1999). DOI:http://dx.doi.org/10.1145/316686.316703

Google Inc. 2018. Dart. (2018). https://dart.dev/

Michael Greenberg. 2016. Space-Efficient Latent Contracts. In Trends in Functional Programming (TFP). DOI:http://dx.doi.
org/10.1007/978-3-030-14805-8_1

Ben Greenman and Matthias Felleisen. 2018. A Spectrum of Type Soundness and Performance. In International Conference

on Functional Programming (ICFP). DOI:http://dx.doi.org/10.1145/3236766

Ben Greenman and Zeina Migeed. 2017. On the Cost of Type-Tag Soundness. In Partial Evaluation and Program Manipula-

tion (PEPM). DOI:http://dx.doi.org/10.1145/3162066

Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce Findler, Jan Vitek, and Matthias Felleisen. 2019.
How to Evaluate the Performance of Gradual Typing Systems. Journal of Functional Programming (JFP) (2019). DOI:

http://dx.doi.org/10.1017/S0956796818000217

Fritz Henglein. 1994. Dynamic Typing: Syntax and Proof Theory. Science of Computer Programming (1994). DOI:http:
//dx.doi.org/10.1016/0167-6423(94)00004-2

David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-Efficient Gradual Typing. Higher-Order and Symbolic

Computation (2010). DOI:http://dx.doi.org/10.1007/s10990-011-9066-z

Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek. 2019. Toward Efficient Gradual Typing for Struc-
tural Types via Coercions. In Programming Language Design and Implementation (PLDI). DOI:http://dx.doi.org/10.1145/
3314221.3314627

Jukka Lehtosalo. 2017. MyPy: Optional Static Typing for Python. (2017). http://mypy-lang.org/

Philippe Meunier, Robert Bruce Findler, and Matthias Felleisen. 2006. Modular Set-Based Analysis from Contracts. In
Principles of Programming Languages (POPL). DOI:http://dx.doi.org/10.1145/1111037.1111057

Microsoft Corp. 2014. TypeScript Language Specification. (2014). http://www.typescriptlang.org

Fabian Muehlboeck and Ross Tate. 2017. Sound Gradual Typing is Nominally Alive and Well. In Object-Oriented Program-

ming, Systems, Languages and Applications (OOPSLA). DOI:http://dx.doi.org/10.1145/3133880

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

http://dx.doi.org/10.1145/174675.177847
http://dx.doi.org/10.1145/3275519
http://dx.doi.org/10.1145/3133878
http://dx.doi.org/10.1145/3133878
http://dx.doi.org/10.1007/978-3-642-14107-2_5
http://dx.doi.org/10.1145/2384592.2384601
http://dx.doi.org/10.1145/2384592.2384601
http://dx.doi.org/10.1145/113445.113469
http://dx.doi.org/10.1145/3133872
http://dx.doi.org/10.1145/3133872
http://dx.doi.org/10.1145/277650.277719
http://dx.doi.org/10.1145/3110256
http://dx.doi.org/10.1145/3276503
http://dx.doi.org/10.1145/581478.581484
http://dx.doi.org/10.1145/316686.316703
https://dart.dev/
http://dx.doi.org/10.1007/978-3-030-14805-8_1
http://dx.doi.org/10.1007/978-3-030-14805-8_1
http://dx.doi.org/10.1145/3236766
http://dx.doi.org/10.1145/3162066
http://dx.doi.org/10.1017/S0956796818000217
http://dx.doi.org/10.1016/0167-6423(94)00004-2
http://dx.doi.org/10.1016/0167-6423(94)00004-2
http://dx.doi.org/10.1007/s10990-011-9066-z
http://dx.doi.org/10.1145/3314221.3314627
http://dx.doi.org/10.1145/3314221.3314627
http://mypy-lang.org/
http://dx.doi.org/10.1145/1111037.1111057
http://www.typescriptlang.org
http://dx.doi.org/10.1145/3133880

Corpse Reviver: Sound and Efficient Gradual Typing via Contract Verification 53:27

Phúc C. Nguyễn, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn. 2018. Soft Contract Verification for Higher-
Order Stateful Programs. In Principles of Programming Languages (POPL). DOI:http://dx.doi.org/10.1145/3158139

Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn. 2014. Soft Contract Verification. In International Conference

on Functional Programming (ICFP). DOI:http://dx.doi.org/10.1145/2628136.2628156

Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David VanHorn. 2017. Higher-Order Symbolic Execution for Contract Verifica-
tion and Refutation. Journal of Functional Programming (JFP) (2017). DOI:http://dx.doi.org/10.1017/S0956796816000216

Phúc C. Nguyễn and David Van Horn. 2015. Relatively Complete Counterexamples for Higher-Order Programs. In Pro-

gramming Language Design and Implementation (PLDI). DOI:http://dx.doi.org/10.1145/2737924.2737971

AseemRastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris. 2015. Safe & Efficient Gradual Typing
for TypeScript. In Principles of Programming Languages (POPL). DOI:http://dx.doi.org/10.1145/2676726.2676971

Gregor Richards, Ellen Arteca, and Alexi Turcotte. 2017. TheVMAlready KnewThat: Leveraging Compile-Time Knowledge
to Optimize Gradual Typing. In Object-Oriented Programming, Systems, Languages and Applications (OOPSLA). DOI:

http://dx.doi.org/10.1145/3133879

Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. 2015. Concrete Types for TypeScript. In European Conference

on Object-Oriented Programming (ECOOP). DOI:http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.76

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Scheme and Functional Programming

Workshop.

JeremyG. Siek, MichaelM. Vitousek,Matteo Cimini, SamTobin-Hochstadt, and Ronald Garcia. 2015. Monotonic References
for Efficient Gradual Typing. In European Symposium on Programming (ESOP). DOI:http://dx.doi.org/10.1007/978-3-662-
46669-8_18

Jeremy G. Siek and Philip Wadler. 2010. Threesomes, with and without Blame. In Principles of Programming Languages

(POPL). DOI:http://dx.doi.org/10.1145/1706299.1706342

T. Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt. 2012. Chaperones and Impersonators: Run-
Time Support for Reasonable Interposition. In Object-Oriented Programming, Systems, Languages and Applications (OOP-

SLA). DOI:http://dx.doi.org/10.1145/2384616.2384685

Stripe Inc. 2019. Sorbet. (2019). https://sorbet.org/

Nikhil Swamy, Cedric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan Chen, Pierre-Yves Strub, and Gavin Bierman.
2014. Gradual Typing Embedded Securely in JavaScript. In Principles of Programming Languages (POPL). DOI:http:
//dx.doi.org/10.1145/2535838.2535889

Asumu Takikawa, Daniel Feltey, Earl Dean, Matthew Flatt, Robert Bruce Findler, Sam Tobin-Hochstadt, and Matthias
Felleisen. 2015. Towards Practical Gradual Typing. In European Conference on Object-Oriented Programming (ECOOP).
DOI:http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.4

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is Sound Gradual
Typing Dead?. In Principles of Programming Languages (POPL). DOI:http://dx.doi.org/10.1145/2837614.2837630

Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Migration: From Scripts to Programs. In Object-Oriented

Programming, Systems, Languages and Applications (OOPSLA). DOI:http://dx.doi.org/10.1145/1176617.1176755

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation of Typed Scheme. In Principles of

Programming Languages (POPL). DOI:http://dx.doi.org/10.1145/1328438.1328486

Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Ben Greenman, Andrew M. Kent, Vincent
St-Amour, T. Strickland, and Asumu Takikawa. 2017. Migratory Typing: Ten Years Later. In Summit on Advances in

Programming Languages (SNAPL). DOI:http://dx.doi.org/10.4230/LIPIcs.SNAPL.2017.17

Yuya Tsuda, Atsushi Igarashi, and Tomoya Tabuchi. 2020. Space-Efficient Gradual Typing in Coercion-Passing Style. In
European Conference on Object-Oriented Programming (ECOOP). DOI:http://dx.doi.org/10.4230/LIPIcs.ECOOP.2020.8

David Van Horn and Matthew Might. 2010. Abstracting Abstract Machines. In International Conference on Functional

Programming (ICFP). DOI:http://dx.doi.org/10.1145/1863543.1863553

Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. 2014. Design and Evaluation of Gradual Typing for
Python. In Dynamic Languages Symposium (DLS). DOI:http://dx.doi.org/10.1145/2661088.2661101

Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. 2019. Optimizing and Evaluating Transient Gradual Typing. In
Dynamic Languages Symposium (DLS). DOI:http://dx.doi.org/10.1145/3359619.3359742

Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big Types in Little Runtime: Open-World Soundness and
Collaborative Blame for Gradual Type Systems. In Principles of Programming Languages (POPL). DOI:http://dx.doi.org/
10.1145/3009837.3009849

Dimitrios Vytiniotis, Simon Peyton Jones, Koen Claessen, and Dan Rosén. 2013. HALO: Haskell to Logic through Denota-
tional Semantics. In Principles of Programming Languages (POPL). DOI:http://dx.doi.org/10.1145/2429069.2429121

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

http://dx.doi.org/10.1145/3158139
http://dx.doi.org/10.1145/2628136.2628156
http://dx.doi.org/10.1017/S0956796816000216
http://dx.doi.org/10.1145/2737924.2737971
http://dx.doi.org/10.1145/2676726.2676971
http://dx.doi.org/10.1145/3133879
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.76
http://dx.doi.org/10.1007/978-3-662-46669-8_18
http://dx.doi.org/10.1007/978-3-662-46669-8_18
http://dx.doi.org/10.1145/1706299.1706342
http://dx.doi.org/10.1145/2384616.2384685
https://sorbet.org/
http://dx.doi.org/10.1145/2535838.2535889
http://dx.doi.org/10.1145/2535838.2535889
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.4
http://dx.doi.org/10.1145/2837614.2837630
http://dx.doi.org/10.1145/1176617.1176755
http://dx.doi.org/10.1145/1328438.1328486
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2017.17
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2020.8
http://dx.doi.org/10.1145/1863543.1863553
http://dx.doi.org/10.1145/2661088.2661101
http://dx.doi.org/10.1145/3359619.3359742
http://dx.doi.org/10.1145/3009837.3009849
http://dx.doi.org/10.1145/3009837.3009849
http://dx.doi.org/10.1145/2429069.2429121

53:28 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn

Andrew K. Wright and Robert Cartwright. 1997. A Practical Soft Type System for Scheme. Transactions on Programming

Languages and Systems (TOPLAS) (1997). DOI:http://dx.doi.org/10.1145/239912.239917

Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund, and Jan Vitek. 2010. Integrating Typed and
Untyped Code in a Scripting Language. In Principles of Programming Languages (POPL). DOI:http://dx.doi.org/10.1145/
1706299.1706343

Dana N. Xu. 2012. Hybrid Contract Checking via Symbolic Simplification. In Partial Evaluation and Program Manipulation

(PEPM). DOI:http://dx.doi.org/10.1145/2103746.2103767

Dana N. Xu, Simon Peyton Jones, and Koen Claessen. 2009. Static Contract Checking for Haskell. In Principles of Program-

ming Languages (POPL). DOI:http://dx.doi.org/10.1145/1480881.1480889

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 53. Publication date: January 2021.

http://dx.doi.org/10.1145/239912.239917
http://dx.doi.org/10.1145/1706299.1706343
http://dx.doi.org/10.1145/1706299.1706343
http://dx.doi.org/10.1145/2103746.2103767
http://dx.doi.org/10.1145/1480881.1480889

	Abstract
	1 Static verification to avoid dynamic costs
	2 Examples and intuition
	2.1 A Small Benchmark
	2.2 Source of the Slowdown
	2.3 Contract Verification
	2.4 Optimization and Evaluation

	3 A model of optimized gradual typing
	3.1 A Calculus of Gradually Typed Modules
	3.2 Translating Types to Contracts
	3.3 Analysing Programs Modularly
	3.4 Eliminating Contracts That Cannot Be Blamed
	3.5 Soundness

	4 Implementation
	4.1 Extraction
	4.2 Verification
	4.3 Optimization

	5 Evaluation
	5.1 Benchmark Programs
	5.2 Two Benchmarks in Detail
	5.3 Experimental Setup
	5.4 Results
	5.5 Limitations and Future Work

	6 Related work
	7 Conclusion: a path to revival
	Acknowledgments
	A Approximation
	References

