
FatTire: Declarative Fault Tolerance
for Software-Defined Networks

Mark Reitblatt
Cornell University

reitblatt@cs.cornell.edu

Marco Canini
TU Berlin / T-Labs

m.canini@tu-berlin.de

Arjun Guha
Cornell University
arjun@cornell.edu

Nate Foster
Cornell University

jnfoster@cornell.edu

ABSTRACT
This paper presents FatTire, a new language for writing
fault-tolerant network programs. The central feature of this
language is a new programming construct based on regu-
lar expressions that allows developers to specify the set of
paths that packets may take through the network as well
as the degree of fault tolerance required. This construct
is implemented by a compiler that targets the in-network
fast-failover mechanisms provided in recent versions of the
OpenFlow standard, and facilitates simple reasoning about
network programs even in the presence of failures. We de-
scribe the design of FatTire, present algorithms for compil-
ing programs to OpenFlow switch configurations, describe
our prototype FatTire implementation, and demonstrate its
use on simple examples.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network operating systems;
D.3.2 [Language Classifications]: Specialized application
languages

Keywords
Fast failover, fault tolerance, NetCore, Frenetic, OpenFlow

1. INTRODUCTION
“To find fault is easy, to do better may be difficult.”

—Plutarch

Networks are expected to operate without disruption, even
in the presence of device or link failures. Accordingly, many
networks employ advanced mechanisms that allow routers
and switches to rapidly respond to failures, restoring connec-
tivity in 10s of milliseconds [20]. At the same time, networks
are expected to do much more than provide connectivity—
they must also provide rigorous security and performance
guarantees, even while recovering from failures. For exam-
ple, if a switch diverts traffic along a backup path due to a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotSDN’13, August 16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2178-5/13/08 ...$15.00.

link failure, packets must not be allowed to circumvent the
firewall, thereby violating the network’s security policy.

The promise of software-defined networking (SDN) is to
allow network designers to construct networks that meet
their end-to-end requirements, rather than forcing them to
stitch together existing protocols, each with their own ca-
pabilities, features, and limitations. Although there has
been some work on deploying failure-recovery mechanisms in
SDN [7,18], programmers today lack abstractions for specify-
ing failure-recovery policies, as well techniques for automat-
ically integrating those mechanisms into network programs.
In practice, developers today must either add complicated
failure-handling code to programs by hand, or throw cor-
rectness guarantees to the wind when failures occur.

We argue that SDN programmers should have high-level
constructs that allow them to specify distinct policy con-
cerns, such as forwarding, performance, security, and fault-
tolerance. In addition, SDN programmers should be able
to reason about the interactions between those constructs
when they are combined in a single program. To this end,
we present the design and implementation of a new language
called FatTire that provides the following features:

1. Expressive: natural and orthogonal programming con-
structs that make it easy to describe forwarding and
fault-tolerance policies.

2. Efficient: a proof-of-concept implementation based on
translation to the fast-failover mechanisms provided in
recent versions of OpenFlow.

3. Correct: a methodology for reasoning about the be-
havior of the system during periods of failure recovery,
which enables verification of network-wide invariants.

The central feature of FatTire is a new programming con-
struct based on regular expressions that allows program-
mers to declaratively specify sets of legal paths through the
network, along with fault-tolerance requirements for those
paths. The FatTire compiler takes programs specified in
terms of paths and translates them to OpenFlow switch
configurations that automatically respond to link failures
without controller intervention. Compiling FatTire turns
out to be significantly more challenging compared to other
SDN languages like NetCore [4, 12] for several reasons: (i)
FatTire programs are non-deterministic due to the use of
regular expressions; (ii) the translation to individual switch
configurations requires a global analysis, and (iii) there can
be tricky interactions between paths when failures occur.
We have engineered a compiler for FatTire that correctly
handles each of these issues.

GW

S1

S2

IDS A

Figure 1: Example network.

Overall, the contributions of this paper are as follows:

• We design a new language for writing fault-tolerant
SDN programs that provides paths as a basic program-
ming construct (§3).

• We present algorithms for compiling FatTire programs
to OpenFlow switches that take advantage of in-network
fast-failover mechanisms (§4).

• We describe our prototype implementation of FatTire,
which builds on the NetCore compiler (§5).

• We evaluate FatTire on a simple example program (§6).

The next section presents a practical example that moti-
vates the need for declarative fault-tolerance programming
abstractions. The following sections describe each of our
main contributions in detail.

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown in Fig-
ure 1, and assume we want to construct a configuration with
the following properties:

(i) SSH traffic arriving at the gateway switch (GW) should
be eventually delivered to the access switch (A),

(ii) incoming SSH traffic should traverse the middlebox
(IDS) before being reaching internal hosts

(iii) the network should continue forwarding SSH traffic
even if a single link fails.

It is easy to build a configuration with the first two prop-
erties. For instance, we can forward incoming SSH traffic
along the path [GW,S1,IDS,S2,A]. But to provide the spec-
ified fault-tolerance property, each of the links in this pri-
mary path also needs a backup. There are numerous possible
backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

If the policy required protection against two link failures
then we would also need backup links for the backup paths;
three failures would require backups for the backups of the
backups, and so on.

Even this simple example requires a non-trivial program.
For example, traffic can reach S1 and S2 under at least four

GW Ruletable and Grouptable

Match Instructions
tpDst = 22 Group 1

Group Type Actions
1 FF 〈Fwd S1〉, 〈Fwd S2〉

S1 Ruletable and Grouptable

Match Instructions
inPort = GW, tpDst = 22 Group 1
inPort = IDS, tpDst = 22 Group 2
inPort = S2, tpDst = 22 Group 2

Group Type Actions
1 FF 〈Fwd IDS〉, 〈Fwd S2〉
2 FF 〈Fwd A〉

S2 Ruletable and Grouptable

Match Instructions
inPort = IDS, tpDst = 22 Group 1
inPort = S1, tpDst = 22 Group 2
inPort = GW, tpDst = 22 Group 2

Group Type Actions
1 FF 〈Fwd A〉, 〈Fwd S1〉
2 FF 〈Fwd IDS〉

Figure 2: Example ruletables and grouptables.

different scenarios. To ensure that traffic is handled cor-
rectly, it is necessary to consider every possible interaction
between primary and backup paths—a tedious and error-
prone task for the network programmer.

OpenFlow. To illustrate the complexity of building fault-
tolerant configurations manually, consider how we would do
this in OpenFlow. The following rule implements the pri-
mary path for SSH traffic on switch S1:

Match Actions
inPort = GW, tpDst = 22 〈Fwd IDS〉

It consists of a match that specifies packet attributes (e.g.,
transport destination port 22 for SSH traffic) and a list of
actions that specify how to process matching packets. In
this case, the rule states that all SSH traffic coming from GW
should be forwarded to IDS. For simplicity, we have replaced
the names of ports with the switches they are connected to—
e.g., in place of the name of the port connecting S1 to GW,
we simply write GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g., rules
that test whether a link has failed or not. Hence, the only
way to respond to failures was for the controller to explicitly
intercede by installing new rules in response to the failure.
For example, if the switch S1 detected a failure on the link
to IDS, it would notify the controller which would then emit
a new rule directing traffic along the backup link (S1, S2), as
well as a new rule on S2 specifying how to forward the traf-
fic coming from S1. This approach to dealing with failures
works, in a sense, but it can take a substantial amount of
time to restore connectivity [18]. Moreover, while the con-
troller is installing the new rules, traffic continues flowing
through the network and may encounter partially installed

and inconsistent ruletables on different switches, causing un-
expected forwarding behaviors and potentially violating net-
work policies. Techniques based on so-called per-packet con-
sistent updates [17] ensure that such violations do not occur,
but they are designed for planned change rather than rapid
response to failures, and can further delay recovery.

Fast failover. Recent versions of OpenFlow include sup-
port for conditional rules whose forwarding behavior de-
pends on the local state of the switch. A new type of for-
warding table called a group table contains entries whose
rules include “an ordered list of action buckets, where each
action bucket contains a set of actions to execute and asso-
ciated parameters” [2]. Action buckets provide the ability to
define multiple forwarding behaviors. When the type of a
group table is “FF” (fast failover),1 each bucket is associated
with a parameter that determines whether the bucket is live,
and the switch forwards traffic to the first live bucket. As
the parameter to determine liveness, the programmer either
specifies an output port or a group number (to allow several
groups to be chained together).

For example, here is the ruletable and grouptable for S1.
We omit the liveness parameter—in this case, just an output
port for each bucket:

Match Instructions
inPort = GW, tpDst = 22 Group 1

Group Type Actions
1 FF 〈Fwd IDS〉, 〈Fwd S2〉

Note that the primary rule for S1 explicitly handles the
backup case by directing traffic to a fast-failover group with
a backup bucket installed. Figure 2 presents complete rule
and group tables for our running example.

With fast-failover groups, the controller program must an-
ticipate every possible failure and precompute appropriate
backup paths (including working out the interactions be-
tween traffic on different backup paths), rather than react-
ing to link failures as they occur. Hence, while fast-failover
groups make it possible to implement rapid failure recovery,
using them correctly places a heavy burden on the SDN pro-
grammer. We argue that programmers should not have to
write programs using the primitive fast-failover mechanisms
provided in OpenFlow—the fault-handling logic quickly be-
comes complex and makes the meaning of the rest of the
program difficult to follow. For example, in Figure 2, the
failover logic completely obscures the otherwise straightfor-
ward network program.

3. THE FATTIRE LANGUAGE
FatTire (for Fault Tolerating Regular Expressions) is a new
high-level programming language that provides constructs
for writing programs in terms of paths through the network
and explicit fault-tolerance requirements. The FatTire com-
piler generates ruletables and grouptables that provide the
specified fault-tolerance while guaranteeing that traffic flows
along the paths dictated by the program. This turns out
to be non-trivial, since multiple paths often cross a given
switch, and the correct behavior can depend on link failures
elsewhere in the network.

To illustrate the main features of FatTire, consider the
running example from the preceding section. In FatTire,

1Other group types implement multicast and load sharing.

Path exp. P ::=S | ? | P .P | (P ||P) | (P&P) | ¬P

Switch id sw ∈ N
Headers h ::= dlSrc source Mac

| dlDst destination Mac
| . . .

Predicate pr ::= any wildcard
| h = n match header
| not pr predicate negation
| pr1 and pr2 predicate intersection

Program pol ::= pr ⇒ P with n atomic policy
| pol1] pol2 policy union
| pol1 C pol2 policy intersection

Figure 3: FatTire syntax.

(pr1 ⇒ P1 with k1) C (pr2 ⇒ P2 with k2)
≡

(pr1 and pr2) ⇒ (P1&P2) with max(k1, k2)

(pr1 ⇒ P1 with k1)] (pr2 ⇒ P2 with k2)
≡

(pr1 and (not pr2)) ⇒ (P1) with k1
] (pr1 and pr2) ⇒ (P1||P2) with max(k1, k2)
] ((not pr1) and pr2) ⇒ (P2) with k2

Figure 4: FatTire normalization rules.

rather than manually crafting the ruletables and groupta-
bles in Figure 2, we can simply write the following program,
which generates the same tables:

(tpDst = 22⇒ [?.IDS.?])

C (tpDst = 22⇒ [?] with 1)

C (any⇒ [GW. ? .A])

This program has three components. The first is the se-
curity policy, given by the first line, which states that all
SSH traffic must traverse the IDS. We use regular expres-
sions over switches to describe legal paths. The second is the
fault-tolerance policy, given by the with annotation, which
states that forwarding must be resilient to a single link fail-
ure. The third is the routing policy, given by the second
line, which states that traffic from the gateway (GW) must
be forwarded to the access switch (A), along any path. The
top-level program intersects the routing and security poli-
cies, which means that all paths must satisfy both. The
overall result is that SSH traffic (i) always traverses the IDS,
and (ii) is resilient to single link failures, and (iii) is routed
along a path from GW to A.

Note that in this program, all three pieces of functional-
ity are described clearly and independently, without explic-
itly reasoning about failure scenarios, primary and backup
paths, or the interactions between them.

The full syntax of FatTire is shown in Figure 3. The
language is inspired by previous work on NetCore [4, 12],
but adds support for paths and regular-expresions, fault-
tolerance annotations, and an intersection operator on poli-
cies. In examples, we will often omit fault-tolerance and
assume a default fault-tolerance annotation of 0. Seman-
tically, intersecting two policies results in a policy whose

paths are the paths described by both policies and whose
fault-tolerance is the maximum of the fault-tolerance pro-
vided by the individual policies.

In addition to intersection, policies can be unioned to-
gether. For example, the output of a MAC learning module
would be the union of the individual policies encoding the
locations of each known host:

(dlDst = 00:00:00:00:00:01⇒ [?.S1])
] (dlSrc = 00:00:00:00:00:01⇒ [S1.?])

The next section describes how to compile FatTire programs
to OpenFlow ruletables and grouptables.

4. THE FATTIRE COMPILER
Compilation of a FatTire policy proceeds in four phases:

1. We normalize the input policy to a union of atomic
policies, each with non-overlapping predicates.

2. We construct a fault-tolerant forwarding graph for each
atomic policy.

3. We translate the forwarding graphs to policies in Net-
Core, extended with a left-biased union operator, and
add explicit logic for transitioning between forwarding
graphs when failures occur.

4. We compile the resulting policies to OpenFlow using
an extension of the NetCore compiler that translates
left-biased union using fast-failover groups.

The next few paragraphs describe these phases in detail.

Normalization. The first phase of compilation normalizes
the input policy into a union of atomic policies with disjoint
predicates. First, the input policy is converted to a Disjunc-
tive Normal Form, with unions of intersections of atomic
policies, and then the intersections are eliminated using the
first rule in Figure 4. The resulting union of atomic policies
is then iteratively refined using the second rule in Figure 4
until the atomic policies match disjoint sets of packets. Nor-
malizing serves two purposes: (i) it combines the separate
policies (security, routing, etc.) into a single coherent policy
and (ii) it divides the program into disjoint pieces that can
be compiled independently. In theory, normalization can
take exponential time, but in practice the input predicates
are mostly disjoint so it converges quickly. The normalized
policy for our running example consists of a single rule,

(tpDst = 22⇒ [GW. ? .IDS. ? .A] with 1)

which captures security, routing, and fault-tolerance.

Constructing fault-tolerant forwarding graphs. The sec-
ond phase of compilation constructs a fault-tolerant forward-
ing graph that is consistent with the program’s path expres-
sion, and has as many backup paths as the fault-tolerance
annotation requires. We represent these paths as a forward-
ing graph with backup links. If the policy is incompatible
with the topology, either because it requires an impossible
path (e.g., forwarding between unconnected nodes), or be-
cause there is not enough redundancy to support the re-
quired fault tolerance, the compiler halts with an error.

Figure 5 shows the forwarding graph for the SSH policy,
using solid lines to indicate primary paths and dashed lines

GW

S1 S2

IDS IDS

S1 S2 S2

A A A

Figure 5: Example forwarding graph.

to indicate backup paths. Nodes along the primary path
[GW,S1,IDS,S2,A] have a primary and backup rule, while
nodes along the backup paths have only a backup rule. Be-
cause the policy only requires resilience to a single link fail-
ure, once traffic has been diverted to a secondary path we
no longer need backup rules. Note that S1 and S2 each ap-
pear twice along certain paths. Because we keep track of
the incoming port in each rule, we can handle topological
cycles, as long as any repeated switches are reached along a
different link each time they are visited in the cycle.

The full details of the algorithm to compute fault-tolerant
forwarding graphs can be found in our implementation. It
is based on a breadth-first-traversal of the graph through
two mutually recursive functions. The first function takes a
primary path and recurses down it, installing fault-tolerant
trees at each node. The second function takes a node and
does a breadth-first recursion across its children, installing
backup paths for that node. If one of the functions fails, it
backtracks by either picking a new primary path, or choosing
a different ordering on the children in the traversal.

We use regular expression derivatives [14] to keep track
of the legal backup paths from a given node as we recurse
through the graph. The derivative of a regular expression R
with respect to a character c is the set of all strings t such
that c·t ∈ R. In this context, the derivative of a path regular
expression with respect to a given switch s is the set of legal
paths starting at s. By taking the derivative of the regular
expression at each hop, we keep track of the current position
in the regular expression, and how it can continue to be ex-
panded into a legal path. For example, when we compile the
regular expression from the example, [GW. ? .IDS. ? .A], we
first iterate over every switch (start of a path) and take the
derivative with respect to that switch. Because the regular
expression starts with the explicit hop GW , the derivative
at any switch other than GW will be the empty regular
expression, while the derivative at GW will be the remain-
der [?.IDS. ? .A]. The algorithm continues, performing a
breadth-first search through the switches that can possibly
start a legal path (have a non-empty derivative), until we
have satisfied the regular expression.

Forwarding graph to NetCore. The third compiler phase
converts the forwarding graph to an equivalent NetCore pro-
gram. Standard NetCore programs do not support the fast-
failover groups of recent versions of OpenFlow, so we ex-
tended the language and compiler with a new left-biased
policy operator. The policy behaves like the left sub-policy
unless it fails (by forwarding out a dead port), and otherwise
behaves like the right sub-policy.

To convert the forwarding graphs into NetCore programs,
we iterate over each node in the forwarding graph, create a
new group whose fail-over actions forward along its links (in
order), and generate a rule that applies that action for that
group. For example, because the highest S1 node has two
children, IDS and S2, the generated NetCore policy for S1
would handle SSH traffic from GW using a left-biased union
of policies that forward to S2 and IDS. To finish the job, we
union the NetCore policies together, add tags to distinguish
traffic on each forwarding graph, and add additional logic to
switch between forwarding graphs when failures occur.

NetCore to fast-failover OpenFlow. The final compiler
phase translates NetCore policies extended with the left-
biased union operator into OpenFlow fast-failover groups.
We have extended the standard NetCore compiler with sup-
port for left-biased union. To illustrate, the generated rule
and group table for S1 would be:

Match Instructions
inPort = GW and tpDst = 22 〈Group 1〉

Group Type Actions
1 FF 〈Fwd IDS〉, 〈Fwd S2〉

5. IMPLEMENTATION
We have built a full working prototype compiler for the

FatTire language in OCaml. The compiler takes as input a
FatTire program and a topology, and emits a NetCore policy
as output. We have also extended the NetCore compiler and
run-time system to support left-biased union and OpenFlow
fast-failover groups as described above. These developments
can be found at http://frenetic-lang.org.

6. EVALUATION
To evaluate the performance of our FatTire implemen-

tation, we conducted a simple experiment in Mininet [10]
using the CPqD OpenFlow 1.3 software switch [1]. We used
iperf to transfer 100MB of data between a host attached to
GW and one attached to A in the topology depicted in Fig-
ure 1 (modified slightly so that S2 and IDS are co-located on
the same node) and measured the time needed to complete
the transfer. Note that because we used a network simu-
lator and software switches, the absolute completion times
are not meaningful, but relative comparisons are meaning-
ful. We used a 2.4GHz machine with 8 cores and 3MB of
RAM, and repeated the experiment 75 times.

We compared the completion times under two scenarios:
in the first, the network had no failures, so packets could
simply be forwarded along the primary path to their desti-
nation, [GW, SW, A]. In the second scenario, we broke the
link between GW and S2 after 20 seconds, forcing traffic to
traverse a longer backup path [GW,S1,S2,A].

The results are shown in a boxplot in Figure 6. Note
that after the link fails, even with the additional processing
delay incurred by fast-failover and the longer backup path,

 30

 40

 50

No failures FatTire

Ti
m

e
(s

ec
on

ds
)

Figure 6: Transfer completion time achieved by fast
failover as enabled by FatTire is only slightly higher
than when no failure occurs.

the FatTire completion time is only marginally higher than
the baseline completion time. Overall, this preliminary ex-
periment demonstrates that FatTire programs are able to
respond extremely rapidly to failures, as desired.

7. RELATED WORK
There is a large body of work on techniques for recover-

ing from failures in many diverse settings [3, 9, 15, 16, 20].
Recently, Liu et al. [11] argued that connectivity recovery
should be realized as a data-plane service. Their work dove-
tails with ours by providing mechanisms for implementing
the policy expressed using our abstractions. Likewise, recent
work on integrating fault-tolerance and traffic engineering by
Suchara et al. [19] could potentially be used in conjunction
with our abstractions.

In the context of SDN, Kempf et al. [7] proposed a fault
management approach similar to MPLS global path protec-
tion, which they argue should be part of OpenFlow. How-
ever, their focus is on extending the OpenFlow switch soft-
ware with end-to-end path monitoring capabilities. Their
work is orthogonal to ours in that monitoring capabilities
may be used to detect path failures in our scheme. Kuź-
niar et al. [8] proposed a system that provides automatic
failure recovery on behalf of failure-agnostic controller mod-
ules. Our approach is substantially different in that we de-
velop a declarative language to let developers express fault-
tolerance requirements and provide a compiler that targets
OpenFlow fast-failover mechanisms.

The Flow-based Management Language (FML) [5] also
addressed the problem of policy specification using a declar-
ative language. FML does not express fault-tolerance poli-
cies. Our path regular expressions generalize the waypoint-
ing constraints of FML. Similarly, the NetPlumber veri-
fier [6] uses a property specification language based on reg-
ular expressions on paths. Their language is used to verify
network configurations, while FatTire generates configura-
tions that are correct-by-construction.

NetCore [4, 12, 13] is an expressive language for specify-
ing network forwarding configurations. Because it specifies
forwarding in terms of hop-by-hop forwarding, it is difficult
to express failure recovery. FatTire is a higher-level lan-
guage built on top of NetCore that abstracts over network
paths. Because FatTire compiles into NetCore, FatTire pro-

grams can be used as ordinary NetCore programs, and can
be combined using the parallel and sequential composition
operators offered in NetCore.

8. FUTURE WORK
We are currently working to enrich and expand the path

expression language with abstractions that express more fine-
grained fault-tolerance specifications such as shared risk link
groups or non-uniform link reliability. In the future we
would like to integrate existing failure-recovery and detec-
tion mechanisms (e.g., [19]) into our system. Our language
only deals with link-level failures—a switch-level failure can
be modeled as a failure of each adjacent link. Adding switch-
level fault tolerance is future work. As with any failure-
recovery solution, failover is only half of the remedy. We
also plan to enrich our approach so that, after the failure in-
formation propagates to the controller, we recompute a new
network-wide forwarding state that continues to guarantee
the required fault-tolerance level while making better use of
overall network resources (e.g., redistributing traffic load)
in response to encountered failures. Finally, we also plan to
explore the application of FatTire’s paths to other domains
such as expressing performance and QoS requirements, and
using them with existing traffic engineering solutions.

Acknowledgements. We wish to thank the HotSDN re-
viewers for many insightful comments and suggestions. Our
work is supported in part by the NSF under grants CNS-
1111698, CCF-1253165, and CCF-0964409; the ONR under
award N00014-12-1-0757; and by a Google Research Award.

9. REFERENCES

[1] CPqD OpenFlow 1.3 Software Switch, July 2012.
http://github.com/CPqD/ofsoftswitch13.

[2] OpenFlow Switch Specification 1.3.1, March 2013.
http://bit.ly/of-131.

[3] S. Bryant, S. Previdi, and M. Shand. A Framework for
IP and MPLS Fast Reroute Using Not-via Addresses.
IETF Internet Draft, June 2013.
http://datatracker.ietf.org/doc/

draft-ietf-rtgwg-ipfrr-notvia-addresses/.

[4] Arjun Guha, Mark Reitblatt, and Nate Foster.
Machine-Verified Network Controllers . In ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Seattle, WA,
June 2013.

[5] Timothy L. Hinrichs, Natasha S. Gude, Martin
Casado, John C. Mitchell, and Scott Shenker.
Practical Declarative Network Management. In ACM
SIGCOMM Workshop on Research on Enterprise
Networking (WREN), 2009.

[6] Peyman Kazemian, Michael Chang, Hongyi Zeng,
George Varghese, Nick McKeown, and Scott Whyte.
Real Time Network Policy Checking using Header
Space Analysis. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), April
2013.

[7] James Kempf, Elisa Bellagamba, András Kern, David
Jocha, Attila Takács, and Pontus Sköldström. Scalable
Fault Management for OpenFlow. In IEEE

International Conference on Communications (ICC),
2012.

[8] Maciej Kuźniar, Peter Pereš́ıni, Nedeljko Vasić, Marco
Canini, and Dejan Kostić. Automatic Failure Recovery
for Software-Defined Networks. In ACM SIGCOMM
Workshop on Hot Topics in Software-Defined
Networking (HotSDN), August 2013.

[9] Amund Kvalbein, Audun Fosselie Hansen, Tarik Čičic,
Stein Gjessing, and Olav Lysne. Multiple Routing
Configurations for Fast IP Network Recovery.
IEEE/ACM Transactions on Networking,
17(2):473–486, April 2009.

[10] Bob Lantz, Brandon Heller, and Nick McKeown. A
Network in a Laptop: Rapid Prototyping for
Software-Defined Networks. In ACM SIGCOMM
Workshop on Hot Topics in Networks (HotNets), 2010.

[11] Junda Liu, Aurojit Panda, Ankit Singla, P. Brighten
Godfrey, Michael Schapira, and Scott Shenker.
Ensuring Connectivity via Data Plane Mechanisms. In
USENIX Symposium on Networked Systems Design
and Implementation (NSDI), April 2013.

[12] Christopher Monsanto, Nate Foster, Rob Harrison,
and David Walker. A Compiler and Run-time System
for Network Programming Languages. In ACM
SIGPLAN–SIGACT Symposium on Principles of
Programming Languages (POPL), pages 217–230,
January 2012.

[13] Christopher Monsanto, Joshua Reich, Nate Foster,
Jennifer Rexford, and David Walker. Composing
software defined networks. In USENIX Symposium on
Networked Systems Design and Implementation
(NSDI), April 2013.

[14] Scott Owens, John Reppy, and Aaron Turon.
Regular-expression derivatives re-examined. Journal of
Functional Programming, 19(2):173–190, March 2009.

[15] P. Pan, G. Swallow, and A. Atlas. Fast reroute
extensions to RSVP-TE for LSP tunnels. IETF RFC
4090, 2005.

[16] Alex Raj and Oliver C. Ibe. A survey of IP and
multiprotocol label switching fast reroute schemes.
Computer Networks, 51(8):1882–1907, June 2007.

[17] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole
Schlesinger, and David Walker. Abstractions for
Network Update. In ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and
Protocols for Computer Communications
(SIGCOMM), August 2012.

[18] Sachin Sharma, Dimitri Staessens, Didier Colle, Mario
Pickavet, and Piet Demeester. Enabling Fast Failure
Recovery in OpenFlow Networks. In International
Workshop on the Design of Reliable Communication
Networks (DRCN), 2011.

[19] Martin Suchara, Dahai Xu, Robert Doverspike, David
Johnson, and Jennifer Rexford. Network Architecture
for Joint Failure Recovery and Traffic Engineering. In
ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), 2011.

[20] Jean-Philippe Vasseur, Mario Pickavet, and Piet
Demeester. Network Recovery: Protection and
Restoration of Optical, SONET-SDH, IP, and MPLS.
Morgan Kaufmann, 2005.

