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ABSTRACT
Like programs, programming languages are not only mathe-
matical objects but also software engineering artifacts. De-
scribing the semantics of real-world languages can help bring
language theory to bear on both exciting and important real-
world problems. Achieving this is not purely a mathematical
task, but equally one of (semantic) engineering.

Categories and Subject Descriptors
D.3.1 [Prog. Lang.]: Formal Definitions and Theory

General Terms
Languages

1. SOME SOBERING MOTIVATION
Can an ad steal personal data? Can one ad alter the con-

tent of another? Can a mashup hurt your privacy settings?
The default answer to all these questions is yes, quite eas-
ily, without a great deal of careful effort. Major Internet
companies like Facebook, Google, and Yahoo! have devised
libraries to attempt to provide such protection. But though
these libraries come with instructions on use, they—like just
virtually all other software—come with no guarantees.

Replac[e] disclaimers by warranties.

—David Parnas [6]

2. ON PROGRAMMING LANGUAGES
A careful examination of the “libraries” that these In-

ternet companies provide shows that they are really try-
ing to define secure sub-languages of JavaScript, the lingua
franca of the contemporary Web. Indeed, programming lan-
guages are how programmers ultimately communicate with
computers—that is, they are a human-computer interface.
Languages can be designed to provide guarantees: type-
safety, information flow security, termination, and more.
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These guarantees lift the level of abstraction: both saving
programmers from having to implement these, and offering
them building-blocks to attain higher goals. They are, thus,
perhaps the ultimate software engineering abstraction.

These innovations continue to grow apace; we routinely
see thoughtful programmers engaged in myriad design ex-
periments. The Web, in particular, has unleashed innova-
tion in this space by enabling dissemination and discussion.
As a result, languages now toy with novelty in iteration con-
structs, object systems, modularity mechanisms, persistence
protocols, concurrency techniques, deployment platforms,
and much more. Many of these are created not by certified
academics but by thoughtful and well-intentioned designers
trying to address a felt or perceived need. The languages are
defined not by formal specifications but by prose and imple-
mentations. When the designers can articulate the need and
explain the applicability of their solution, they gather crit-
ical masses of developers who move the language forward.
Canonical examples that have grown well beyond their ini-
tial niches include scripting languages such as Perl, PHP,
Python, Ruby, and the aforementioned JavaScript.

Reading popular books and blogs on programming re-
veals these ongoing experiments. Unfortunately, software
engineering research—which appears obsessed with “main-
stream” developers—seems blind to these trends, while pro-
gramming languages papers are no more representative of
this great cacophony of ideas and experimentation. In fact,
these languages represent a terrific opportunity in the in-
tersection between software engineering and programming
languages.

3. DEFINING THE GAP
To provide any kind of guarantee about languages, sub-

languages, frameworks, or tools, we need semantic founda-
tions. Unfortunately, the majority of languages in regular
use have little by way of these; indeed, even simple but key
questions (such as: Does the language obey lexical scope?)
remain unanswered. This semantic gap stands in the way of
any rigorous, higher-level analysis (especially by machine).

A central tool in the language researcher’s toolkit is the
core calculus. When approaching a new language, we are ex-
perienced in extracting and formalizing its essence, reducing
it to a mere handful of pages. The resulting semantics can
easily be held in one’s head, and understanding it offers a
sense of satisfaction.
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Figure 1: Testing Strategy for λP

This core is valuable, but falls short in two important
ways. First, there is usually much more to the language
(even just in terms of programming constructs) than what
fits on these two pages. Second, for reasoning performed over
the semantics to have validity (i.e., to provide programmers
those elusive warranties), the actual language implementa-
tions have to conform to these semantics.

The first problem is especially well addressed in Scheme,
which explicitly defines constructs outside the core through
macros. Even in languages without such an integrated for-
malism, extensions are designed to act as syntactic sugar,
with a clear sense of the intended rewriting (which is often
implemented in actual evaluators).

The second problem is a little more subtle. The language
may define + to always return numbers, but does the un-
derlying implementation guarantee this? If it fails to do so,
an attacker may be able to exploit this to create a security
or other vulnerability. If the language gave primacy to the
semantics, then at least the semanticist can feel exculpated
because the fault is clearly the implementor’s (though the
user, whose warranty came up void, may be less generous).
And where the semantics is primary, the implementor knows
what to program in the first place.

The user of a scripting language is not so fortunate. The
language may not have been designed around a small core,
and non-orthogonal features may make such a reduction
complicated. Any attempt to define a semantics is irrelevant
in that the language is usually defined by an implementa-
tion, which is free to change irrespective of what the seman-
tics says. Finally, the language may have various corner-
cases such as heavily overloaded operations, which make an
attempt at a semantics useful for reasoning very difficult.

In practice most development effort goes into the
“noise” that researchers abstract away. [...]
[M]inimalistic subsets give rise to a nice and sim-
ple formalization, whereas language implementers
actually need help formalizing the rough edges of
the language, not the beautiful and clean subset.

—Erik Meijer [4]

4. A WAY FORWARD
Is there any hope? Yes, there is! The implementations of

all major languages—especially scripting languages defined
by implementations—come with large and well-structured
test suites. These suites embody the intended semantics of
the language. We should be able to use such a test suite to
retrofit a semantics.

For this to be useful, it is not sufficient to merely create a
semantics for the core language. Instead, we must also make
explicit the desugaring process that maps the full language
into the core. Desugaring a scripting language is similar to
desugaring C [1, 5]. Like C, scripting languages are also
defined by their implementations.

Figure 1 shows how desugaring relates to testing. A P

program can be desugared into the semantics (call it λP ),
which can then be evaluated. (If λP is small enough, an
interpreter is easy to write and inspect for correctness.) Of
course, P programs can also be run on actual implemen-
tations. These two outputs can then be checked to be the
same. By applying this check to all programs in the test
suite, we can argue that the semantics enjoys two proper-
ties: (1) that desugaring is total (i.e., that it maps all P
programs to λP ), and (2) that λP faithfully represents the
language’s intent. In short, we can achieve very high confi-
dence that the semantics actually mirrors what happens in
reality: it would be as tested as the implementation itself.
Our work for JavaScript [3] is a first step in this direction.

Such a strategy leaves open many tactical choices. There
are many possible λP core semantics (with correspondingly
different desugaring procedures) but, provided they all obey
the above diagram chase, they can be regarded as equivalent
and users can choose the one most appropriate for their task.
A λP evaluator can also take liberties, such as using meta-
language features to implement certain functions—perhaps
even the P evaluator, if this would not interfere with the
intended use of the semantics.

Ultimately, it would be nice for the semantics to transition
into the language’s specification and guide its subsequent
growth. Our strategy, however, does not rely on such high
ceremony. If specifiers and implementors will simply bless a
comprehensive conformance test suite, researchers can cre-
ate an adequate semantics, thereby closing the critical gap
that lies between practice and the desire for warranties.
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