
Participatory Networking

Andrew D. Ferguson, Arjun Guha, Jordan Place, Rodrigo Fonseca and Shriram Krishnamurthi
Brown University

Abstract
So�ware De�ned Networks, which provide a pro-
grammable, logically centralized abstraction of network
control, o�er an escape from the current state of enter-
prise and datacenter network con�guration, plagued by
brittle, static solutions involving manual setting of myr-
iad devices. But if SDNs provide an operating system for
the network, we are missing the analog to system calls –
an API for end-users and their applications to take part
in network con�guration. In response, we propose partic-
ipatory networking, a new paradigm for network con�gu-
ration in which users submit requests or hints for current
and future network properties such as quality of service,
access control, and path selection. We describe the initial
design and implementation of a participatory network-
ing system, PANE, and its solutions to the challenges of
resource arbitration and privilege delegation.

1 Introduction

�e con�guration of today’s datacenter and enterprise
networks is not for the faint of heart.Network administra-
tors develop brittle, static solutions to implement desired
policies, which exist as an interwoven mix of VLANs,
�rewalls, router con�gurations,MPLS tunnels, andmore.
�is complicates delegation of control, sacri�ces �exibil-
ity, and increases the time to �x errors and vulnerabilities
to human scale.
�e recent development of So�ware De�ned Networks

(SDNs) o�ers a platform for simpli�cation [8, 14]. SDNs
separate the logic that controls the network from its phys-
ical devices, allowing con�guration programs to operate
on a high-level, global, and consistent view of the net-
work. �is change has brought signi�cant advances to
datacenter and enterprise networks, such as high-level
speci�cation of access control [16] and QoS [12], safe ex-
perimentation [19], in-network load-balancing [23], and
seamless VMmigration [5].
While SDNs bring power and �exibility to con�guring

networks, we argue that the current stack is incomplete. If
SDNs provide an operating system for the network [9], we
are missing a mechanism analogous to system calls, with
which less privileged users can request services from the
network and in�uence its operation.

We propose a new paradigm for network con�gura-
tion, which we term participatory networking. In this pa-
per we present the initial design and implementation of
a participatory networking system, PANE, which forms
the “user-level” interface for the network control-plane,
and serves as the next layer for the current SDN stack.
Here, “user” encompasses both operators and end-users,
including applications and devices acting on their behalf.
Our vision is that operators set baseline policies that guar-
antee fairness and security, while devices, applications,
and end-users request current and future service quali-
ties, gain visibility into network properties, and provide
hints about future demands to the network. One of the
key characteristics of PANE is that it considers the tempo-
ral dimension of requests, and can reason beyond current
conditions for resource allocation and con�guration.

For example, a conferencing application may request
bandwidth for a video call, but learn via the network that
while only a guaranteed audio call is available now, it
can reserve a video call in one hour. An intrusion detec-
tion script on a user machine may request that the net-
work �lter tra�c from a speci�c source. An RPC service
may inform the network that its �ows will be short, but
with a deadline, which could enable shortest-deadline-
�rst scheduling at the switches [24]. Or, a MapReduce-
style application may request maximally disjoint paths to
improve performance of its shu�e phase.While not all of
these are new, PANEprovides a uni�ed framework for dy-
namic user involvement in network-wide con�guration.

PANE assumes, and is made deployable by, a logically
centralized control-plane, which SDNs provide. Our ini-
tial focus is on networks in a single administrative do-
main, such as an enterprise, campus, or datacenter. PANE
does not provide any functionality not already present in
the underlying network: it exposes it to a (much) broader
set of users, de�ning the necessary policies for shar-
ing and arbitration. For example, PANE does not invent
QoS mechanisms, but can use QoS extensions to Open-
Flow [12], to implement bandwidth and latency guaran-
tees for �ows. Unlike in distributed reservation protocols
such asRSVP [3], the PANEcontroller has a global viewof
the network, and does not rely on independent decisions
by network elements. PANE’s main contribution is to use
this global view of the network and requests to arbitrate



Flowgroup

Speakers Privileges
src=128.12/16 ⋀ dst.port ≤1024

Alice
Bob

deny, allow
bandwidth: 5Mb/s

limit: 10Mb/s
hint
query

(a)

Root
share

x y

w z

(b)

Figure 1: (a) A share in PANE. (b) A share hierarchy. �e rect-
angle above each share represents a �owgroup according to one
dimension (e.g., source IP). Sub-shares are de�ned on a subset
of their parent’s �owgroup, and may not have more permissive
privileges than their parent.

Time

B
an
d
w
id
th

Reservation Limit
✔✘

t

Figure 2: Example user request for reserved bandwidth; PANE
determines that it cannot be ful�lled until time t.

among users, much like a traditional OS. Of course, for
this arbitration to work, we need well-de�ned semantics
for the delegation of privileges in the network.
Our approach to network con�guration is backwards-

compatible with existing networked applications – users
submit requests only to receive predictable behavior from
the network. Unmodi�ed applications continue to receive
the best-e�ort performance of existing packet networks.
PANE has three main components: �rst, the semantics

of privilege delegation required to reconcile requests and
the network’s constraints (§2 and §4.1); second, a proto-
col andAPI for operators and users (or their applications)
to interact with the network (§4.2); and third, a network
controller that implements the protocol according to the
semantics and installs policies in the network (§5). We
have implemented a prototype controller that runs using
Nettle [22] andOpenFlow[14], and allows immediate and
future bandwidth reservations and installation of tra�c
permission rules, which we evaluate through example ap-
plications in §5. PANE is a work in progress, and builds
upon previous work on resource sharing, network QoS,
and so�ware-de�ned networking, whichwe discuss in §6.

2 �e Essence of PANE

PANE provides a mechanism to safely delegate privileges
that a�ect shared network resources. �e principals in
PANE are speakers, who are end-users, or applications

Speaker A network user authorized to issue messages.
Flow Set of packets with shared characteristics (e.g.,

transport protocol or dest. MAC address).
Flowgroup A set of �ows. Can be speci�ed by any con-

straints on �ow attributes, such as ‘all �ows di-
rected to TCP port 80’, or ‘all �ows fromAlice’.

Privilege �e right to issue a message on a �owgroup.
Share Associated �owgroup, speakers, privileges.

Table 1: Main concepts in PANE

and devices running on their behalf.1 Speakers interact
with the network using three types of messages: requests,
hints, and queries. �e PANE controller checks the va-
lidity of messages, as described below, and may apply
changes to the network and return a response. Requests
are for resources (e.g., bandwidth or access control), an
action to be taken by the controller, and an immediate re-
sponse. Queries imply no action, but receive a response.
Hints inform the network about current or future traf-
�c characteristics and never have a response; PANE may
choose to use the hint to improve service to users. Mes-
sages always refer to a �owgroup, a subset of all possible
�ows on the network. Finally, the de�nition and delega-
tion of privileges – which speakers can issue which mes-
sages on which �owgroups – forms the essence of PANE.
PANEmodels the delegation of privileges using a hier-

archy of shares. A share is a combination of a �owgroup,
a set of speakers, and a set of privileges (Figure 1(a)); the
share’s speakers can issue messages allowed by the priv-
ileges on subsets of the �owgroup. An implicit privilege
of all shares is delegation: speakers can always create sub-
shares (Figure 1(b)) or add new speakers. Sub-shares may
have an arbitrary set of speakers, must refer to a subset
of the parent share’s �owgroup, and may not have more
permissive privileges than their parent. �is codi�es the
intuition that “you can’t give more privileges than you
have, but you can give them to anyone.” For example, if
a share’s �ows may have a maximum guaranteed band-
width of B, a sub-share cannot provide guaranteed band-
width of B′ > B. We describe the analogous relation for
additional privileges in §4.1.

�e share hierarchy does not itself change the state
of the network; the network is changed by speakers’ re-
quests and, optionally, hints, which are issued on a spec-
i�ed �owgroup and share. PANE accepts a message if it
passes a privilege check, if the referenced �owgroup is a
subset of the share’s �owgroup, and, for requests, if the
request can coexist with previously accepted requests. By
default, requests take e�ect immediately and do not ex-
pire, but can optionally specify start and end times. PANE
veri�es the request’s feasibility into the future, between
the provided or implicit start and end times. Verifying if

1Users in PANE are authenticated using mechanisms such as 802.1x.



a request can be granted may require walking the share
hierarchy, depending on the resource.�e design of sub-
shares allows resources to be oversubscribed; overallo-
cation is prevented when requests are granted, and not
when shares are created.
Figure 2 shows a simple example inwhich a speaker has

requested an immediate bandwidth reservation. PANE
determines that granting the request will exceed the
share’s available bandwidth, and informs the user that the
request cannot be granted until time t. In response, the
speaker sends a new request for a reservation which starts
at t; PANE accepts the request and later implements it.
With these de�nitions in place (summarized in Ta-

ble 1), we now consider several example scenarios in
which PANE bene�ts a network’s users. We defer the dis-
cussion of further design details, including the mecha-
nism for resolving con�icting requests, until §4.1.

3 Motivating Examples

We illustrate potential bene�ts of PANE with four moti-
vating scenarios in which there are signi�cant gains when
users or applications interact directly with the network.2

Signal Bars for Video Conferencing Consider a user
trying to establish a video conferencewhen the network is
operating near capacity. Today, the user will place the call
blindly, and become frustrated by its poor quality. Alter-
natively, in a network managed by PANE, the conferenc-
ing application can issue a request for the required band-
width.�e network, knowing that a large �le transfer will
end in 20 minutes, responds to the application request
with the schedule of bandwidth guarantees. With this in-
formation, the application can reserve enough bandwidth
now for a good quality audio call, or, in 20 minutes, a
good quality video call. By setting expectations and of-
fering alternatives, the conferencing application provides
a less frustrating experience for the user.
Network-assisted Firewall When a host is attacked with
undesired tra�c, automated scripts can install local �re-
wall rules to drop such packets.3 �e user can also con-
tact the network administrator to request malicious traf-
�c be �ltered earlier in the network. While the latter op-
tion has technical advantages, it is o�en too inconvenient
in practice. With PANE and appropriate shares, the same
script can programmatically prevent the attacking host
from reaching its target. �is approach shares many of
the advantages of ident++’s delegated �rewall rules [15],
to which we compare in §6.
Hints for Tra�c Prioritization �e third scenario con-
cerns the prioritization or scheduling of �ows with help

2�roughout the paper, when we say interact with the network, we
mean with the logically centralized network control plane.

3For example, SSHGuard: http://www.sshguard.net

from users or applications. For example, by augmenting
the Linux packet scheduler to support priorities provided
by Apache, the mean response time of short �ows can
be provably reduced without adversely a�ecting longer
�ows [10]. With PANE, Apache could push these prior-
ities beyond the local node to all programmable network
elements by specifying the relevant �owgroups and either
requesting guaranteed treatment to them, or providing
PANE with priority hints. Similarly, for deadline-driven
workloads such as those considered by D3 [24], PANE
provides the right platform for applications to pass this in-
formation to the network, which can use it to install QoS
rules along the �ow’s path. In this case, the hints about
the relevant �owgroups could contain the deadline and
size of each �ow. We expand upon this example in §6.

Finally, the direct use of application information obvi-
ates the need for heuristics to identify tra�c which may
look similar from the perspective of the network, such as
long-lived HTTP �ows for either streaming video or net-
worked backup. Using PANE, a user can request that the
�rst have less jitter and lower latency than the second.
Network Path Con�guration Hybrid optical-electrical
networks in datacenters have shown performance bene-
�ts for applications requiring large transfers, such as vir-
tual machine migration, MapReduce-style computation,
and HPCworkloads. However, proposers of two such de-
signs acknowledge that their e�cient use “relies on pre-
cise and detailed tra�c analysis” [2]. Hedera [1], a scheme
for dynamic �ow allocation in datacenter topologies with
multi-rooted trees, also requires estimates of the tra�c
demand between pairs of hosts. PANE o�ers an appeal-
ing alternative to reactive tra�c estimation: application-
provided hints about future tra�c patterns would allow
the network controller to allocate optical links or band-
width to �ows without resorting to heuristics.

While these examples highlight potential bene�ts of
our system, they also raise many design and implemen-
tation challenges. We currently address some of these in
PANE, but leave others, such as the hints of the last two
scenarios, as future work.

4 Design

PANE’s design has two main parts: the semantics of the
share hierarchy, privileges, and messages, and the PANE
protocol. We deepen the discussion from §2, and provide
a sketch of the PANE protocol by way of examples.

4.1 Privileges and Requests

�e share hierarchy sets the (static) context for the eval-
uation of speaker messages. �e root of the share hier-
archy is the RootShare, which contains all �ows, has all



Privilege Resource Constraints Sub-shares Composition
Allow Access Control boolean same or none Parent: override
Deny Sibling: Deny overrides Allow

Reserve Bandwidth Token Bucket Capacity: ≤; Fill Rate: ≤; Draw from all TB up to root.
Min Drain: ≥; Max Drain: ≤ Simulate forward in time.

Limit Bandwidth Maximum ≤ ≤ parent

Table 2: Share privileges for types of requests implemented in our PANE prototype.

privileges, and for which the root user is the only speaker.
Speakers of a share can create any number of sub-shares
and attribute both speakers and privileges to the sub-
share. Flowgroups are speci�ed with constraints on the
�ow attributes. We currently support the same attributes
as Flow-basedManagement Language [11], plus transport
ports. Using the labeling of Figure 1(b), �owgroups of sub-
shares can be proper (w ⊂ y) or improper (z ≡ y) sub-
sets of their parents’ �owgroups, and �owgroups of sib-
ling sub-shares (shares x and y) can overlap. �e share
hierarchy, by virtue of subdividing the space of possible
�ows, provides a natural context for the evaluation of all
three message types: requests, hints, and queries. In this
paper, we focus on the de�nition and implementation of
requests, leaving the other types for future work.
Our prototype implements four request types, summa-

rized in Table 2. A speaker can use allow and deny to
specify access control rules, reserve to obtain a minimum
bandwidth guarantee, and limit to rate-limit a �owgroup’s
bandwidth. We specify bandwidth reservation privileges
as a modi�ed token bucket: it has the usual attributes of
�ll rate F, capacity C, andmaximum drain rateM, and an
additional minimum drain ratem.�is lower bound pre-
vents reservations with very low drain rates that could last
inde�nitely. A simple reservation with maximum band-
width B is a special case with F = M = B;C = m = 0.
�e privileges of a sub-share cannot be less restrictive

than those of its parent share (cf. Table 2, ‘Sub-shares’ col-
umn). For both allow and deny, the sub-share can main-
tain the parent share’s privilege, if present, or revoke it.
�e token bucket of a sub-share has to “�t inside” the par-
ent’s token bucket. For limit, sub-shares can only specify
limits that are smaller than or equal to the parent’s.
PANE maintains the known state of the network – the

set of active and future granted requests – and evaluates
whether new requests can co-exist with them, and if so,
their e�ect.�e last column of Table 2 describes the com-
position of privileges along the share hierarchy.
For each request, the speaker can specify an evalua-

tion mode, either strict or partial, which are provided for
atomicity and convenience. In strict mode, PANE rejects
a request if it con�icts in any way with the network state.
For example, if a user wants to allow connections to TCP
ports 1000-2000, but there exists a request in a sub-share

that denies port 1024, PANE rejects the request, explain-
ingwhy. In partialmode, PANE relaxes the request so that
it does not con�ict, and informs the user of the change.
In the same example, PANE would inform the user that it
has allowed ports 1000-1023, and 1025-2000.

We believe that requests for other types of resources,
such as latency guarantees or path properties such asway-
point and avoid, will �t in the same framework, provided
we can de�ne what “less restrictive” means for each one.
We leave this investigation, however, to future work.

4.2 �e PANE Protocol

Speakers talk to the PANE controller using a simple pro-
tocol sketched here, beginning with the requests neces-
sary for an end-user, Alice, to reserve guaranteed band-
width for her �ows. First, the network administratormust
create a share for her �ows which carries such a privilege:

NewShare aliceBW for (user=Alice)
[reserve <= 10Mb] on rootShare.

�is share’s �owgroup contains all �ows for which Alice
is the sender (user=Alice) and allows the share’s speak-
ers to reserve up to 10Mbps of guaranteed bandwidth, but
does not authorize allow or deny requests. Next, the ad-
ministrator makes Alice a speaker of this share:

Grant aliceBW to Alice.

Finally, Alice can request that her web tra�c receive guar-
anteed bandwidth of 5Mbps for ten minutes, starting
twenty minutes in the future:

reserve(user=Alice,dstPort=80) = 5Mb
on aliceBW from +20min to +30min.

While aliceBW permits Alice to reserve bandwidth in-
de�nitely, a token bucket can be applied to limit Alice’s
reservations; for brevity, we omit syntax for this example.

�e network administrator can also create shares to
delegate access control.�e following PANE request cre-
ates a share for Alice, who is using the IP address 10.0.0.2,
which allows her to deny tra�c to her computer, but
which cannot be used for other requests:

NewShare aliceAC for (dstHost=10.0.0.2)
[deny = True] on rootShare.

Grant aliceAC to Alice.



Using this share, Alice can, for example, block tra�c from
Eve’s host (10.0.0.3) for the next �ve minutes:

deny(dstHost=10.0.0.2, srcHost=10.0.0.3)
on aliceAC from now to +5min.

If Alice attempts to block tra�c to Bob’s computer
(10.0.0.4) with this command:

deny(dstHost=10.0.0.4, srcHost=10.0.0.3)
on aliceAC.

her request will be rejected because its �owgroup is not a
subset of the �owgroup in aliceAC. If Alice attempts to
block all tra�c from Eve by not including the dstHost
restriction, her request will also be rejected.
We have also implemented, but omit for space reasons,

commands to query a share’s schedule of reserved band-
width, determine which shares and requests a�ect which
�ows, and manage users and their privileges.

5 Prototype

We have developed an initial Haskell implementation of
PANE for OpenFlow networks using Nettle [22]. It has
been tested using the Mininet platform for emulating
SDNs and theOpen vSwitch implementation of anOpen-
Flow switch. Although we chose OpenFlow as our sub-
strate for implementing PANE, its design does not de-
pend on OpenFlow. PANE could be implemented using
other mechanisms to control the network, such as 4D [8],
MPLS, or a collection ofmiddleboxes.With our prototype
we have implemented these preliminary case studies:
Network-assisted �rewall SSHGuard is a popular tool to
detect brute-force attacks via log monitoring and install
local �rewall rules (e.g., via iptables) in response. We
modi�ed SSHGuard to use PANE as a �rewall backend to
block nefarious tra�c entering the network. In particular,
this means such tra�c no longer traverses the targeted
host’s access link.
For example, if Alice is running SSHGuard on her host

and it detects a Linux syslog entry such as:

sshd[2197]: Invalid user Eve from 10.0.0.3

SSHGuard will block Eve’s tra�c for the next �ve min-
utes using the deny command presented in §4.2. In our
prototype, this PANE request is then installed as a packet
forwarding rule on the OpenFlow switches, which drop
packets to Alice’s host coming from Eve’s.
Ekiga Ekiga is an open source video conferencing appli-
cation. We modi�ed Ekiga to ask the user for the antici-
pated duration of video calls, and use a reserve command
to request guaranteed bandwidth from the network for
the appropriate time. If such a reservation is not available,
Ekiga retrieves the schedule of available bandwidth from
PANE and calculates the earliest time at which a video call

or, alternatively, an audio call, can be made with guaran-
teed quality. In our prototype, a successful request is in-
stalled as an OpenFlow rule which sends Ekiga’s packets
through a precon�gured queue on the switch.

6 RelatedWork

Quality of Service and Resource Management Provid-
ing a predictable network experience is not a new goal,
and there is a vast body of literature on this topic. PANE
relies heavily on existing mechanisms, such as reserva-
tions and prioritized queue management [12, 20], while
adding user-level management and resource arbitration.
PANE also goes beyond QoS, integrating hints and guar-
antees about access control and path selection. By focus-
ing on a single administrative domain, PANE sidesteps
the deployment di�culties of Internet-wide QoS propos-
als such as IntServ [4] and Di�Serv [3].

Cinder [18] uses a hierarchy of taps to provide isola-
tion, delegation, and division of the right to consume a
mobile device’s energy, similar to PANE’s hierarchy of to-
ken buckets for managing bandwidth reservations.
So�ware De�ned Networking Recent developments in
making SDN practical (e.g.,[9, 14, 22]) greatly improve
the deployability of PANE. �e actions in PANE are in-
spired by FML [11], which it extends by involving end-
users, adding queries and hints, and introducing a time
dimension to action requests. Resonance [16] delegates
access control to an automated monitoring system, using
OpenFlow to enforce policy decisions. Resonance could
be adapted to use PANE as the mechanism for taking ac-
tion on the network, or could be composed with PANE
using a library such as Frenetic [7].
Using Application-level Information Many previous
works describe speci�c cases in which information from
end-users or applications bene�ts network con�gura-
tion, �exibility, or performance; PANE can be a unifying
framework for these. For example, UPnP [21] allows ap-
plications to control a network gateway, such as to add
a port-forwarding entry to a NAT table. ident++ [15]
proposes an architecture in which an OpenFlow con-
troller reactively queries the endpoints of a new �ow to
determine whether it should be admitted. In contrast,
PANE allows administrators to delegate the privilege to
install restricted network-wide �rewall rules, and users
can do so either proactively or reactively (cf. §5). D3 [24]
is a transport protocol for datacenter networks that re-
places TCP’s congestion control with explicit rate control
to meet transmission deadlines. End-hosts in D3 request
sending rates based on a �ow’s size and deadline, and re-
ceive explicit rate signals from the routers along the �ow’s
path. We plan to test similar mechanisms in PANE using
hints about �owgroup properties.



Networking and Declarative Languages PANE’s design
is inspired by projects such as the Router Con�guration
Checker [6] and the Margrave tool for �rewall analy-
sis [17] which previously applied declarative languages to
network con�guration. Both tools use a high-level lan-
guage to detect con�guration mistakes in network poli-
cies by checking against prede�ned constraints. PANE,
however, directly integrates such logic into the network
controller. NDlog [13] adapted the declarative Datalog
language to ease the programming of distributed appli-
cations and protocols; PANE receives requests from dis-
tributed clients, but their evaluation is centralized.

7 Discussion

Participatory networking makes the programability of
SDNs accessible to end-users and their applications.
PANE is an initial design, and its deployability depends
on mechanisms which provide the desired guarantees.
�e controls currently provided byOpenFlow are a strong
start, and PANE will bene�t from new developments,
such as the path selection possible in novel datacenter
networks, or better QoS mechanisms. PANE’s deploy-
ment also depends on application adoption, which is
largely a question of perceived costs and bene�ts. A PANE
network should not provide worse service than existing
networks, and should provide tangible bene�ts for the
right uses. We are encouraged by examples of improved
performance and functionality due to application infor-
mation (e.g. [10, 15, 24]). PANE’s protocol is designed for
simplicity; an undergraduate required less than two days
to gain an understanding and add support to Ekiga.
Each of PANE’s three components – privilege delega-

tion, interaction protocol, and network controller – is
currently under active development. We are investigating
requests for resources such as latency, jitter, and path se-
lection, as well as query and hint messages. �ese pose
many exciting challenges, such as request composition,
and handlingmisleading hints.We also intend to evaluate
the scalability of the controller. Finally, the participatory
nature of PANE is suggestive of a market for network re-
sources, which we intend to develop and which will likely
require the design of transactional PANE requests.

Acknowledgments �e authors wish to thank Scott Shenker,
Jennifer Rexford, and Joe Politz for helpful discussions and feed-
back, and Andreas Voellmy for augmenting Nettle to support
PANE. �is work was partly supported by NSF grant 1012060.
Andrew Ferguson is supported by a DoD NDSEG fellowship.

References
[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and

A. Vahdat. Hedera: Dynamic �ow scheduling for data center net-
works. In Proc. NSDI ’10, San Jose, CA, 2010.

[2] H. Bazzaz, M. Tewari, G. Wang, G. Porter, T. S. E. Ng, D. Ander-
son, M. Kaminsky, M. Kozuch, and A. Vahdat. Switching the op-
tical divide: Fundamental challenges for hybrid electrical/optical
datacenter networks. In Proc. SOCC ’11, Cascais, Portugal, 2011.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss.
An Architecture for Di�erentiated Service. RFC 2475, Dec. 1998.

[4] R. Braden, D. Clark, and S. Shenker. Integrated Services in the
Internet Architecture: an Overview. RFC 1633, June 1994.

[5] D. Erickson, et al. A demonstration of virtual machine mobility in
an OpenFlow network. In SIGCOMM ’08 (Demo), Seattle, WA.

[6] N. Feamster and H. Balakrishnan. Detecting BGP con�guration
faults with static analysis. In Proc. NSDI ’05, Boston, MA, 2005.

[7] N. Foster,M. J. Freedman, R.Harrison, J. Rexford,M. L.Meola, and
D.Walker. Frenetic: a high-level language forOpenFlow networks.
In Proc. PRESTO ’10, Philadelphia, PA, 2010.

[8] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean slate 4D approach
to network control and management. SIGCOMM CCR, 35:41–54,
2005.

[9] N. Gude, T. Koponen, J. Pettit, B. Pfa�, M. Casado, N. McKeown,
and S. Shenker. NOX: Towards anOperating System forNetworks.
SIGCOMM CCR, 38:105–110, July 2008.

[10] M. Harchol-Balter, B. Schroeder, N. Bansal, andM. Agrawal. Size-
based scheduling to improve web performance. ACMTrans. Com-
put. Syst., 21:207–233, May 2003.

[11] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and
S. Shenker. Practical declarative network management. In Proc.
WREN ’09, Barcelona, Spain, 2009.

[12] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J. Lee, and
P. Yalagandula. Automated and Scalable QoS Control for Network
Convergence. In Proc. INM/WREN ’10, San Jose, CA, 2010.

[13] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P.Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
networking. Commun. ACM, 52:87–95, Nov. 2009.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling
innovation in campus networks. SIGCOMMCCR, 38:69–74, 2008.

[15] J. Naous, R. Stutsman, D. Mazières, N. McKeown, and N. Zel-
dovich. Enabling delegation with more information. In Proc.
WREN ’09, Barcelona, Spain, 2009.

[16] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark. Resonance:
dynamic access control for enterprise networks. In Proc. WREN
’09, Barcelona, Spain, 2009.

[17] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishna-
murthi. �e Margrave tool for �rewall analysis. In Proc. LISA ’10,
San Jose, CA, 2010.

[18] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and
N. Zeldovich. Energymanagement inmobile deviceswith theCin-
der operating system. In Proc. EuroSys ’11, Salzburg, Austria, 2011.

[19] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar. Can the Production Network Be
the Testbed? In Proc. OSDI ’10, Vancouver, BC, Canada, 2010.

[20] I. Stoica, H. Zhang, and T. S. E. Ng. A hierarchical fair service
curve algorithm for link-sharing, real-time and priority services.
In Proc. SIGCOMM ’97, Cannes, France, 1997.

[21] UPnP Device Architecture version 1.1. UPnP Forum., Oct. 2008.
[22] A. Voellmy and P. Hudak. Nettle: Taking the sting out of program-

ming network routers. In PADL, pages 235–249, 2011.
[23] R. Wang, D. Butnariu, and J. Rexford. OpenFlow-based server

load balancing gone wild. In Proc. Hot-ICE ’11, Boston, MA, 2011.
[24] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. Better

never than late: meeting deadlines in datacenter networks. In Proc.
SIGCOMM ’11, Toronto, Canada, 2011.


	Introduction
	The Essence of PANE
	Motivating Examples
	Design
	Privileges and Requests
	The PANE Protocol

	Prototype
	Related Work
	Discussion

