
Abstractions for Software-Defined Networks

Martin Casado
VMware

Nate Foster
Cornell University

Arjun Guha
University of Massachusetts Amherst

1. Introduction
Software-defined networking (SDN) has received a lot of
attention in recent years as a means of addressing some
of the long-standing challenges in networking. SDN starts
from two simple ideas: (i) generalize network hardware so it
provide a standard collection of packet-processing functions,
and (ii) decouple the software that controls the network
from the devices that implement it. This design makes it
possible to evolve the network without having to change
the underlying hardware and enables expressing network
algorithms in terms of appropriate abstractions for particular
applications.

Figure 1 contrasts the architectures of traditional net-
works and SDN. In SDN, one or more controller machines
execute a general-purpose program that responds to events
such as changes in network topology, connections initiated
by end hosts, shifts in traffic load, or messages from other
controllers, by computing a collection of packet-forwarding
rules. The controllers then push these rules to the switches,
which implement the required functionality efficiently using
specialized packet-processing hardware.

Because SDN does not specify how controllers are im-
plemented, it can be used to implement a variety of network
algorithms, including simple ones such as shortest-path rout-
ing, and more sophisticated ones such as traffic engineering.
Many novel applications have been implemented with SDN
including policy-based access control, adaptive traffic moni-
toring, wide-area traffic engineering, network virtualization,
and others [6, 9, 16, 19–21, 45]. In principle, it would be
possible to implement any of these applications in a tradi-
tional network, but it would not be easy: the programmer
would have to design new distributed protocols and also ad-
dress practical issues because traditional switches cannot be
easily controlled by third-party programs.

Early SDN controller platforms exposed a rudimentary
programming interface that provided little more than a thin
wrapper around the features of the underlying hardware.
Where there were higher-level abstractions, they reflected
structures already found in traditional networks such as
topology or link-state information. However, there is now
a growing body of work exploring how SDN can change not
only which control algorithms can be easily expressed, but
how they can best be written. Just as modern operating sys-

tems provide rich abstractions for managing hardware-level
resources, we believe that similar abstractions for networks
will be needed to fully realize the vision of SDN.

These abstractions are the topic of this paper. We review
recent and ongoing work on improving SDN programming
models and abstractions, focusing on the following areas:

Network-wide structures: SDN controllers are built us-
ing relatively small collections of tightly-coupled servers,
which makes them amenable to distributed algorithms
that maintain consistent versions of network-wide struc-
tures such as topology, traffic statistics, and others.

Distributed updates: SDN controllers manage the entire
network, so they must often change rules on multiple
switches. Update mechanisms that provide consistency
guarantees during periods of transition can simplify the
development of dynamic programs.

Modular composition: Many network programs naturally
decompose into several modules. Controllers that provide
compositional programming interfaces make it easy to
specify orthogonal aspects of network behavior in terms
of modular components.

Virtualization: Decoupling application logic from the
physical topology simplifies programs, ensures isolation,
and provides portability. Virtual network abstractions can
also be used to make controllers more scalable and fault
tolerant.

Formal verification: To help programmers write correct
programs, some controllers provide tools for automati-
cally checking formal properties and diagnosing prob-
lems when unexpected errors occur.

The following sections explore these abstractions in further
detail. To provide a common basis for discussion, we begin
by introducing OpenFlow as a concrete instance of SDN.

2. OpenFlow
The OpenFlow specification defines a standard collection
of features that switches must provide, as well as an inter-
face that controllers can use to communicate with switches
including instructions for installing and deleting forward-
ing rules, and notifications about flows, topology, and traffic
statistics [32].
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Figure 1. Traditional and software-defined architectures.

An OpenFlow switch maintains a forwarding table that
contains a list of prioritized rules. Each rule has a pattern
that describes a set of packets and actions that describe trans-
formations on packets. When a packet arrives at a switch, the
switch finds a rule whose pattern matches the packet headers
and applies the associated actions. If multiple rules match,
the switch applies the actions of the highest priority rule,
while if no rules match, the switch encapsulates the packet
in an OpenFlow message and sends it to the controllers. The
controllers can either process the packet directly, or send
messages back to the switch instructing it to install or delete
rules in its forwarding table. The maximum size of a table is
determined by hardware constraints, but most switches have
space for at least several thousand rules.

To support traffic monitoring, every rule has associated
counters that keep track of basic statistics such as the num-
ber and total size of all packets processed with that rule. Con-
trollers can read these counters using OpenFlow messages.
They can also configure the physical ports on a switch by
creating queues that rate-limit traffic or provide minimum
bandwidth guarantees—features that are useful for imple-
menting traffic engineering applications.

As an example, consider the following forwarding table:

Priority Pattern Action Counters
30 TcpDstPort = 22 Drop 〈7156, 124〉
20 IPDstAddr = 10.0.0.1 Forward 1 〈2648, 38〉
10 IPDstAddr = 10.0.0.2 Forward 2 〈14184, 246〉
0 ∗ Controller 〈1686, 14〉

Read from top to bottom, these rules block all SSH traf-
fic, forward non-SSH traffic destined for hosts 10.0.0.1 and
10.0.0.2 out ports 1 and 2 respectively, and divert all other
traffic to the controller for further processing.

3. Network-Wide Structures
A major advantage of SDN is that the controllers can com-
pute network-wide structures that give global visibility into
network state, using distributed algorithms that provide
strong guarantees about the consistency of these structures
across controllers. It would be practically infeasible to main-
tain these network-wide structures in a traditional network
where control is distributed across a larger number of de-
vices, but using them the logic of many applications can

become much simpler. For example, shortest path routing
can be implemented by evaluating Dijkstra’s algorithm over
the structure representing the topology [42].

Example. To illustrate, consider the task of maintaining
a spanning tree that connects the switches in the network.
Such a tree could be used to forward broadcast traffic with-
out any danger of forwarding loops. Designing a distributed
algorithm to construct and maintain a spanning tree is sur-
prisingly difficult because it must work correctly in arbitrary
topologies and rapidly reconverge to a new tree when events
such as unexpected device or link failures occur.

Traditional Solution. The classic way to build a span-
ning tree is to use the spanning tree protocol [37]—a fully
distributed protocol, in which the switches periodically ex-
change information with their neighbors using pairwise an-
nouncements. The switches agree on a root node by running
a distributed leader election protocol, and then construct the
spanning tree incrementally from that node, enabling and
disabling links to select the shortest path to the root, and
breaking ties using switch identifiers. Note that an imple-
mentation of the spanning tree protocol requires neighbor
discovery, leader election, as well as the actual tree construc-
tion algorithm, but because these components are specific
to the protocol, their logic cannot be easily reused by other
protocols that require similar functionality. Moreover, when
the topology changes, the time to calculate a new tree scales
with the size of longest loop-free path.

SDN Solution. Most SDN controllers provide a suite of
common functions that arise in many applications such as
topology discovery and link fault detection and also main-
tain structures that keep track of information about the state
of the network such as host locations, link capacities, the
traffic matrix etc. The database that stores this information
is often called a Network Information Base (NIB) [26]. Us-
ing a NIB, an SDN implementation of spanning tree can be
dramatically simpler than its distributed counterpart: when-
ever the topology changes, it simply computes a spanning
tree from the topology using Prim’s algorithm, and installs
rules on switches that forward along the tree.

Richer Applications. By providing programmers with in-
formation about the state of the entire network, the NIB also
makes it easy to implement richer applications such as traf-
fic engineering that would be difficult to realize in traditional
networks [11]. For example, the B4 and SWAN systems use
SDN to balance load across the wide-area links between data-
centers, achieving much higher utilization than was possible
with traditional approaches [19, 20]. These applications re-
quire distributed controllers that automatically manage data
replicated across many controllers through the NIB [26].

Using multiple controllers addresses important issues
such as scalability and fault tolerance—e.g., one controller
can take over for another if its load becomes high, or if its
links with the switches fail. However, because the number



of controllers is typically small, these controllers can use
algorithms such as Paxos—something that would not scale
in fully distributed settings. Hence, although controllers do
use distributed algorithms, they are simpler and often con-
verge faster than traditional protocols since there are fewer
controllers than switches.

Discussion. SDN can make many network programs vastly
simpler, by providing network-wide structures and allow-
ing common distributed programming abstractions to be im-
plemented once and reused across many applications. Such
reuse is effectively impossible in traditional networks, where
forwarding and control are tightly coupled on each device,
implementations of functions such as leader election are tied
to specific protocols, and devices have varying CPU, mem-
ory, and storage capabilities.

4. Distributed Updates
In traditional networks, it is often acceptable for configu-
ration updates to be merely eventually consistent. For ex-
ample, if the network configuration is recalculated due to a
link failure, a packet may traverse a switch once in the orig-
inal state and a second time in the updated state. This can
lead to behaviors such as forwarding loops or dropping pack-
ets, but since most networks only provide best-effort deliv-
ery, as long as the network eventually converges to the new
state, transient errors during the transition may be accept-
able. However, eventually consistent updates do not always
suffice in SDN. For example, an SDN controller might man-
age filtering rules in addition to forwarding rules, and these
rules could be critical for ensuring invariants such as access
control or isolation between the traffic of tenants sharing the
network. If configuration updates are propagated to switches
in a merely eventually consistent manner, these invariants
can easily be violated during periods of transition.

Programmers can sometimes work around these problems
by carefully ordering updates so that packets only traverse
paths whose configurations have been fully propagated into
the network. For example, a programmer might update the
ingress switches first, and check that all partially-updated
paths in the interior of the network are otherwise unreach-
able during the transition. But calculating orderings manu-
ally is complicated and makes updates slow to roll out. Re-
cent work has investigated abstractions that provide general
mechanisms for handling distributed updates as well as guar-
antees ensuring that packets never “see” a partially-updated
path. The idea is to attach versions to configurations and
carefully design update protocols which ensure that every
packet (or set of related packets) is processed by a single
consistent version.

Examples. The need for configuration updates that provide
strong consistency is a significant departure from traditional
networks. To demonstrate that they are not only of academic
interest, consider the following scenarios:

• Shortest-path routing: Initially the network is config-
ured to forward along shortest paths. Then the operator
decides to take several switches down for maintenance.
The controller generates a new network-wide configura-
tion that forwards along a different set of paths. At all
times, the network is expected to provide connectivity
and be free of forwarding loops.

• Distributed access control: Initially the network is con-
figured to filter a set of “forbidden” packets and other-
wise forward along shortest paths. Because the filtering
rules are too large to fit into a single forwarding table, the
rules are distributed across several switches in the net-
work. The configuration is carefully constructed to en-
sure that each packet traverses the appropriate switches
containing the necessary filtering rules. Later, the opera-
tor decides to rearrange the rules, maintaining the same
policy but placing filtering rules on different switches. At
all times, the network is expected to filter forbidden pack-
ets and forward other packets to their destinations.

• Server load balancing: Initially the network is config-
ured to redirect incoming requests to several back-end
server replicas. At some point, more servers are brought
online. The controller then generates a new configuration
that balances the load among the new set of servers. At
all times, the network is expected to forward incoming
traffic to one of the back-end servers while ensuring con-
nection affinity—all packets in a connection should be
sent to the same server.

In each of these scenarios, computing the initial and final
configurations is straightforward, but transitioning between
them while preserving the desired invariants is not. In par-
ticular, because the controller lacks the ability to update the
state of the entire network atomically, packets traversing the
network will necessarily be processed by old, new, or even
intermediate configurations containing a mixture of forward-
ing rules from both configurations.

Update Abstractions. Consistent update abstractions allow
a controller to update the forwarding state of the entire net-
work while ensuring that a packet will never traverse a path
that is in transition between two states. The abstractions
themselves are straightforward to describe: the controller
program specifies the version of the state being pushed into
the network and the update subsystem guarantees that each
packet traversing the network only “sees” a consistent ver-
sion of the state. Beyond the basic abstraction of versioning,
the state update subsystem of the controller can expose mul-
tiple consistency models to the application.

One possible model is per-packet consistency: each packet
is processed using a single version of the forwarding state [40].
That is, every packet is either processed with the old network-
wide configuration, or the new configuration, but not a mix-
ture of the two. Another model is per-flow consistency: every
set of related packets is processed using a single configura-



tion version [40]. Other extensions consider bandwidth and
attempt to avoid creating additional congestion during the
transition [18, 28].

Update Mechanisms. A general mechanism for imple-
menting consistent updates is to use a two-phase update.
As its name suggests, a two-phase update proceeds in two
steps: (i) the controller modifies the new configuration by in-
strumenting the forwarding rules so they only match packets
stamped with a tag corresponding to the new version, and in-
stalls it on every switch; (ii) the controller updates the rules
at the perimeter of the network to stamp packets with the
new version tag, and uninstalls the old configuration from
every switch. Although the network contains a mixture of
rules from the old and new configurations during the transi-
tion, these rules have the property that any given packet will
be processed according to a single version. Similar mecha-
nisms can be used to implement per-flow consistency [40].

In many situations, optimized mechanisms can be used
in place of two-phase update. For example, if the update
only adds paths, then only rules that impinge on those paths
need to be updated. Likewise, if the update only affects a
subset of the switches (and the policy has the property that it
never forwards traffic across those switches more than once)
then the other switches do not need to be updated at all.
These optimized mechanisms generate fewer messages, use
less rule space on switches, or complete the transition more
rapidly than full two-phase update. Consistent updates can
also be implemented incrementally [22] or by diverting some
packets to the controller [31].

Discussion. Updates are a fundamental abstraction for any
SDN controller. But despite some promising initial results,
many open questions remain. An obvious concern is effi-
ciency: the mechanisms just described require substantial
space for rules and a large number of control messages to
implement transitions. In large networks, the costs of these
mechanisms would be prohibitive. The optimizations dis-
cussed above are a good start, but a more comprehensive in-
vestigation is needed. Another important issue is the respon-
siveness of updates. The abstractions described in this sec-
tion make no guarantees about how long an update will take
to complete. For planned changes, this may be acceptable,
but when reacting to failures, a fast response is essential [39].
It would be interesting to explore abstractions that trade off
weaker guarantees for more responsive update mechanisms.
For example, an abstraction that only guarantees that pack-
ets ultimately reach their final destination and do not traverse
loops seems natural, and would admit more efficient imple-
mentations. Finally, it may be useful to synthesize updates
from application-specific invariants [29, 36].

5. Modular Composition
In operating systems, processes allow multiple users to share
the available hardware resources on a single machine. Each

process is associated with a thread of execution, along with
system resources such as memory, locks, file descriptors,
and sockets. The operating system requires that all interac-
tions between processes take place over well-specified inter-
faces. For example, memory allocated to one process can-
not be tampered with by another, unless it has explicitly
been shared by the first process. Although SDN controllers
have been compared to “network operating systems,” current
controllers lack abstractions analogous to processes [13]. In-
stead, most controllers give applications unfettered access to
the forwarding tables on every switch in the network, which
makes it difficult to write programs in a modular way.

This is unfortunate, because network programming should
lend itself naturally to modularization. SDN applications are
commonly built out of standard building blocks such as rout-
ing, broadcast, monitoring, and access control. However,
the lack of modularity in most SDN controllers forces pro-
grammers to reimplement these fundamental services from
scratch in each new application instead of simply obtaining
them from libraries.

Examples. The following scenarios illustrate why modu-
larity can be hard to achieve in current SDN controllers.

Forwarding and monitoring: The network implements
forwarding and traffic monitoring. Because switch ta-
bles implement both features, the rules must be carefully
crafted to forward and monitor certain packets but only
forward or monitor others. If the programmer executes
standard forwarding and monitoring programs side-by-
side, the programs may install overlapping rules and the
overall behavior of the system will be unpredictable.

Forwarding with isolation: The network is partitioned into
two sets of hosts. Each set is isolated from the other,
but the network forwards traffic between pairs of hosts
in the same set. As with the previous example, the pro-
gram decomposes into two orthogonal functions: iso-
lation and forwarding. However, the programmer must
consider both functions at once as rules generated by one
module could easily forward traffic to hosts in the other
set, violating the intended policy.

Low-latency video and bulk data transfer: The network
provides low-latency service to a video conferencing ap-
plication and allows a backup application to forward traf-
fic along several different paths, as long as there is suf-
ficient bandwidth. The programmer must consider both
functions simultaneously, to ensure that the service-level
requirements of each application are met.

Although these examples involve different applications, the
problems share a common cause: allowing programs to ma-
nipulate low-level network state directly makes it effectively
impossible to develop SDN applications in a modular way.

Programming Language Abstractions. One way to make
SDN applications more modular is to change the program-



ming interface they use. Rather than explicitly managing
low-level forwarding rules on switches, SDN programmers
could use a high-level language that compiles to OpenFlow.
Such a language should allow programmers to develop and
test modules independently without worrying about unin-
tended interactions. A programmer could even replace a
module with another that provides the same functionality.

The NetKAT [2] language (and its predecessor Net-
Core [14, 33, 34]) provides a collection of high-level pro-
gramming constructs including operators for composing in-
dependent programs. In the first example above, the for-
warding and monitoring modules could be composed using
its union operator, which would yield a module that both for-
wards and monitors, as desired. The NetKAT compiler takes
this policy and generates equivalent forwarding rules that
can be installed on the switches by its run-time system. The
Maple controller [44] allows programmers to write modules
as packet-processing functions in Java or Haskell and thus
use the modularity mechanisms those languages provide.
Maple uses a form of run-time tracing to record program
decisions and create optimized OpenFlow rules.

Isolated Slices. In certain situations, programmers need to
ensure that the programs being combined will not interfere
with each other. For example, in the traffic isolation scenario
above, the two forwarding modules must be non-interfering.
Combining them using union would be incorrect—the mod-
ules might interact by sending packets to each other. One
way to guarantee isolation is by using an abstraction that
allows multiple programs to execute side-by-side while re-
stricting each to its own isolated “slice” of the network.
FlowVisor interposes a hypervisor between the controller
and the switches, inspecting each event and control message
to ensure that the program and its traffic is confined to its
own segment of the network [43]. The FortNOX controller
also provides strong isolation between applications, using a
framework based on role-based authentication [38]. A recent
extension to NetKAT also provides a programming construct
analogous to slices [2, 15].

Participatory Networking. Combining behaviors from mul-
tiple modules sometimes leads to conflicts. For example, if
one module reserves all the bandwidth available on a link,
other modules will not be able to use that link. The PANE
controller [10] allows network administrators to specify
module-specific quotas and access control policies on net-
work resources. PANE leverages this mechanism to provide
an API that allows end-host applications to request network
resources. For example, a video conferencing application
can easily be modified to use the PANE API to reserve band-
width for a high-quality video call. PANE ensures that its
bandwidth request does not exceed limits set by the admin-
istrator and does not starve other applications of resources.

Discussion. Abstractions for decomposing complex appli-
cations into simple modules are critical technology for SDN.

Without them, programmers have to write programs in a
monolithic style, developing, testing, and reasoning about
the potential interactions between each piece of the pro-
gram simultaneously. The abstractions provided by high-
level languages such as NetKAT and Maple, hypervisors such
as FlowVisor and FortNOX, and controllers such as PANE,
make it possible to build applications in a modular way. But
although these abstractions are a promising first step, much
more work is needed. For example, developers need intuitive
reasoning principles for establishing properties of programs
built out of separate modules–e.g., whether one module can
be replaced by another without affecting the behavior of the
overall program. They also need better ways of expressing
and resolving conflicts, especially for properties involving
security and resource constraints.

6. Virtualization
SDN decouples the software that controls the network from
the underlying forwarding elements. But it does not decou-
ple the forwarding logic from the underlying physical net-
work topology. This means that a program that implements
shortest-path routing must maintain a complete represen-
tation of the topology and it must recompute paths when-
ever the topology changes. To address this issue, some SDN
controllers now provide primitives for writing applications
in terms of virtual network elements. Decoupling programs
from topology also creates opportunities for making SDN ap-
plications more scalable and fault tolerant.

Examples. As motivation for virtualization, consider the
following scenarios:

Access control: Access control is typically implemented by
encoding information such as MAC or IP addresses into
configurations. Unfortunately this means that topology
changes such as a host moving from one location to
another can undermine security. If access control lists
are instead configured in terms of a virtual switch that
is connected to each host, then the policy remains stable
even if the topology changes.

Multi-tenant datacenter: In datacenters, one often wants
to allow multiple tenants to impose different policies on
devices in a shared physical network. However, overlap-
ping addresses and services (Ethernet vs. IP) lead to com-
plicated forwarding tables, and it is hard to guarantee that
traffic generated by one tenant will be isolated from other
tenants. Using virtual switches, each tenant can be pro-
vided with a virtual network that they can configure how-
ever they like without interfering with other tenants.

Scale-out router: In large networks, it can be necessary
to make a collection of physical switches behave like a
single logical switch. For example, a large set of low-
cost commodity switches could be assembled into a sin-
gle carrier-grade router. Besides simplifying the forward-
ing logic for individual applications, this approach can



also be used to obtain scalability—because such a router
only exists at the logical level, it can be dynamically aug-
mented with additional physical switches as needed.

As these examples show, virtualization can make applica-
tions more portable and scalable, by decoupling their for-
warding logic from specific physical topologies.

Virtualization Abstractions. The most prominent example
of a virtual network abstraction for SDN is VMware’s Net-
work Virtualization Platform (NSX) [7, 9]. The Pyretic con-
troller supports similar abstractions [34]. These controllers
expose the same fundamental structure to programmers at
the virtual and physical levels—a graph representing the
network topology—which allows programs written for the
physical network to be used at the virtual level, and vice
versa.

To define a virtual network, the programmer specifies a
mapping between the elements in the logical network and
the elements in the physical network. For example, to create
a single “big switch” out of an arbitrary topology, they would
map all of the switches in the physical network onto the
single virtual switch and hide all internal links [7, 34].

Virtualization Mechanisms. Virtualization abstractions
are easy to describe, but their implementations are far from
simple. Platforms such as NSX are based on a controller hy-
pervisor that maps events and control messages at the logical
down to the physical level, and vice versa. To streamline the
bookkeeping needed to implement virtualization, most plat-
forms stamp incoming packets with a tag (e.g., a VLAN tag
or MPLS label) that explicitly associates it with one or more
virtual networks.

Packet processing in these systems proceeds in several
steps. First, the system identifies the logical context of the
packet—i.e., its location in the virtual network consisting
of a switch and a port. Second, it processes the packet ac-
cording to the policy for its logical context, which relo-
cates the packet into a different logical context (and possi-
bly generates additional packets). Finally, it maps the packet
down to the physical level. The hypervisor typically gener-
ates physical-level forwarding rules that implement all three
steps simultaneously. One challenge concerns the rule space
available on physical switches. Depending on the number
of virtual networks and the size of their policies, the hyper-
visor may not be able to accommodate the complete set of
rules needed to realize these policies on the switches. Hence,
just as in memory management in an ordinary operating sys-
tem, the hypervisor typically implements a form of “paging,”
moving rules onto and off of physical switches dynamically.

Discussion. Virtualization abstractions are an important
component of modern SDN controllers. Decoupling pro-
grams from the physical topology simplifies applications
and also enables sharing the network among several differ-
ent programs without interference. However, although sev-
eral production controllers already support virtualization,

many open questions remain. One issue concerns the level
of detail that should be exposed at the logical level. Cur-
rent implementations of SDN virtualization provide the same
programming interface at the logical and physical levels,
eliding resources such as link capacities, queues, and local
switch capacity. Another question is how to combine virtu-
alization with other abstractions such as consistent updates.
Doing this combination directly is not always possible as
both abstractions are commonly implemented using tagging
schemes. Finally, current platforms do not support efficient
nested virtualization. Semantically there are no deep issues,
but there are practical ramifications of implementing nested
virtualization using hypervisors.

7. Formal Verification
Today’s network operators typically work with low-level
network configurations by hand. Unsurprisingly, this leads
to configuration errors that make many networks unreliable
and insecure. By standardizing the interface to network hard-
ware, SDN offers a tremendous opportunity to develop meth-
ods and tools that make it much easier to build and oper-
ate reliable networks. There are many critical invariants that
arises in networks, several of which are described below.
These properties can be checked automatically using static
or dynamic tools that formally model the state of the net-
work and controller.

Examples. Many network properties are topology-specific,
so they can only be stated and verified given a model of the
structure of the network:

Connectivity: Packets emitted by any host in the network
are eventually delivered to their intended destinations,
except possibly due to congestion or failures.

Loop freedom: No packet is ever forwarded along a loop
back to a location in the network where it was previously
processed with the same headers and contents.

Waypointing: Packets emitted by untrustworthy hosts tra-
verse a middlebox that scans for malicious traffic before
being forwarded to their intended destinations.

Bandwidth: The network provides the minimum band-
width specified in service-level agreements with tenants.

Other properties are either entirely topology-agnostic or hold
for large classes of topologies. These properties capture gen-
eral correctness criteria for applications that are intended to
be executed on many different networks:

Access control: The network blocks all traffic emitted by
unauthorized hosts, as specified by an access control list.

Host learning: The controller eventually learns the location
of all hosts and the network forwards packets directly to
their intended destinations.



Spanning tree: The network forwards broadcast traffic
along a tree that contains every switch (if the network
is connected).

Both types of properties have been difficult to establish in
traditional networks, as they require reasoning about com-
plex state distributed across many heterogeneous devices.
Building on the uniform interfaces provided by SDN, several
recent tools have made it possible to verify many network
properties automatically.

Verifying Configurations. Verifying properties such as
loop freedom, connectivity, etc. requires modeling both the
topology and switch configurations. Header Space Analy-
sis [23] models switches and the topology as functions in
an n-dimensional space, where points represent the vec-
tor of packet headers. This model can be used to generate
test packets that provide coverage for each rule in the over-
all configuration [47] and extensions can check configura-
tions incrementally [24]. FlowChecker is based on similar
ideas, but encodes policies as binary-decision diagrams [1].
Anteater [30] encodes switch configurations as boolean SAT
instances, building on an encoding originally developed by
Xie et al. [46]. VeriFlow [25] develops domain-specific rep-
resentations and algorithms for checking properties in real-
time, which is important because the forwarding behavior of
an SDN can rapidly evolve, especially if the controller is re-
acting to changing network conditions. Finally, NetKAT [2]
includes a sound, complete, and decidable equational rea-
soning system for proving equivalences between network
programs.

Verifying Controllers. In addition to tools that can verify
properties of configurations, some recent efforts have fo-
cused on tools that can verify control programs themselves,
often focusing on topology-independent properties. NICE [5]
uses a combination of symbolic execution and model check-
ing to verify several important properties, including the ab-
sence of race conditions and bugs akin to switch memory
leaks. Another tool developed by Scott et al. checks whether
abstractions provided by SDN controllers are correctly real-
ized in switch-level configurations [17]. Guha et al. describe
a framework for establishing controller correctness using a
proof assistant, as well as a machine-verified implementa-
tion of the NetCore language against a detailed operational
model of OpenFlow [14]. VeriCon shows that Hoare-style
verification is possible for controllers written as simple im-
perative programs [3] and has been applied successfully to
a number of examples adapted from the SDN literature (e.g.,
firewalls, routing algorithms, etc.). Nelson, et al. present a
Datalog-based SDN programming language, called Flowlog,
that they also use to write and verify several canonical prop-
erties [35]. Because Flowlog is designed to be finite-state,
it is amenable to automatic verification without the need for
complex programmer-supplied assertions.

Discussion. There is a tremendous need for tools that
can provide rigorous guarantees about the behavior, per-
formance, reliability, and security of networked systems.
By standardizing the interfaces for controlling networks,
SDN makes it feasible to build tools for verifying configu-
rations and controllers against precise formal models. Some
possible next steps in this area include developing custom
logics and decision procedures for expressing and checking
properties, enriching models with additional features such
as latency and bandwidth, and better integrating property-
checking and debugging tools into SDN controller platforms.

8. Related Work
An enormous momentum has gathered behind SDN in recent
years, but the ideas behind SDN build on many previous ef-
forts. Tempest [41], an architecture developed at Cambridge
in the mid-1990s, was an early attempt to decouple forward-
ing and control in the context of ATM networks. Several fea-
tures from Tempest can be found in SDN today including an
emphasis on open interfaces and support for virtualization.
Similarly, the IETF ForCES working group defined a stan-
dard protocol that a controller could use to manage multi-
ple heterogeneous devices in a single network [8]. The Soft-
Router project explored the benefits of separating forward-
ing and control in terms of extensibility, scalability, reliabil-
ity, security, and cost [27].

The Routing Control Platform [4], developed at AT&T,
demonstrated that logical centralization could be used to dra-
matically simplify routing algorithms while still providing
good performance. These ideas were later expanded in the
4D platform [12], which introduced the distinction between
management and control planes. The benefits of expressing
algorithms using network-wide data structures instead of us-
ing distributed algorithms in SDN can also be seen in this
work.

The most immediate predecessor of SDN was Ethane [6],
a system aimed at providing fine-grained in-network access
control. Ethane provided a high-level language for defining
security policies, and a controller program that implemented
those policies by installing and uninstalling custom forward-
ing rules in programmable network switches. The NOX con-
troller was based on Ethane [13], and the protocol used by
the Ethane controller to communicate with switches later
evolved into the first version of the OpenFlow standard [32].

9. Conclusion
Many of the initial efforts around SDN have been focused
on architectural concerns—making it possible to evolve the
network and develop rich applications. But the growth of
this new software ecosystem has also led to the development
of fundamental new abstractions that exploit the ability to
write network control software on standard servers with a
less constrained state distribution model. We believe these



abstractions are critical for achieving the goals of SDN and
may prove to be some of its most lasting legacies.
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