
CS 7810 Graduate Cryptography

Lecture : Basic Number Theory and Algebra

Lecturer: Daniel Wichs Scribe: Yashvanth Kondi (Edited)

1 Topics Covered

• Fundamentals of field arithmetic

• Introduction to modular arithmetic

• Group theory

2 Fundamentals of Field Arithmetic

Given two integers a, b the cost of performing standard operations is as follows:

• a + b, a× b and “division with remainder” in time poly in input length, which means
poly(log2 a + log2 b).

• ab: result of computation has length exponential in input size, so trivially there exists
no algorithm to perform exponentiation in poly time.

• gcd(a, b):

1. if b = 0, output a

2. else ‘divide’ a by b to obtain k, r such that a = k · b+ r where r < b, and output
gcd(b, r).

Euclid’s algorithm (above) computes the greatest common divisor of a and b. As
b+r
2b+r ≤

2
3 , there are at most log 3

2
(a + b) iterations, keeping the overall running time

polynomial in the inputs.

• egcd(a, b) = (x, y) such that a · x+ b · y = gcd(a, b): can be computed in poly time by
extending Euclid’s algorithm, as described below.
egcd(a, b) :

1. if b = 0, output (1, 0)

2. else ‘divide’ a by b to obtain k, r such that a = k ·b+r where r < b, and compute
(x′, y′) = egcd(b, r).

3. Output (y′, x′ − y′ · k).
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3 Modular Arithmetic

The set of integers modulo N is denoted ZN . Given a, b ∈ ZN , computing (a+ b) (mod N)
and (a · b) (mod N) is straightforward to do in poly time.

Given a ∈ ZN , the ‘inverse’ of a is denoted a−1, and by definition a · a−1 = 1 (mod N).

Theorem 1 An a ∈ ZN has an inverse if and only if gcd(a,N) = 1. Furthermore the
inverse can be computed in polynomial time in the lengths of a,N .

Proof: If gcd(a,N) = 1 then, by the extended Euclid’s algorithm, we can find x, y such
that x ·a+ y ·N = 1 meaning that x ·a = 1 mod N . This means that x = a−1 is the inverse
of a.

If a has an inverse x = a−1 then a · x = 1 mod N . This means that there exists some
y ∈ Z such that a · x + N · y = 1. Since gcd(a,N) divides a and N it must also divide
a · x + N · y = 1. But this can only happen if gcd(a,N) = 1.

Exponentiation. Given a, b ∈ ZN , computing ab (mod N) can be done in poly time via
the ‘repeated square’ algorithm. Let the number of bits to represent an element in ZN be
n = log2N . The technique is to parse b into bits b0b1 · · · bn, and then make use of the
observation that b =

∑
i∈[n]

2i · bi to simplify the computation as follows:

ab = a

( ∑
i∈[n]

2i·bi

)
=

∏
i∈[n]

a2
i·bi

The algorithm itself follows easily, as described below.
expN (a, b) :

1. Parse b into bits b0b1 · · · bn.

2. Set c = 1, and d = a.

3. If b0 = 1, update c = a

4. For i ∈ [2, n] : Update d = d2. If bi = 1, then update c = c · d (mod N)

5. Output c.

4 Groups

A group (G, ∗) characterized by a set of elements G and an operator ∗, satisfies the following
properties:

1. Closure: ∀a, b ∈ G, we have that a ∗ b ∈ G.

2. Associativity: ∀a, b, c ∈ G, we have that (a ∗ b) ∗ c = a ∗ (b ∗ c).

3. Identity: ∃e ∈ G such that ∀a ∈ G, a ∗ e = e ∗ a = a.
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4. Inverse: ∀a ∈ G, ∃a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e.

It’s easy to see that (ZN ,+) is a group with identity element e = 0. However (ZN ,×) is
not a group (as 0 does not have an inverse for any N), and may not be a group for every N
even if zero is omitted. This is because inverses exist only for a ∈ ZN where gcd(a,N) = 1.
We instead work with group (Z∗N ,×), where Z∗N = {a : a ∈ ZN , gcd(a,N) = 1}.

Group order. The order ϕ(N) of N is given by the size of the group Z∗N , ie. ϕ(N) = |Z∗N |.
It is easy to see that for a prime p, ϕ(p) = p− 1.

Subgroups. If H ⊆ G, we call H = (H, ∗) a subgroup of G = (G, ∗) if (H, ∗) is also a
group. This is denoted H ⊆ G.

Theorem 2 Lagrange’s Theorem. Let H = (H, ∗) and G = (G, ∗) be groups. If H ⊆ G,
then |H| divides |G|.

Proof: Let H = {h1, h2 · · ·h|H|}. Pick g1 ∈ G, g1 /∈ H and enumerate g1H = {g1 ·
h1, g1 · h2 · · · g1 · h|H|}. Continue to pick gi ∈ G, gi /∈ H ∪ {g1, g2 · · · gi−1} and generate
giH = {gi · h1, gi · h2 · · · gi · h|H|}. Note that giH and gjH are completely disjoint sets when
i 6= j. This can be shown as follows: consider g such that g ∈ giH and g ∈ gjH. Therefore
gi ·hi′ = gj ·hj′ = g for some i′, j′ ∈ [|H|]. This gives us gi = gj ·hj′ ·h−1i′ . Now, any element
in giH can be interpreted as gi · hk = gj · hj′ · h−1i′ · hk = gj · hk′ for some k′. This proves
that if giH and gjH have even one common element, then i = j. As all the giH sets are
therefore disjoint, once we exhaust all possible gi ∈ G we will have that

∑
i∈[n]
|giH| = |G| for

some integer n.

Corollary 1 If p is prime, then ∀a ∈ Z∗p, ap−1 = 1 (mod p).

Cyclic Groups. Let G = (G, ∗). Consider g ∈ G. Denote 〈g〉 = {g0, g1, · · · gq−1} as the
subgroup ‘generated’ by g. We say that G is cyclic if 〈g〉 is cyclic, ie. gq = g0 = 1. Note
that gi · gj = gi+j (mod q). The size q of 〈g〉 is the order of the group.

Proof: (Postponed proof of Fermat’s Little Theorem, see Corollary 1).
|〈a〉| = q | (p− 1), so ap−1 = aq·k = 1 (mod p)

Also observe that ab (mod N) = ab (mod ϕN) (mod N), so ab = aϕN ·k+b (mod ϕN). Note
that 〈g〉 is isomorphic to Zq, ie. (〈g〉, ·) ∼= (Zq,+).

Theorem 3 If p is prime, then (Z∗p,×) is a cyclic group. ie. ∃g such that Z∗p = {1, g, g2, · · · gp−1}.
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