CS 7810 Graduate Cryptography

Lecture : Basic Number Theory and AlgebraLecturer: Daniel WichsScribe: Yashvanth Kondi (Edited)

1 Topics Covered

- Fundamentals of field arithmetic
- Introduction to modular arithmetic
- Group theory

2 Fundamentals of Field Arithmetic

Given two integers a, b the cost of performing standard operations is as follows:

- a + b, $a \times b$ and "division with remainder" in time poly in input length, which means poly $(\log_2 a + \log_2 b)$.
- a^b : result of computation has length exponential in input size, so trivially there exists no algorithm to perform exponentiation in poly time.
- gcd(a, b):
 - 1. if b = 0, output a
 - 2. else 'divide' a by b to obtain k, r such that $a = k \cdot b + r$ where r < b, and output gcd(b, r).

Euclid's algorithm (above) computes the greatest common divisor of a and b. As $\frac{b+r}{2b+r} \leq \frac{2}{3}$, there are at most $\log_{\frac{3}{2}}(a+b)$ iterations, keeping the overall running time polynomial in the inputs.

- $\operatorname{\mathsf{egcd}}(a,b) = (x,y)$ such that $a \cdot x + b \cdot y = \operatorname{\mathsf{gcd}}(a,b)$: can be computed in poly time by extending Euclid's algorithm, as described below. $\operatorname{\mathsf{egcd}}(a,b)$:
 - 1. if b = 0, output (1, 0)
 - 2. else 'divide' a by b to obtain k, r such that $a = k \cdot b + r$ where r < b, and compute $(x', y') = \operatorname{\mathsf{egcd}}(b, r)$.
 - 3. Output $(y', x' y' \cdot k)$.

3 Modular Arithmetic

The set of integers modulo N is denoted \mathbb{Z}_N . Given $a, b \in \mathbb{Z}_N$, computing $(a+b) \pmod{N}$ and $(a \cdot b) \pmod{N}$ is straightforward to do in poly time.

Given $a \in \mathbb{Z}_N$, the 'inverse' of a is denoted a^{-1} , and by definition $a \cdot a^{-1} = 1 \pmod{N}$.

Theorem 1 An $a \in \mathbb{Z}_N$ has an inverse if and only if gcd(a, N) = 1. Furthermore the inverse can be computed in polynomial time in the lengths of a, N.

Proof: If gcd(a, N) = 1 then, by the extended Euclid's algorithm, we can find x, y such that $x \cdot a + y \cdot N = 1$ meaning that $x \cdot a = 1 \mod N$. This means that $x = a^{-1}$ is the inverse of a.

If a has an inverse $x = a^{-1}$ then $a \cdot x = 1 \mod N$. This means that there exists some $y \in \mathbb{Z}$ such that $a \cdot x + N \cdot y = 1$. Since gcd(a, N) divides a and N it must also divide $a \cdot x + N \cdot y = 1$. But this can only happen if gcd(a, N) = 1.

Exponentiation. Given $a, b \in \mathbb{Z}_N$, computing $a^b \pmod{N}$ can be done in poly time via the 'repeated square' algorithm. Let the number of bits to represent an element in \mathbb{Z}_N be $n = \log_2 N$. The technique is to parse b into bits $b_0 b_1 \cdots b_n$, and then make use of the observation that $b = \sum_{i=1}^{n} 2^i \cdot b_i$ to simplify the computation as follows:

$$i \in [n]$$

$$a^b = a^{\left(\sum\limits_{i\in[n]}2^i\cdot b_i
ight)} = \prod\limits_{i\in[n]}a^{2^i\cdot b_i}$$

The algorithm itself follows easily, as described below. $\exp_N(a, b)$:

- 1. Parse b into bits $b_0b_1\cdots b_n$.
- 2. Set c = 1, and d = a.
- 3. If $b_0 = 1$, update c = a
- 4. For $i \in [2, n]$: Update $d = d^2$. If $b_i = 1$, then update $c = c \cdot d \pmod{N}$
- 5. Output c.

4 Groups

A group $(\mathbb{G}, *)$ characterized by a set of elements \mathbb{G} and an operator *, satisfies the following properties:

- 1. Closure: $\forall a, b \in \mathbb{G}$, we have that $a * b \in \mathbb{G}$.
- 2. Associativity: $\forall a, b, c \in \mathbb{G}$, we have that (a * b) * c = a * (b * c).
- 3. Identity: $\exists e \in \mathbb{G}$ such that $\forall a \in \mathbb{G}$, a * e = e * a = a.

4. Inverse: $\forall a \in \mathbb{G}, \exists a^{-1} \in \mathbb{G}$ such that $a * a^{-1} = a^{-1} * a = e$.

It's easy to see that $(\mathbb{Z}_N, +)$ is a group with identity element e = 0. However (\mathbb{Z}_N, \times) is not a group (as 0 does not have an inverse for any N), and may not be a group for every N even if zero is omitted. This is because inverses exist only for $a \in \mathbb{Z}_N$ where gcd(a, N) = 1. We instead work with group (\mathbb{Z}_N^*, \times) , where $\mathbb{Z}_N^* = \{a : a \in \mathbb{Z}_N, \ \mathsf{gcd}(a, N) = 1\}.$

Group order. The order $\varphi(N)$ of N is given by the size of the group \mathbb{Z}_N^* , i.e. $\varphi(N) = |\mathbb{Z}_N^*|$. It is easy to see that for a prime $p, \varphi(p) = p - 1$.

Subgroups. If $\mathbb{H} \subseteq \mathbb{G}$, we call $H = (\mathbb{H}, *)$ a subgroup of $G = (\mathbb{G}, *)$ if $(\mathbb{H}, *)$ is also a group. This is denoted $H \subseteq G$.

Theorem 2 Lagrange's Theorem. Let $H = (\mathbb{H}, *)$ and $G = (\mathbb{G}, *)$ be groups. If $H \subseteq G$, then $|\mathbb{H}|$ divides $|\mathbb{G}|$.

Proof: Let $\mathbb{H} = \{h_1, h_2 \cdots h_{|\mathbb{H}|}\}$. Pick $g_1 \in \mathbb{G}, g_1 \notin \mathbb{H}$ and enumerate $g_1\mathbb{H} = \{g_1 \cdot \mathbb{G}, g_1 \notin \mathbb{H}\}$ $h_1, g_1 \cdot h_2 \cdots g_1 \cdot h_{|\mathbb{H}|}$. Continue to pick $g_i \in \mathbb{G}, g_i \notin \mathbb{H} \cup \{g_1, g_2 \cdots g_{i-1}\}$ and generate $g_i \mathbb{H} = \{g_i \cdot h_1, g_i \cdot h_2 \cdots g_i \cdot h_{|\mathbb{H}|}\}$. Note that $g_i \mathbb{H}$ and $g_j \mathbb{H}$ are completely disjoint sets when $i \neq j$. This can be shown as follows: consider g such that $g \in g_i \mathbb{H}$ and $g \in g_j \mathbb{H}$. Therefore $g_i \cdot h_{i'} = g_j \cdot h_{j'} = g$ for some $i', j' \in [|\mathbb{H}|]$. This gives us $g_i = g_j \cdot h_{j'} \cdot h_{i'}^{-1}$. Now, any element in $g_i \mathbb{H}$ can be interpreted as $g_i \cdot h_k = g_j \cdot h_{j'} \cdot h_{i'}^{-1} \cdot h_k = g_j \cdot h_{k'}$ for some k'. This proves that if $g_i \mathbb{H}$ and $g_j \mathbb{H}$ have even one common element, then i = j. As all the $g_i \mathbb{H}$ sets are therefore disjoint, once we exhaust all possible $g_i \in \mathbb{G}$ we will have that $\sum |g_i \mathbb{H}| = |\mathbb{G}|$ for $i \in [n]$

some integer n.

Corollary 1 If p is prime, then $\forall a \in \mathbb{Z}_p^*$, $a^{p-1} = 1 \pmod{p}$.

Cyclic Groups. Let $G = (\mathbb{G}, *)$. Consider $g \in \mathbb{G}$. Denote $\langle g \rangle = \{g^0, g^1, \cdots g^{q-1}\}$ as the subgroup 'generated' by g. We say that G is cyclic if $\langle g \rangle$ is cyclic, ie. $g^q = g^0 = 1$. Note that $q^i \cdot q^j = q^{i+j \pmod{q}}$. The size q of $\langle q \rangle$ is the order of the group.

Proof: (Postponed proof of Fermat's Little Theorem, see Corollary 1). $|\langle a \rangle| = q \mid (p-1)$, so $a^{p-1} = a^{q \cdot k} = 1 \pmod{p}$

Also observe that $a^b \pmod{N} = a^b \pmod{\varphi N} \pmod{N}$, so $a^b = a^{\varphi N \cdot k + b \pmod{\varphi N}}$. Note that $\langle g \rangle$ is isomorphic to \mathbb{Z}_q , i.e. $(\langle g \rangle, \cdot) \cong (\mathbb{Z}_q, +)$.

Theorem 3 If p is prime, then (\mathbb{Z}_p^*, \times) is a cyclic group. ie. $\exists g \text{ such that } \mathbb{Z}_p^* = \{1, g, g^2, \cdots g^{p-1}\}.$