Introduction to Deep
Learning



Outline

e Deep Learning
o RNN

o CNN
o Attention

o Transformer

e Pytorch

o Introduction
o Basics

o Examples



RNNs

Some slides borrowed from Fei-Fei Li & Justin
Johnson & Serena Yeung at Stanford.



Vanilla Neural Networks

House Price Prediction one to one
Input Output |
Hidden 4
P Layers Hidden [ |
e S Layers
i y L
o s W i
#bedrooms  x,- P Output Input
DD .
zip code  x3“- | : Vanilla
: B Neural
‘V X Networks

wealth  x;° il



How to model sequences?

e Text Classification: Input Sequence -> Output label
e Translation: Input Sequence -> Output Sequence

e Image Captioning: Input image -> Output Sequence



RNN- Recurrent Neural Networks

one to one one to many many to one many to many many to many

Vanilla e.g.- Image e.g.- Text e.g.- e.g.- POS
Neural Captioning Classification Translation tagging
Networks



RNN- Representation

y Output Vector

!

Hidden state fed back
into the RNN cell

!

Input Vector




RNN- Recurrence Relation

The RNN cell consists of a hidden state that is updated
whenever a new input is received. At every time step, Output Vector
this hidden state is fed back into the RNN cell. y

hy|= fW(ht—la xt)

new state / old state input vector at
some time step

Hidden state fed back
into the RNN cell

some function
with parameters W

Input Vector




RNN- Rolled out representation

Y1 y2

T T
h0 B fW B h1 B fW = h2 B fW
x1 X2 X3




RNN- Rolled out representation

Individual Losses Li

y1 "l I‘1 y2 1 I‘2 y3 L3 yT
h0—>fW—>h1—>fW—>h2—>fw—>h3—>..-—>h1_
X1 X2 X3
W Same Weight

matrix- W




RNN- Backpropagation Through Time

_—T "\

I TN SR S N N T

-]
>
-
~
-
M
e
e
e
-
Ba

SN SR N N N R TN N O N I

B
M
]_>|
L
M
}_>|
L

-

\/

Forward pass through entire sequence to produce intermediate hidden states, output sequence and finally
the loss. Backward pass through the entire sequence to compute gradient.



RNN- Backpropagation Through Time

_—T "\

1

>

L SN SRR TSR N N O N A N I . N A

N
N
N

O T R e T T I N N I N I N I )

\/

Running Backpropagation through time for the entire text would be very slow. Switch to an approximation-
Truncated Backpropagation Through Time



RNN- Truncated Backpropagation Through Time

\ Loss |

7T

Run forward and backward
L | L L L through chunks of the
LI R K. K I g 3 sequence instead of whole
Lol Lol o > [ > sequence
+ +t t t t ot
———

Al




RNN- Truncated Backpropagation Through Time

FE1IN

e IR WL L [ ST FINE SR DU T
Carry hidden states forward

in time forever, but only

IR DN TR T TN TR TN I TR Y TR T T ) backpropagate for some

smaller number of steps




RNN- Types

The 3 most common types of Recurrent Neural Networks are-

1. Vanilla RNN
2. LSTM (Long Short-Term Memory)
3. GRU (Gated Recurrent Units)

Some good resources-
Understanding LSTM Networks

An Empirical Exploration of Recurrent Network Architectures

Recurrent Neural Network Tutorial, Part 4 — Implementing a GRU/LSTM RNN with Python and Theano

Stanford CS231n: Lecture 10 | Recurrent Neural Networks



https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://proceedings.mlr.press/v37/jozefowicz15.pdf
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
https://www.youtube.com/watch?v=6niqTuYFZLQ

CNNs

Some slides borrowed from Fei-Fei Li & Justin
Johnson & Serena Yeung at Stanford.



Fully Connected Layer

Input
32x32x3 image

/ Flattened image Weight Matrix Output

height 32*32*3 = 3072
32 input W activation
T
1L | —> — 1 (O
3072 10 x 3072 10
weights
32 width

3 depth



Convolutional Layer

Input Convolve the filter with the image i.e.
32x32x3 image “slide over the image spatially,
computing dot products”

Filter
/ 5x5x3 Filters always extend the full depth of

32 height ,| the input volume.

32 width

3 depth



Convolutional Layer

V
——0

i

.

32x32x3 image
Sx5x3 filter

convolve (slide) over all
spatial locations

activation map

y

£

28

At each step during the
convolution, the filter acts on a
region in the input image and
results in a single number as
output.

This number is the result of the
dot product between the values
in the filter and the values in the
ox5x3 chunk in the image that
the filter acts on.

Combining these together for the
entire image results in the
activation map.



Convolutional Layer

activation maps Filters can be stacked together.

/ 32 % Example- If we had 6 filters of
az shape 5x5,

28
each would produce an
Convolution Layer activation map of 28x28x1 and

our output would be a “new
A 28 image” of shape 28x28x6.

w|
o



Convolutional Layer

Visualizations borrowed from Irhum Shafkat’s blog.


https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Convolutional Layer

Standard Convolution Convolution
with Padding with strides

Convolution

Visualizations borrowed from vdumoulin’s github repo.


https://github.com/vdumoulin/conv_arithmetic

Convolutional Layer
N

Output Size:
(N - F)/stride + 1

e.g.N=7,F =3, stride 1
=>(7-3)1+1=5

e.g. N=7,F =3, stride 2
=>(7-3)2+1=3



Pooling Layer

224x224x64

|

pool

e

112x112x64

—

224

|

—
downsampling

112

makes the
representations smaller
and more manageable

operates over each
activation map
independently



Max Pooling

Single depth slice

Jl1p1]2)4
max pool with 2x2 filters
9 | 6 | 7|8 and stride 2
3 | 2 [
112 3| 4




ConvNet Layer

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 ReLU activation
Convolution Convolution 1 K—M
(5x5) kernel Max-Pooling (5x 5) kernel Max-Pooling (with
valid padding (2x2) valid padding (2x2)

\.dropout)

0

1

2

INPUT nl channels nl channels n2 channels n2 channels | /!‘ 9
(28 x 28 x 1) (24 x24 x nl) (12 x 12 x n1) (8x8xn2) (4x4xn2) OUTPUT

n3 units

Image credits- Saha’s blog.


https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

ConvNet Layer

1/ e B ] — CAR
a ] ] — TRUCK
- £l | — VAN
P— ] | | S
' < ] [] — BicYcLE
FULLY
INPUT CONVOLUTION + RELU ~ POOLING  CONVOLUTION + RELU POOLING r FLATTEN Liev o SOFTMAX
FEATURE LEARNING CLASSIFICATION

Image credits- Saha’s blog.


https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Attention

Some slides borrowed from Sarah Wiegreffe
at Georgia Tech.


https://sarahwie.github.io/

RNN

Encoder RNN

Encoding of the
source sentence.
This needs to capture all
information about the
source sentence.
Information bottleneck!

™

il a m’  entarté

J

Y
Source sentence (input)

Target sentence (output)
A

he hit

<START> he

A\
me  with a pie <END>

0000
0000

hit me  with a pie

NNY J42p02a(



RNN - Attention

dot product

Attention
scores

§inn

il a m’  entarté
N

Encoder
RNN

J

Y
61 Source sentence (input)

<START>

0000

NNY J2p02a(




RNN - Attention

dot product

Attention
scores

Encoder

il a m’  entarté

)

Y
62 Source sentence (input)

<START>

NNY Japo2ag



RNN - Attention

dot product

Attention
scores

Encoder
RNN

il a m’  entarté <START>

AL J
b &

63 Source sentence (input)

NNY Japoaag



RNN - Attention

Attention

Attention

Encoder

distribution

scores

RNN

65

On this decoder timestep, we're

mostly focusing on the first
/ encoder hidden state (“he”)

Take softmax to turn the scores
into a probability distribution

il a m’  entarté <START>

\ J

Y
Source sentence (input)

NNY J2p0de(



RNN - Attention

Attention

Attention

Encoder

distribution

scores

RNN

66

output

il a m’  entarté

X

Attention e— |

Y

L 8
Source sentence (input)

Use the attention distribution to take a
weighted sum of the encoder hidden
states.

The attention output mostly contains
information from the hidden states that
received high attention.

<START>

NNY Japodag



RNN - Attention

Attention he

output

T Concatenate attention output
with decoder hidden state, then
use to compute , as before

Attention
distribution

Attention
scores

Encoder
RN

il a m’  entarté <START>

\4 J
B

67 Source sentence (input)

NNY J9p02ag



RNN - Attention

Attention

Attention

Encoder

distribution

scores

RNN

68

Attention
output

il a m’  entarté

\

J

Y
Source sentence (input)

<START> he /

Sometimes we take the
attention output from the
previous step, and also
feed it into the decoder
(along with the usual
decoder input). We do
this in Assignment 4.

NNY 42p0o2aq



RNN - Attention

Sequence-to-sequence with attention

Attention me
output T

]m

Attention
distribution

Attention
scores

Encoder
RNN

il a m’  entarté <START> he hit

1N J

69 Source sentence (input)

NNY 42p03aQg



RNN - Attention

Sequence-to-sequence with attention

Attention me

output T
§8¢ T %
2 « Attention is a way to obtain a fixed-size representation of an
d arbitrary set of representations (the values), dependent on
E some other representation (the query).

Encoder

H_J
NNY Japodaq

il a m’  entarté <START> he hit
¢ J

Y
69 Source sentence (input)



Attention
- For query vector q, key vector k. representing value v,
- s, Is the similarity score between q and k.

- Normalize the similarity scores to sum to 1
- p, = Softmax(s,)

- Compute z as the weighted sum of the value vectors v.
weighted by their scores p.

- In Machine Translation & Image Captioning, the keys and
values are the same.

L
- But, they could be different. 7 = sz'vz'
i=1



Attention is great

Attention significantly improves performance (in many applications)
* It’s very useful to allow decoder to focus on certain parts of the source

Attention solves the bottleneck problem
» Attention allows decoder to look directly at source; bypass bottleneck

Attention helps with vanishing gradient problem
* Provides shortcut to faraway states
Attention provides some interpretability

* By inspecting attention distribution, we can see
what the decoder was focusing on



Drawbacks of RNN

- RNNs involve sequential computation
- can't parallelize = time-consuming
- RNNs “forget” past information
- No explicit modeling of long and short range

dependencies



Transformer

Some slides borrowed from Sarah Wiegreffe
at Georgia Tech.


https://sarahwie.github.io/

Transformer

“Attention is All You Need”

Encoder —

(Vaswani et. al 2017)

Qutput
Probabilities

Add & Norm
Feed
Forward
33 1 ~\ | Add & Norm z
2d & Norm) Multi-Head
Feed Attention
Forward T 7 Nx
 —
Nix Add & Norm
f_" Add & Norm | YR
Multi-Head Multi-Head
Attention Attention
ATE—— T
\_ J . _J)

Positional @_@ ¢ Positional
Encoding

Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

«— Decoder



Self-Attention

The cat stuck out its tongue and licked its owner
& L3 @ L ® L e L ®

© ® & & & @ L o
The cat stuck out its tongue and licked its owner



Self-Attention

Input

Embedding

Queries

Keys

Values

Thinking

x[L T T 11

a[ [ T]

Machines

x:L. T TT]

a:[ [ 1]

WK

wv



Self-Attention

Input

Embedding
Queries
Keys
Values

Score

Divide by 8 ( Vdx )

Softmax

Softmax
X
Value

Sum

Thinking
o[ T T 1]
o [EEE
I
vi [T
qre k=1
vi [

z [

Machines
x;[ [ [ T ]
q [T
v: [
qi1 * k2 =96
V2




Self-Attention

n _! Key words

i I e B } AT
AQ,K,V) %ofz‘m(u:(QA JV

S

Query words

LxL



Multi-Head Self-Attention

Parallel attention layers with different linear transformations on input and output.

stuck tongue licked its owner

/\/\/\/\./\./\./\. S O

Y Y YVYYVVYVY

The cat stuck out its tongue and licked its owner



Retaining Hidden State Size

[ 1] [ ]
t t
[ Self-Attention
t t
[ 11 I



Details of Each Attention Sub-Layer of Transformer
Encoder

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting = matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
" W0
—T I Oﬂ
'jj S
W@
Q4

* In all encoders other than #0,

we don't need embedding.

We start directly with the output
of the encoder right below this one

W0




Each Layer of Transformer Encoder

,->( Add & Normalize )

4 4

- ( Self-Attention )

POSITIONAL
ENCODING

oL [T ] I

Thinking Machines




Positional Encoding

|

(

ENCODER #0

EMBEDDING
WITH TIME o
SIGNAL x| [ [ [ ]

POSITIONAL t [ ]
ENCODING "\ L

EMBEDDINGS xi[ [ T 1]

INPUT

e[ T ]

[ [ ]
-

[ T T 1]

xs [ [ [ T]
L3 0 ] |
x<[ T T 1]



Each Layer of Transformer Decoder

t

Feed Forward

L

I Y

Self-Attention

( Encoder-Decoder Attention

Uy Uy O

t



Transformer Decoder - Masked Multi-Head Attention

Problem of Encoder self-attention: we can’t see the future !

The stuck out its tongue and licked its owner

/\./‘/\/\./\./\./\ 5 i &

BAAAAY

The cat stuck out its tongue and licked its owner



Transformer

“Attention is All You Need”

Encoder —

(Vaswani et. al 2017)

Qutput
Probabilities

Add & Norm
Feed
Forward
33 1 ~\ | Add & Norm z
2d & Norm) Multi-Head
Feed Attention
Forward T 7 Nx
 —
Nix Add & Norm
f_" Add & Norm | YR
Multi-Head Multi-Head
Attention Attention
ATE—— T
\_ J . _J)

Positional @_@ ¢ Positional
Encoding

Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

«— Decoder



