
Introduction to Deep 
Learning



Outline
● Deep Learning

○ RNN

○ CNN

○ Attention

○ Transformer

● Pytorch
○ Introduction

○ Basics

○ Examples



RNNs

Some slides borrowed from Fei-Fei Li & Justin 
Johnson & Serena Yeung at Stanford.



Vanilla Neural Networks

Input

Output

Hidden 
Layers

Input

Output

Hidden 
Layers

House Price Prediction



How to model sequences?
● Text Classification: Input Sequence -> Output label

● Translation: Input Sequence -> Output Sequence

● Image Captioning: Input image -> Output Sequence



RNN- Recurrent Neural Networks

Vanilla 
Neural 

Networks

e.g.- Image 
Captioning

e.g.- Text 
Classification

e.g.- 
Translation

e.g.- POS 
tagging



RNN- Representation

Input Vector

Output Vector

Hidden state fed back 
into the RNN cell



RNN- Recurrence Relation

Input Vector

Output Vector

Hidden state fed back 
into the RNN cell

The RNN cell consists of a hidden state that is updated 
whenever a new input is received. At every time step, 
this hidden state is fed back into the RNN cell.



RNN- Rolled out representation



RNN- Rolled out representation

Same Weight 
matrix- W

Individual Losses Li



RNN- Backpropagation Through Time

Forward pass through entire sequence to produce intermediate hidden states, output sequence and finally 
the loss. Backward pass through the entire sequence to compute gradient.



RNN- Backpropagation Through Time

Running Backpropagation through time for the entire text would be very slow. Switch to an approximation-
Truncated Backpropagation Through Time



RNN- Truncated Backpropagation Through Time

Run forward and backward 
through chunks of the 

sequence instead of whole 
sequence



RNN- Truncated Backpropagation Through Time

Carry hidden states forward 
in time forever, but only 
backpropagate for some 
smaller number of steps



RNN- Types
The 3 most common types of Recurrent Neural Networks are-

1. Vanilla RNN
2. LSTM (Long Short-Term Memory)
3. GRU (Gated Recurrent Units)

Some good resources-
Understanding LSTM Networks

An Empirical Exploration of Recurrent Network Architectures

Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM RNN with Python and Theano

Stanford CS231n: Lecture 10 | Recurrent Neural Networks

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://proceedings.mlr.press/v37/jozefowicz15.pdf
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
https://www.youtube.com/watch?v=6niqTuYFZLQ


CNNs

Some slides borrowed from Fei-Fei Li & Justin 
Johnson & Serena Yeung at Stanford.



Fully Connected Layer
Input

32x32x3 image

Flattened image
32*32*3 = 3072 Weight Matrix Output



Convolutional Layer

Input
32x32x3 image

Filter
5x5x3 

Convolve the filter with the image i.e. 
“slide over the image spatially, 
computing dot products”

Filters always extend the full depth of 
the input volume.



Convolutional Layer At each step during the 
convolution, the filter acts on a 
region in the input image and 
results in a single number as 
output. 

This number is the result of the 
dot product between the values 
in the filter and the values in the 
5x5x3 chunk in the image that 
the filter acts on. 

Combining these together for the 
entire image results in the 
activation map.



Convolutional Layer

Filters can be stacked together. 

Example- If we had 6 filters of 
shape 5x5,
each would produce an 
activation map of 28x28x1 and 
our output would be a “new 
image” of shape 28x28x6.



Convolutional Layer

Visualizations borrowed from Irhum Shafkat’s blog.

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1


Convolutional Layer

Visualizations borrowed from vdumoulin’s github repo.

Standard
Convolution

Convolution
with Padding

Convolution
with strides

https://github.com/vdumoulin/conv_arithmetic


Convolutional Layer

Output Size:
(N - F)/stride + 1

e.g. N = 7, F = 3, stride 1
=> (7 - 3)/1 + 1 = 5

e.g. N = 7, F = 3, stride 2 
=> (7 - 3)/2 + 1 = 3



Pooling Layer

● makes the 
representations smaller 
and more manageable

● operates over each 
activation map 
independently



Max Pooling



ConvNet Layer

Image credits- Saha’s blog.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


ConvNet Layer

Image credits- Saha’s blog.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Attention

Some slides borrowed from Sarah Wiegreffe
 at Georgia Tech.

https://sarahwie.github.io/


RNN



RNN - Attention



RNN - Attention



RNN - Attention



RNN - Attention



RNN - Attention



RNN - Attention



RNN - Attention



RNN - Attention



RNN - Attention



Attention





Drawbacks of RNN



Transformer

Some slides borrowed from Sarah Wiegreffe
 at Georgia Tech.

https://sarahwie.github.io/


Transformer



Self-Attention



Self-Attention



Self-Attention



Self-Attention



Multi-Head Self-Attention



Retaining Hidden State Size



Details of Each Attention Sub-Layer of Transformer 
Encoder



Each Layer of Transformer Encoder



Positional Encoding



Each Layer of Transformer Decoder



Transformer Decoder - Masked Multi-Head Attention
Problem of Encoder self-attention: we can’t see the future !



Transformer


