Class Notes: Attention Mechanisms in Neural Networks

1. Bahdanau (Additive) Attention

For each decoder hidden state s_t , the attention mechanism computes a context vector c_t as a weighted sum of encoder hidden states h_s .

Keys: Encoder hidden states h_s Queries: Decoder hidden state s_t Values: Encoder hidden states h_s

$$e_{ts} = v_a^{\top} \tanh(W_q s_t + W_k h_s)$$
$$\alpha_{ts} = \frac{\exp(e_{ts})}{\sum_i \exp(e_{tj})}$$

Attention Mechanisms

1. Bahdanau (Additive) Attention

For each decoder hidden state s_1 , atiention mechanism conputes context $vexcbbrc_t$ a aveightes um of encoder hidden states $h_1 \dots$

Figure 1: Bahdanau Attention flow diagram.

2. Luong (Multiplicative) Attention

The "global" variant uses the decoder hidden state from the previous timestep.

Keys: Encoder hidden states h_s Queries: Decoder hidden state s_{t-1} Values: Encoder hidden states h_s

$$e_{ts} = h_t^{\top} h_s$$
 or $e_{ts} = h_t^{\top} W h_s$

Figure 2: Luong Attention flow diagram.

3. Multi-Head Attention

Self-attention where Q, K, V are projected into h subspaces, processed in parallel, then concatenated.

$$Q_h = QW_h^Q, \quad K_h = KW_h^K, \quad V_h = VW_h^V$$

$$A_h = \operatorname{softmax}\left(\frac{Q_h K_h^{\top}}{\sqrt{d_k}}\right), \quad O_h = A_h V_h$$

Figure 3: Multi-Head Attention computation from the provided diagram.

4. Self-Attention

Aggregates a sequence into a single vector via scaled dot-product.

Figure 4: Self-Attention flow from the provided diagram.

5. Summary Table

Variant	Q Source	K Source	Scoring	Use Case
Bahdanau	Decoder RNN	Encoder RNN	Additive MLP	Seq2Seq
Luong	Decoder RNN	Encoder RNN	Dot/General	Seq2Seq
Self-Attn	Same sequence	Same sequence	Scaled Dot	Transformers
Multi-Head	Same sequence	Same sequence	Scaled Dot (multi)	Rich relations