Class Notes: Attention Mechanisms in Neural Networks

1. Bahdanau (Additive) Attention

For each decoder hidden state s;, the attention mechanism computes a context vector ¢; as
a weighted sum of encoder hidden states h.

Keys: Encoder hidden states hg

Queries: Decoder hidden state s;

Values: Encoder hidden states h,
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Figure 1: Bahdanau additive attention.

2. Luong (Multiplicative) Attention

The “global” variant uses the current (or previous) decoder state as query and a dot/general
product for scoring.

Keys: Encoder hidden states hg

Queries: Decoder hidden state s; (or s;_1)

Values: Encoder hidden states h

ers =5, hs (dot) or e =s Wh, (general).

3. Multi-Head Attention (Parallel)

Self-attention where (), K,V are projected into h subspaces, processed in parallel, then
concatenated.



)0 ey

Figure 2: Luong multiplicative attention.
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Figure 3: Multi-head attention: parallel heads over projected Q/K/V.

4. Self-Attention

Aggregates a sequence into updated token representations using scaled dot-product attention
where Q, K, V come from the same source.

Figure 4: Self-attention with shared source for Q/K/V.



5. Summary Table

Variant Q Source K Source Scoring Use Case
Bahdanau | Decoder RNN | Encoder RNN | Additive MLP Seq2Seq
Luong Decoder RNN | Encoder RNN | Dot/General Seq2Seq
Self-Attn Same sequence | Same sequence | Scaled Dot Transformers
Multi-Head | Same sequence | Same sequence | Scaled Dot (multi) | Rich relations




