
www.analyticsvidhya.com /blog/2022/03/a-brief-overview-of-recurrent-neural-networks-…

What is Recurrent Neural Networks (RNN)?

Debasish Kalita ⋮ 16-20 minutes ⋮ 3/11/2022

Ever wonder how chatbots understand your questions or how apps like Siri and

voice search can decipher your spoken requests? The secret weapon behind

these impressive feats is a type of artificial intelligence called Recurrent Neural

Networks (RNNs).

Unlike standard neural networks that excel at tasks like image recognition,

RNNs boast a unique superpower – memory! This internal memory allows them

to analyze sequential data, where the information order is crucial. Imagine

having a conversation – you need to remember what was said earlier to

understand the current flow. Similarly, RNNs can analyze sequences like

speech or text, making them perfect for machine translation and voice

recognition tasks. Although RNNs have been around since the 1980s, recent

advancements like Long Short-Term Memory (LSTM) and the explosion of big

data have unleashed their true potential.

1. Understanding Recurrent Neural Network (RNN)

2. What Makes RNN Special?

3. Architecture of a Traditional RNN

4. How do Recurrent Neural Networks Work?

https://www.analyticsvidhya.com/blog/2022/03/a-brief-overview-of-recurrent-neural-networks-rnn/
https://www.analyticsvidhya.com/blog/2022/01/introduction-to-neural-networks/
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm/
https://www.analyticsvidhya.com/blog/2021/05/what-is-big-data-introduction-uses-and-applications/
https://www.analyticsvidhya.com/blog/2021/05/what-is-big-data-introduction-uses-and-applications/


5. Recurrent Neural Network vs Feed-forward Neural Network

6. Backpropagation Through Time (BPTT)

7. Two Issues of Standard RNNs

8. What Are the Different Variations of RNN?

9. Advantages and Disadvantages of RNNs

10. Basic Python Implementation (RNN with Keras)

11. Conclusion

12. Frequently Asked Questions

Understanding Recurrent Neural Network (RNN)

Recurrent Neural Networks imitate the function of the human brain in the fields

of Data science, Artificial intelligence, machine learning, and deep learning,

allowing computer programs to recognize patterns and solve common issues.

RNNs are a type of neural network that can model sequence data. RNNs,

which are formed from feedforward networks, are similar to human brains in

their behaviour. Simply said, recurrent neural networks can anticipate

sequential data in a way that other algorithms can’t.

All of the inputs and outputs in standard neural networks are independent of

one another. However, in some circumstances, such as when predicting the

next word of a phrase, the prior words are necessary, and so the previous

words must be remembered. As a result, RNN was created, which used a

hidden layer to overcome the problem. The most important component of RNN

is the hidden state, which remembers specific information about a sequence.

https://www.analyticsvidhya.com/blog/2022/01/feedforward-neural-network-its-layers-functions-and-importance/


RNNs have a Memory that stores all information about the calculations. They

employ the same settings for each input since they produce the same outcome

by performing the same task on all inputs or hidden layers.

Also Read: Introduction to Autoencoders

What Makes RNN Special?

Recurrent Neural Networks (RNNs) set themselves apart from other neural

networks with their unique capabilities:

Internal Memory: This is the key feature of RNNs. It allows them to

remember past inputs and use that context when processing new

information.

Sequential Data Processing: Because of their memory, RNNs are

exceptional at handling sequential data where the order of elements

matters. This makes them ideal for speech recognition, machine

translation, natural language processing (NLP), and text generation.

Contextual Understanding: RNNs can analyze the current input about

what they’ve “seen” before. This contextual understanding is crucial for

tasks where meaning depends on prior information.

Dynamic Processing: RNNs can continuously update their internal

memory as they process new data, allowing them to adapt to changing

patterns within a sequence.

Also Read: Introduction to Convolution Neural Networks

RNN Architecture

RNNs are a type of neural network that have hidden states and allow past

outputs to be used as inputs. They usually follow a certain architecture. One

example is the Deep RNN: by stacking multiple RNN layers on top of each

other, deep RNNs create a more complex architecture. This allows them to

https://www.analyticsvidhya.com/blog/2021/06/autoencoders-a-gentle-introduction/
https://www.analyticsvidhya.com/blog/2017/01/ultimate-guide-to-understand-implement-natural-language-processing-codes-in-python/
https://www.analyticsvidhya.com/blog/2018/03/text-generation-using-python-nlp/
https://www.analyticsvidhya.com/blog/2016/04/deep-learning-computer-vision-introduction-convolution-neural-networks/


capture intricate relationships within very long sequences of data. They are

particularly useful for tasks where the order of elements spans long stretches.

Here’s a breakdown of its key components:

Input Layer: This layer receives the initial element of the sequence data.

For example, in a sentence, it might receive the first word as a vector

representation.

Hidden Layer: The heart of the RNN, the hidden layer contains a set of

interconnected neurons. Each neuron processes the current input along

with the information from the previous hidden layer’s state. This “state”

captures the network’s memory of past inputs, allowing it to understand the

current element in context.

Activation Function: This function introduces non-linearity into the

network, enabling it to learn complex patterns. It transforms the combined

input from the current input layer and the previous hidden layer state before

passing it on.

Output Layer: The output layer generates the network’s prediction based

on the processed information. In a language model, it might predict the next

word in the sequence.

Recurrent Connection: A key distinction of RNNs is the recurrent

connection within the hidden layer. This connection allows the network to

pass the hidden state information (the network’s memory) to the next time

step. It’s like passing a baton in a relay race, carrying information about

previous inputs forward

Architecture of a Traditional RNN

RNNs are a type of neural network with hidden states and allow past outputs to

be used as inputs. They usually go like this:



RNN architecture can vary depending on the problem you’re trying to solve. It

can range from those with a single input and output to those with many (with

variations between).

Below are some RNN architectures that can help you better understand this.

One-to-One: There is only one pair here. A one-to-one architecture is used

in traditional neural networks.

One-to-Many: A single input in a one-to-many network might result in

numerous outputs. One too many networks are used in music production,

for example.



Many-to-one: A single output combines inputs from distinct time steps in

this scenario. Sentiment analysis and emotion identification use such

networks, in which a sequence of words determines the class label.

Many-to-Many: For many-to-many, there are numerous options. Input and

output are sequences of potentially different lengths. Machine translation

systems, such as English to French or vice versa translation systems, use

many-to-many networks.

How do Recurrent Neural Networks Work?

The information in recurrent neural networks cycles through a loop to the

middle hidden layer.

The input layer x receives and processes the neural network’s input before

passing it on to the middle layer.

In the middle layer h, multiple hidden layers can be found, each with its

activation functions, weights, and biases. There’s a single hidden layer that

repeats over time steps. The same weights are used across all steps. The

hidden state is updated recursively using the current input and the previous

hidden state.

The recurrent neural network will standardize the different activation functions,

weights, and biases, ensuring that each hidden layer has the same

https://www.analyticsvidhya.com/blog/2021/04/activation-functions-and-their-derivatives-a-quick-complete-guide/


characteristics. Rather than constructing numerous hidden layers, it will create

only one and loop over it as many times as necessary.

Recurrent Neural Network vs Feed-forward

Neural Network

Feature
Feed-forward Neural

Network (FNN)

Recurrent Neural Network

(RNN)

Data Flow Straight through (no loops)
Loops through time (with

memory)

Memory No memory of past inputs
Maintains memory via hidden

states

Input

Assumption
Inputs are independent

Inputs are sequentially

dependent

Architecture
Static layers, no time

dimension
Unfolds across time steps

Training Standard backpropagation
Backpropagation Through Time

(BPTT)

Backpropagation Through Time (BPTT)

When we apply a Backpropagation algorithm to a Recurrent Neural Network

with time series data as its input, we call it backpropagation through time.

https://www.analyticsvidhya.com/blog/2021/12/whats-happening-in-backpropagation/


In a normal RNN, a single input is sent into the network at a time, and a single

output is obtained. On the other hand, backpropagation uses both the current

and prior inputs as input. This is referred to as a timestep, and one timestep will

consist of multiple time series data points entering the RNN simultaneously.

Once the neural network has trained on a set and given you an output, its

output is used to calculate and collect the errors. The network is then rolled

back up, and weights are recalculated and adjusted to account for the faults.

Two Issues of Standard RNNs

RNNs have had to overcome two key challenges, but to comprehend them, one

must first grasp what a gradient is.



About its inputs, a gradient is a partial derivative. If you’re unsure what that

implies, consider this: a gradient quantifies how much the output of a function

varies when the inputs are changed slightly.

A function’s slope is also known as its gradient. The steeper the slope, the

faster a model can learn, and the higher the gradient. The model, on the other

hand, will stop learning if the slope is zero. A gradient is used to measure the

change in all weights about the change in error.

Exploding Gradients: Exploding gradients occur when the algorithm gives

the weights an absurdly high priority for no apparent reason. Fortunately,

truncating or squashing the gradients is a simple solution to this problem.

Vanishing Gradients: Vanishing gradients occur when the gradient values

are too small, causing the model to stop learning or take far too long. This

was a big issue in the 1990s, and it was far more difficult to address than

the exploding gradients. Fortunately, Sepp Hochreiter and Juergen

Schmidhuber’s LSTM concept solved the problem.

What Are the Different Variations of RNN?



Researchers have introduced new, advanced RNN architectures to overcome

issues like vanishing and exploding gradient descent that hinder learning in

long sequences.

Long Short-Term Memory (LSTM): A popular choice for complex tasks.

LSTM networks introduce gates, i.e., input gate, output gate, and forget

gate, that control the flow of information within the network, allowing them

to learn long-term dependencies more effectively than vanilla RNNs.

Gated Recurrent Unit (GRU): Similar to LSTMs, GRUs use gates to

manage information flow. However, they have a simpler architecture,

making them faster to train while maintaining good performance. This

makes them a good balance between complexity and efficiency.

Bidirectional RNN: This variation processes data in both forward and

backward directions. This allows it to capture context from both sides of a

sequence, which is useful for tasks like sentiment analysis where

understanding the entire sentence is crucial.

Deep RNN: Stacking multiple RNN layers on top of each other, deep RNNs

create a more complex architecture. This allows them to capture intricate

relationships within very long sequences of data. They are particularly

useful for tasks where the order of elements spans long stretches.

RNN Applications

Recurrent neural networks (RNNs) shine in tasks involving sequential data,

where order and context are crucial. Let’s explore some real-world use cases.

Using RNN models and sequence datasets, you may tackle a variety of

problems, including :

Speech Recognition: RNNs power virtual assistants like Siri and Alexa,

allowing them to understand spoken language and respond accordingly.

Machine Translation: RNNs translate languages more accurately, like

Google Translate by analysing sentence structure and context.

Text Generation: RNNs are behind chatbots that can hold conversations

and even creative writing tools that generate different text formats.

https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm/
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-gated-recurrent-unit-gru/
https://www.analyticsvidhya.com/blog/2021/06/recurrent-neural-networks-introduction-for-beginners/


Time Series Forecasting: RNNs analyze financial data to predict stock

prices or weather patterns based on historical trends.

Music Generation: RNNs can generate music by learning patterns from

existing pieces and generating new melodies or accompaniments.

Video Captioning: RNNs analyze video content and automatically

generate captions, making video browsing more accessible.

Anomaly Detection: RNNs can learn normal patterns in data streams

(e.g., network traffic) and detect anomalies that might indicate fraud or

system failures.

Sentiment Analysis: RNNs can analyze sentiment in social media posts,

reviews, or surveys by understanding the context and flow of text.

Stock Market Recommendation: RNNs can analyze market trends and

news to suggest potential investment opportunities.

Sequence study of the genome and DNA: RNNs can analyze sequential

data in genomes and DNA to identify patterns and predict gene function or

disease risk.

Advantages and Disadvantages of RNNs

Advantages of RNNs Disadvantages of RNNs

Handle sequential data effectively,

including text, speech, and time

series.

Prone to vanishing and exploding

gradient problems, hindering learning.

Process inputs of any length, unlike

feedforward neural networks.

Training can be challenging, especially

for long sequences.

Share weights across time steps,

enhancing training efficiency.

Computationally slower than other

neural network architectures.

Basic Python Implementation (RNN with Keras)

Here’s a simple Sequential model that processes integer sequences, embeds

each integer into a 64-dimensional vector, and then uses an LSTM layer to

https://www.analyticsvidhya.com/blog/2018/10/predicting-stock-price-machine-learningnd-deep-learning-techniques-python/
https://www.analyticsvidhya.com/blog/2018/10/predicting-stock-price-machine-learningnd-deep-learning-techniques-python/
https://www.analyticsvidhya.com/blog/2023/08/generative-ai-music-generators/#:~:text=AI%20Music%20Generation%20is%20the,composed%2C%20produced%2C%20and%20enjoyed.
https://www.analyticsvidhya.com/blog/2022/05/an-end-to-end-guide-on-anomaly-detection/
https://www.analyticsvidhya.com/blog/2021/06/nlp-sentiment-analysis/


handle the sequence of vectors.

import numpy as np

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

model = keras.Sequential()

model.add(layers.Embedding(input_dim=1000, output_dim=64))

model.add(layers.LSTM(128))

model.add(layers.Dense(10))

model.summary()

Output:

Model: "sequential"

_________________________________________________________________

Layer (type)                 Output Shape              Param #

=================================================================

embedding (Embedding)        (None, None, 64)          64000

_________________________________________________________________

lstm (LSTM)                  (None, 128)               98816

_________________________________________________________________

dense (Dense)                (None, 10)                1290

=================================================================

Total params: 164,106

Trainable params: 164,106

Non-trainable params: 0

Conclusion

Recurrent Neural Networks (RNNs) are powerful and versatile tools with a wide

range of applications. They are commonly used in language modeling, text

https://www.analyticsvidhya.com/blog/2021/06/recurrent-neural-networks-introduction-for-beginners/


generation, and voice recognition systems. One of the key advantages of

RNNs is their ability to process sequential data and capture long-range

dependencies. When paired with Convolutional Neural Networks (CNNs), they

can effectively create labels for untagged images, demonstrating a powerful

synergy between the two types of neural networks.

However, one challenge with traditional RNNs is their struggle with learning

long-range dependencies, which refers to the difficulty in understanding

relationships between data points that are far apart in the sequence. This

limitation is often referred to as the vanishing gradient problem. To address this

issue, a specialized type of RNN called Long-Short Term Memory Networks

(LSTM) has been developed, and this will be explored further in future articles.

RNNs, with their ability to process sequential data, have revolutionized various

fields, and their impact continues to grow with ongoing research and

advancements.

Hope you find this information on RNN architecture and recurrent neural

networks in deep learning helpful and insightful!

This article was published as part of the Data Science Blogathon.

A graduate in Computer Science and Engineering from Tezpur Central

University. Currently, I am pursuing my M.Tech in Computer Science and

Engineering in the Department of CSE at NIT Durgapur. I expect to

Postgraduate in the spring, 2022. A Grounded and Solution-oriented Computer

Engineer with a wide variety of experiences. Adept at motivating self and

others. Passionate about programming and educating the next generation of

technology users and innovators.

https://datahack.analyticsvidhya.com/blogathon/
https://www.analyticsvidhya.com/blog/author/debasishkalita/
https://www.analyticsvidhya.com/blog/author/debasishkalita/

