
colah.github.io /posts/2015-08-Understanding-LSTMs/

Understanding LSTM Networks -- colah's

blog

13-16 minutes

Posted on August 27, 2015

Recurrent Neural Networks

Humans don’t start their thinking from scratch every second. As you

read this essay, you understand each word based on your

understanding of previous words. You don’t throw everything away and

start thinking from scratch again. Your thoughts have persistence.

Traditional neural networks can’t do this, and it seems like a major

shortcoming. For example, imagine you want to classify what kind of

event is happening at every point in a movie. It’s unclear how a

traditional neural network could use its reasoning about previous

events in the film to inform later ones.

Recurrent neural networks address this issue. They are networks with

loops in them, allowing information to persist.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks have loops.

In the above diagram, a chunk of neural network, 𝐴, looks at some

input 𝑥𝑡 and outputs a value ℎ𝑡 . A loop allows information to be passed

from one step of the network to the next.

These loops make recurrent neural networks seem kind of mysterious.

However, if you think a bit more, it turns out that they aren’t all that

different than a normal neural network. A recurrent neural network can

be thought of as multiple copies of the same network, each passing a

message to a successor. Consider what happens if we unroll the loop:

An unrolled recurrent neural network.

This chain-like nature reveals that recurrent neural networks are

intimately related to sequences and lists. They’re the natural

architecture of neural network to use for such data.

And they certainly are used! In the last few years, there have been

incredible success applying RNNs to a variety of problems: speech

recognition, language modeling, translation, image captioning… The

list goes on. I’ll leave discussion of the amazing feats one can achieve

with RNNs to Andrej Karpathy’s excellent blog post, The Unreasonable

Effectiveness of Recurrent Neural Networks. But they really are pretty

amazing.

Essential to these successes is the use of “LSTMs,” a very special

kind of recurrent neural network which works, for many tasks, much

much better than the standard version. Almost all exciting results

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

based on recurrent neural networks are achieved with them. It’s these

LSTMs that this essay will explore.

The Problem of Long-Term Dependencies

One of the appeals of RNNs is the idea that they might be able to

connect previous information to the present task, such as using

previous video frames might inform the understanding of the present

frame. If RNNs could do this, they’d be extremely useful. But can they?

It depends.

Sometimes, we only need to look at recent information to perform the

present task. For example, consider a language model trying to predict

the next word based on the previous ones. If we are trying to predict

the last word in “the clouds are in the sky,” we don’t need any further

context – it’s pretty obvious the next word is going to be sky. In such

cases, where the gap between the relevant information and the place

that it’s needed is small, RNNs can learn to use the past information.

But there are also cases where we need more context. Consider trying

to predict the last word in the text “I grew up in France… I speak fluent

French.” Recent information suggests that the next word is probably

the name of a language, but if we want to narrow down which

language, we need the context of France, from further back. It’s

entirely possible for the gap between the relevant information and the

point where it is needed to become very large.

Unfortunately, as that gap grows, RNNs become unable to learn to

connect the information.

In theory, RNNs are absolutely capable of handling such “long-term

dependencies.” A human could carefully pick parameters for them to

solve toy problems of this form. Sadly, in practice, RNNs don’t seem to

be able to learn them. The problem was explored in depth by

Hochreiter (1991) [German] and Bengio, et al. (1994), who found some

pretty fundamental reasons why it might be difficult.

Thankfully, LSTMs don’t have this problem!

LSTM Networks

http://people.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf
http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf

Long Short Term Memory networks – usually just called “LSTMs” – are

a special kind of RNN, capable of learning long-term dependencies.

They were introduced by Hochreiter & Schmidhuber (1997), and were

refined and popularized by many people in following work.
1
 They work

tremendously well on a large variety of problems, and are now widely

used.

LSTMs are explicitly designed to avoid the long-term dependency

problem. Remembering information for long periods of time is

practically their default behavior, not something they struggle to learn!

All recurrent neural networks have the form of a chain of repeating

modules of neural network. In standard RNNs, this repeating module

will have a very simple structure, such as a single tanh layer.

The repeating module in a standard RNN contains a single layer.

LSTMs also have this chain like structure, but the repeating module

has a different structure. Instead of having a single neural network

layer, there are four, interacting in a very special way.

http://www.bioinf.jku.at/publications/older/2604.pdf

The repeating module in an LSTM contains four interacting

layers.

Don’t worry about the details of what’s going on. We’ll walk through the

LSTM diagram step by step later. For now, let’s just try to get

comfortable with the notation we’ll be using.

In the above diagram, each line carries an entire vector, from the

output of one node to the inputs of others. The pink circles represent

pointwise operations, like vector addition, while the yellow boxes are

learned neural network layers. Lines merging denote concatenation,

while a line forking denote its content being copied and the copies

going to different locations.

The Core Idea Behind LSTMs

The key to LSTMs is the cell state, the horizontal line running through

the top of the diagram.

The cell state is kind of like a conveyor belt. It runs straight down the

entire chain, with only some minor linear interactions. It’s very easy for

information to just flow along it unchanged.

The LSTM does have the ability to remove or add information to the

cell state, carefully regulated by structures called gates.

Gates are a way to optionally let information through. They are

composed out of a sigmoid neural net layer and a pointwise

multiplication operation.

The sigmoid layer outputs numbers between zero and one, describing

how much of each component should be let through. A value of zero

means “let nothing through,” while a value of one means “let

everything through!”

An LSTM has three of these gates, to protect and control the cell state.

Step-by-Step LSTM Walk Through

The first step in our LSTM is to decide what information we’re going to

throw away from the cell state. This decision is made by a sigmoid

layer called the “forget gate layer.” It looks at ℎ𝑡 − 1 and 𝑥𝑡 , and outputs

a number between 0 and 1 for each number in the cell state 𝐶𝑡 − 1 . A 1

represents “completely keep this” while a 0 represents “completely get

rid of this.”

Let’s go back to our example of a language model trying to predict the

next word based on all the previous ones. In such a problem, the cell

state might include the gender of the present subject, so that the

correct pronouns can be used. When we see a new subject, we want

to forget the gender of the old subject.

The next step is to decide what new information we’re going to store in

the cell state. This has two parts. First, a sigmoid layer called the

“input gate layer” decides which values we’ll update. Next, a tanh layer

creates a vector of new candidate values,
~𝐶𝑡 , that could be added to

the state. In the next step, we’ll combine these two to create an update

to the state.

In the example of our language model, we’d want to add the gender of

the new subject to the cell state, to replace the old one we’re

forgetting.

It’s now time to update the old cell state, 𝐶𝑡 − 1 , into the new cell state

𝐶𝑡 . The previous steps already decided what to do, we just need to

actually do it.

We multiply the old state by 𝑓𝑡 , forgetting the things we decided to

forget earlier. Then we add 𝑖𝑡 ∗
~𝐶𝑡 . This is the new candidate values,

scaled by how much we decided to update each state value.

In the case of the language model, this is where we’d actually drop the

information about the old subject’s gender and add the new

information, as we decided in the previous steps.

Finally, we need to decide what we’re going to output. This output will

be based on our cell state, but will be a filtered version. First, we run a

sigmoid layer which decides what parts of the cell state we’re going to

output. Then, we put the cell state through tanh (to push the values to

be between −1 and 1) and multiply it by the output of the sigmoid gate,

so that we only output the parts we decided to.

For the language model example, since it just saw a subject, it might

want to output information relevant to a verb, in case that’s what is

coming next. For example, it might output whether the subject is

singular or plural, so that we know what form a verb should be

conjugated into if that’s what follows next.

Variants on Long Short Term Memory

What I’ve described so far is a pretty normal LSTM. But not all LSTMs

are the same as the above. In fact, it seems like almost every paper

involving LSTMs uses a slightly different version. The differences are

minor, but it’s worth mentioning some of them.

One popular LSTM variant, introduced by Gers & Schmidhuber (2000),

is adding “peephole connections.” This means that we let the gate

layers look at the cell state.

The above diagram adds peepholes to all the gates, but many papers

will give some peepholes and not others.

Another variation is to use coupled forget and input gates. Instead of

separately deciding what to forget and what we should add new

information to, we make those decisions together. We only forget when

we’re going to input something in its place. We only input new values

to the state when we forget something older.

ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf

A slightly more dramatic variation on the LSTM is the Gated Recurrent

Unit, or GRU, introduced by Cho, et al. (2014). It combines the forget

and input gates into a single “update gate.” It also merges the cell

state and hidden state, and makes some other changes. The resulting

model is simpler than standard LSTM models, and has been growing

increasingly popular.

These are only a few of the most notable LSTM variants. There are

lots of others, like Depth Gated RNNs by Yao, et al. (2015). There’s

also some completely different approach to tackling long-term

dependencies, like Clockwork RNNs by Koutnik, et al. (2014).

Which of these variants is best? Do the differences matter? Greff, et

al. (2015) do a nice comparison of popular variants, finding that they’re

all about the same. Jozefowicz, et al. (2015) tested more than ten

http://arxiv.org/pdf/1406.1078v3.pdf
http://arxiv.org/pdf/1508.03790v2.pdf
http://arxiv.org/pdf/1402.3511v1.pdf
http://arxiv.org/pdf/1503.04069.pdf
http://arxiv.org/pdf/1503.04069.pdf
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

thousand RNN architectures, finding some that worked better than

LSTMs on certain tasks.

Conclusion

Earlier, I mentioned the remarkable results people are achieving with

RNNs. Essentially all of these are achieved using LSTMs. They really

work a lot better for most tasks!

Written down as a set of equations, LSTMs look pretty intimidating.

Hopefully, walking through them step by step in this essay has made

them a bit more approachable.

LSTMs were a big step in what we can accomplish with RNNs. It’s

natural to wonder: is there another big step? A common opinion among

researchers is: “Yes! There is a next step and it’s attention!” The idea

is to let every step of an RNN pick information to look at from some

larger collection of information. For example, if you are using an RNN

to create a caption describing an image, it might pick a part of the

image to look at for every word it outputs. In fact, Xu, et al. (2015) do

exactly this – it might be a fun starting point if you want to explore

attention! There’s been a number of really exciting results using

attention, and it seems like a lot more are around the corner…

Attention isn’t the only exciting thread in RNN research. For example,

Grid LSTMs by Kalchbrenner, et al. (2015) seem extremely promising.

Work using RNNs in generative models – such as Gregor, et al.

(2015), Chung, et al. (2015), or Bayer & Osendorfer (2015) – also

seems very interesting. The last few years have been an exciting time

http://arxiv.org/pdf/1502.03044v2.pdf
http://arxiv.org/pdf/1502.03044v2.pdf
http://arxiv.org/pdf/1502.03044v2.pdf
http://arxiv.org/pdf/1507.01526v1.pdf
http://arxiv.org/pdf/1507.01526v1.pdf
http://arxiv.org/pdf/1507.01526v1.pdf
http://arxiv.org/pdf/1502.04623.pdf
http://arxiv.org/pdf/1502.04623.pdf
http://arxiv.org/pdf/1502.04623.pdf
http://arxiv.org/pdf/1506.02216v3.pdf
http://arxiv.org/pdf/1506.02216v3.pdf
http://arxiv.org/pdf/1506.02216v3.pdf
http://arxiv.org/pdf/1411.7610v3.pdf

for recurrent neural networks, and the coming ones promise to only be

more so!

Acknowledgments

I’m grateful to a number of people for helping me better understand

LSTMs, commenting on the visualizations, and providing feedback on

this post.

I’m very grateful to my colleagues at Google for their helpful feedback,

especially Oriol Vinyals, Greg Corrado, Jon Shlens, Luke Vilnis, and

Ilya Sutskever. I’m also thankful to many other friends and colleagues

for taking the time to help me, including Dario Amodei, and Jacob

Steinhardt. I’m especially thankful to Kyunghyun Cho for extremely

thoughtful correspondence about my diagrams.

Before this post, I practiced explaining LSTMs during two seminar

series I taught on neural networks. Thanks to everyone who

participated in those for their patience with me, and for their feedback.

1. In addition to the original authors, a lot of people contributed to the

modern LSTM. A non-comprehensive list is: Felix Gers, Fred

Cummins, Santiago Fernandez, Justin Bayer, Daan Wierstra,

Julian Togelius, Faustino Gomez, Matteo Gagliolo, and Alex

Graves.↩

More Posts

http://research.google.com/pubs/OriolVinyals.html
http://research.google.com/pubs/GregCorrado.html
http://research.google.com/pubs/JonathonShlens.html
http://people.cs.umass.edu/~luke/
http://www.cs.toronto.edu/~ilya/
https://www.linkedin.com/pub/dario-amodei/4/493/393
http://cs.stanford.edu/~jsteinhardt/
http://cs.stanford.edu/~jsteinhardt/
http://www.kyunghyuncho.me/
https://scholar.google.com/citations?user=DaFHynwAAAAJ&hl=en
https://scholar.google.com/citations?user=DaFHynwAAAAJ&hl=en

Attention and Augmented Recurrent Neural Networks

On Distill

http://distill.pub/2016/augmented-rnns/
http://distill.pub/2016/augmented-rnns/
http://distill.pub/2016/augmented-rnns/
http://distill.pub/2016/augmented-rnns/
http://distill.pub/2016/augmented-rnns/
http://distill.pub/2016/augmented-rnns/
http://distill.pub/2016/augmented-rnns/
http://distill.pub/2016/augmented-rnns/

Conv Nets

A Modular Perspective

https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/

Neural Networks, Manifolds, and Topology

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Learning, NLP, and Representations

86 Comments

https://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
https://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
https://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
https://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
https://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
https://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/#disqus_thread

