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There’s something magical about Recurrent Neural Networks (RNNs). I still remember when I

trained my first recurrent network for Image Captioning. Within a few dozen minutes of training

my first baby model (with rather arbitrarily-chosen hyperparameters) started to generate very

nice looking descriptions of images that were on the edge of making sense. Sometimes the ratio

of how simple your model is to the quality of the results you get out of it blows past your

expectations, and this was one of those times. What made this result so shocking at the time

was that the common wisdom was that RNNs were supposed to be difficult to train (with more

experience I’ve in fact reached the opposite conclusion). Fast forward about a year: I’m training

RNNs all the time and I’ve witnessed their power and robustness many times, and yet their

magical outputs still find ways of amusing me. This post is about sharing some of that magic

with you.

By the way, together with this post I am also releasing code on Github that allows you to train

character-level language models based on multi-layer LSTMs. You give it a large chunk of text

and it will learn to generate text like it one character at a time. You can also use it to reproduce

my experiments below. But we’re getting ahead of ourselves; What are RNNs anyway?

Recurrent Neural Networks

Sequences. Depending on your background you might be wondering: What makes Recurrent

Networks so special? A glaring limitation of Vanilla Neural Networks (and also Convolutional

Networks) is that their API is too constrained: they accept a fixed-sized vector as input (e.g. an

image) and produce a fixed-sized vector as output (e.g. probabilities of different classes). Not

only that: These models perform this mapping using a fixed amount of computational steps (e.g.

the number of layers in the model). The core reason that recurrent nets are more exciting is that

We’ll train RNNs to generate text character by character and ponder the question “how is that

even possible?”
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they allow us to operate over sequences of vectors: Sequences in the input, the output, or in the

most general case both. A few examples may make this more concrete:

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red,

output vectors are in blue and green vectors hold the RNN's state (more on this soon). From left to right: (1)

Vanilla mode of processing without RNN, from fixed-sized input to fixed-sized output (e.g. image

classification). (2) Sequence output (e.g. image captioning takes an image and outputs a sentence of words).

(3) Sequence input (e.g. sentiment analysis where a given sentence is classified as expressing positive or

negative sentiment). (4) Sequence input and sequence output (e.g. Machine Translation: an RNN reads a

sentence in English and then outputs a sentence in French). (5) Synced sequence input and output (e.g.

video classification where we wish to label each frame of the video). Notice that in every case are no pre-

specified constraints on the lengths sequences because the recurrent transformation (green) is fixed and can

be applied as many times as we like.

As you might expect, the sequence regime of operation is much more powerful compared to

fixed networks that are doomed from the get-go by a fixed number of computational steps, and

hence also much more appealing for those of us who aspire to build more intelligent systems.

Moreover, as we’ll see in a bit, RNNs combine the input vector with their state vector with a fixed

(but learned) function to produce a new state vector. This can in programming terms be

interpreted as running a fixed program with certain inputs and some internal variables. Viewed

this way, RNNs essentially describe programs. In fact, it is known that RNNs are Turing-

Complete in the sense that they can to simulate arbitrary programs (with proper weights). But

similar to universal approximation theorems for neural nets you shouldn’t read too much into

this. In fact, forget I said anything.

Sequential processing in absence of sequences. You might be thinking that having sequences

as inputs or outputs could be relatively rare, but an important point to realize is that even if your

inputs/outputs are fixed vectors, it is still possible to use this powerful formalism to process them

in a sequential manner. For instance, the figure below shows results from two very nice papers

If training vanilla neural nets is optimization over functions, training recurrent nets is

optimization over programs.
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from DeepMind. On the left, an algorithm learns a recurrent network policy that steers its

attention around an image; In particular, it learns to read out house numbers from left to right

(Ba et al.). On the right, a recurrent network generates images of digits by learning to

sequentially add color to a canvas (Gregor et al.):

 

Left: RNN learns to read house numbers. Right: RNN learns to paint house numbers.

The takeaway is that even if your data is not in form of sequences, you can still formulate and

train powerful models that learn to process it sequentially. You’re learning stateful programs that

process your fixed-sized data.

RNN computation. So how do these things work? At the core, RNNs have a deceptively simple

API: They accept an input vector x  and give you an output vector y . However, crucially this

output vector’s contents are influenced not only by the input you just fed in, but also on the

entire history of inputs you’ve fed in in the past. Written as a class, the RNN’s API consists of a

single step  function:

rnn = RNN()

y = rnn.step(x) # x is an input vector, y is the RNN's output vector

The RNN class has some internal state that it gets to update every time step  is called. In the

simplest case this state consists of a single hidden vector h . Here is an implementation of the

step function in a Vanilla RNN:

http://deepmind.com/
http://arxiv.org/abs/1412.7755
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class RNN:

# ...

def step(self, x):

# update the hidden state

self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))

# compute the output vector

y = np.dot(self.W_hy, self.h)

return y

The above specifies the forward pass of a vanilla RNN. This RNN’s parameters are the three

matrices W_hh, W_xh, W_hy . The hidden state self.h  is initialized with the zero vector. The

np.tanh  function implements a non-linearity that squashes the activations to the range [-1,

1] . Notice briefly how this works: There are two terms inside of the tanh: one is based on the

previous hidden state and one is based on the current input. In numpy np.dot  is matrix

multiplication. The two intermediates interact with addition, and then get squashed by the tanh

into the new state vector. If you’re more comfortable with math notation, we can also write the

hidden state update as , where tanh is applied

elementwise.

We initialize the matrices of the RNN with random numbers and the bulk of work during training

goes into finding the matrices that give rise to desirable behavior, as measured with some loss

function that expresses your preference to what kinds of outputs y  you’d like to see in

response to your input sequences x .

Going deep. RNNs are neural networks and everything works monotonically better (if done

right) if you put on your deep learning hat and start stacking models up like pancakes. For

instance, we can form a 2-layer recurrent network as follows:

y1 = rnn1.step(x)

y = rnn2.step(y1)

In other words we have two separate RNNs: One RNN is receiving the input vectors and the

second RNN is receiving the output of the first RNN as its input. Except neither of these RNNs

know or care - it’s all just vectors coming in and going out, and some gradients flowing through

each module during backpropagation.

Getting fancy. I’d like to briefly mention that in practice most of us use a slightly different

formulation than what I presented above called a Long Short-Term Memory (LSTM) network.

The LSTM is a particular type of recurrent network that works slightly better in practice, owing to

its more powerful update equation and some appealing backpropagation dynamics. I won’t go

= tanh( + )ht Whhht−1 Wxhxt



into details, but everything I’ve said about RNNs stays exactly the same, except the

mathematical form for computing the update (the line self.h = ... ) gets a little more

complicated. From here on I will use the terms “RNN/LSTM” interchangeably but all experiments

in this post use an LSTM.

Character-Level Language Models

Okay, so we have an idea about what RNNs are, why they are super exciting, and how they

work. We’ll now ground this in a fun application: We’ll train RNN character-level language

models. That is, we’ll give the RNN a huge chunk of text and ask it to model the probability

distribution of the next character in the sequence given a sequence of previous characters. This

will then allow us to generate new text one character at a time.

As a working example, suppose we only had a vocabulary of four possible letters “helo”, and

wanted to train an RNN on the training sequence “hello”. This training sequence is in fact a

source of 4 separate training examples: 1. The probability of “e” should be likely given the

context of “h”, 2. “l” should be likely in the context of “he”, 3. “l” should also be likely given the

context of “hel”, and finally 4. “o” should be likely given the context of “hell”.

Concretely, we will encode each character into a vector using 1-of-k encoding (i.e. all zero

except for a single one at the index of the character in the vocabulary), and feed them into the

RNN one at a time with the step  function. We will then observe a sequence of 4-dimensional

output vectors (one dimension per character), which we interpret as the confidence the RNN

currently assigns to each character coming next in the sequence. Here’s a diagram:



An example RNN with 4-dimensional input and output layers, and a hidden layer of 3 units (neurons). This

diagram shows the activations in the forward pass when the RNN is fed the characters "hell" as input. The

output layer contains confidences the RNN assigns for the next character (vocabulary is "h,e,l,o"); We want

the green numbers to be high and red numbers to be low.

For example, we see that in the first time step when the RNN saw the character “h” it assigned

confidence of 1.0 to the next letter being “h”, 2.2 to letter “e”, -3.0 to “l”, and 4.1 to “o”. Since in

our training data (the string “hello”) the next correct character is “e”, we would like to increase its

confidence (green) and decrease the confidence of all other letters (red). Similarly, we have a

desired target character at every one of the 4 time steps that we’d like the network to assign a

greater confidence to. Since the RNN consists entirely of differentiable operations we can run

the backpropagation algorithm (this is just a recursive application of the chain rule from

calculus) to figure out in what direction we should adjust every one of its weights to increase the

scores of the correct targets (green bold numbers). We can then perform a parameter update,

which nudges every weight a tiny amount in this gradient direction. If we were to feed the same

inputs to the RNN after the parameter update we would find that the scores of the correct

characters (e.g. “e” in the first time step) would be slightly higher (e.g. 2.3 instead of 2.2), and

the scores of incorrect characters would be slightly lower. We then repeat this process over and

over many times until the network converges and its predictions are eventually consistent with

the training data in that correct characters are always predicted next.

A more technical explanation is that we use the standard Softmax classifier (also commonly

referred to as the cross-entropy loss) on every output vector simultaneously. The RNN is trained

with mini-batch Stochastic Gradient Descent and I like to use RMSProp or Adam (per-parameter

adaptive learning rate methods) to stablilize the updates.

http://arxiv.org/abs/1502.04390


Notice also that the first time the character “l” is input, the target is “l”, but the second time the

target is “o”. The RNN therefore cannot rely on the input alone and must use its recurrent

connection to keep track of the context to achieve this task.

At test time, we feed a character into the RNN and get a distribution over what characters are

likely to come next. We sample from this distribution, and feed it right back in to get the next

letter. Repeat this process and you’re sampling text! Lets now train an RNN on different

datasets and see what happens.

To further clarify, for educational purposes I also wrote a minimal character-level RNN language

model in Python/numpy. It is only about 100 lines long and hopefully it gives a concise, concrete

and useful summary of the above if you’re better at reading code than text. We’ll now dive into

example results, produced with the much more efficient Lua/Torch codebase.

Fun with RNNs

All 5 example character models below were trained with the code I’m releasing on Github. The

input in each case is a single file with some text, and we’re training an RNN to predict the next

character in the sequence.

Paul Graham generator

Lets first try a small dataset of English as a sanity check. My favorite fun dataset is the

concatenation of Paul Graham’s essays. The basic idea is that there’s a lot of wisdom in these

essays, but unfortunately Paul Graham is a relatively slow generator. Wouldn’t it be great if we

could sample startup wisdom on demand? That’s where an RNN comes in.

Concatenating all pg essays over the last ~5 years we get approximately 1MB text file, or about

1 million characters (this is considered a very small dataset by the way). Technical: Lets train a

2-layer LSTM with 512 hidden nodes (approx. 3.5 million parameters), and with dropout of 0.5

after each layer. We’ll train with batches of 100 examples and truncated backpropagation

through time of length 100 characters. With these settings one batch on a TITAN Z GPU takes

about 0.46 seconds (this can be cut in half with 50 character BPTT at negligible cost in

performance). Without further ado, lets see a sample from the RNN:

“The surprised in investors weren’t going to raise money. I’m not the company with the time

there are all interesting quickly, don’t have to get off the same programmers. There’s a super-

angel round fundraising, why do you can do. If you have a different physical investment are

become in people who reduced in a startup with the way to argument the acquirer could see

them just that you’re also the founders will part of users’ affords that and an alternation to the

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://github.com/karpathy/char-rnn
http://www.paulgraham.com/articles.html


idea. [2] Don’t work at first member to see the way kids will seem in advance of a bad

successful startup. And if you have to act the big company too.”

Okay, clearly the above is unfortunately not going to replace Paul Graham anytime soon, but

remember that the RNN had to learn English completely from scratch and with a small dataset

(including where you put commas, apostrophes and spaces). I also like that it learns to support

its own arguments (e.g. [2], above). Sometimes it says something that offers a glimmer of

insight, such as “a company is a meeting to think to investors”. Here’s a link to 50K character

sample if you’d like to see more.

Temperature. We can also play with the temperature of the Softmax during sampling.

Decreasing the temperature from 1 to some lower number (e.g. 0.5) makes the RNN more

confident, but also more conservative in its samples. Conversely, higher temperatures will give

more diversity but at cost of more mistakes (e.g. spelling mistakes, etc). In particular, setting

temperature very near zero will give the most likely thing that Paul Graham might say:

“is that they were all the same thing that was a startup is that they were all the same thing that

was a startup is that they were all the same thing that was a startup is that they were all the

same”

looks like we’ve reached an infinite loop about startups.

Shakespeare

It looks like we can learn to spell English words. But how about if there is more structure and

style in the data? To examine this I downloaded all the works of Shakespeare and concatenated

them into a single (4.4MB) file. We can now afford to train a larger network, in this case lets try a

3-layer RNN with 512 hidden nodes on each layer. After we train the network for a few hours we

obtain samples such as:

PANDARUS:

Alas, I think he shall be come approached and the day

When little srain would be attain'd into being never fed,

And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,

Breaking and strongly should be buried, when I perish

The earth and thoughts of many states.

http://cs.stanford.edu/people/karpathy/char-rnn/pg.txt


DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,

Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I'll drink it.

Remember, all the RNN knows are characters, so in particular it samples both speaker’s names

and the contents. Sometimes we also get relatively extented monologue passages, such as:

VIOLA:

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,

That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,

Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

O, if you were a feeble sight, the courtesy of your law,

Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,

So drop upon your lordship's head, and your opinion

Shall be against your honour.

I can barely recognize these samples from actual Shakespeare :) If you like Shakespeare, you

might appreciate this 100,000 character sample. Of course, you can also generate an infinite

amount of your own samples at different temperatures with the provided code.

http://cs.stanford.edu/people/karpathy/char-rnn/shakespear.txt


Wikipedia

We saw that the LSTM can learn to spell words and copy general syntactic structures. Lets

further increase the difficulty and train on structured markdown. In particular, lets take the Hutter

Prize 100MB dataset of raw Wikipedia and train an LSTM. Following Graves et al., I used the

first 96MB for training, the rest for validation and ran a few models overnight. We can now

sample Wikipedia articles! Below are a few fun excerpts. First, some basic markdown output:

Naturalism and decision for the majority of Arab countries' capitalide was groun

by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associ

with Guangzham's sovereignty. His generals were the powerful ruler of the Portug

in the [[Protestant Immineners]], which could be said to be directly in Cantones

Communication, which followed a ceremony and set inspired prison, training. The 

emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], know

in western [[Scotland]], near Italy to the conquest of India with the conflict. 

Copyright was the succession of independence in the slop of Syrian influence tha

was a famous German movement based on a more popular servicious, non-doctrinal 

and sexual power post. Many governments recognize the military housing of the 

[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]], 

that is sympathetic to be to the [[Punjab Resolution]]

(PJS)[http://www.humah.yahoo.com/guardian.

cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgo

was swear to advance to the resources for those Socialism's rule, 

was starting to signing a major tripad of aid exile.]]

In case you were wondering, the yahoo url above doesn’t actually exist, the model just

hallucinated it. Also, note that the model learns to open and close the parenthesis correctly.

There’s also quite a lot of structured markdown that the model learns, for example sometimes it

creates headings, lists, etc.:

{ { cite journal | id=Cerling Nonforest Department|format=Newlymeslated|none } }

''www.e-complete''.

'''See also''': [[List of ethical consent processing]]

== See also ==

*[[Iender dome of the ED]]

*[[Anti-autism]]

===[[Religion|Religion]]===

http://prize.hutter1.net/
http://prize.hutter1.net/
http://arxiv.org/abs/1308.0850


*[[French Writings]]

*[[Maria]]

*[[Revelation]]

*[[Mount Agamul]]

== External links==

* [http://www.biblegateway.nih.gov/entrepre/ Website of the World Festival. The 

==External links==

* [http://www.romanology.com/ Constitution of the Netherlands and Hispanic Compe

Sometimes the model snaps into a mode of generating random but valid XML:

<page>

  <title>Antichrist</title>

  <id>865</id>

  <revision>

    <id>15900676</id>

    <timestamp>2002-08-03T18:14:12Z</timestamp>

    <contributor>

      <username>Paris</username>

      <id>23</id>

    </contributor>

    <minor />

    <comment>Automated conversion</comment>

    <text xml:space="preserve">#REDIRECT [[Christianity]]</text>

  </revision>

</page>

The model completely makes up the timestamp, id, and so on. Also, note that it closes the

correct tags appropriately and in the correct nested order. Here are 100,000 characters of

sampled wikipedia if you’re interested to see more.

Algebraic Geometry (Latex)

The results above suggest that the model is actually quite good at learning complex syntactic

structures. Impressed by these results, my labmate (Justin Johnson) and I decided to push even

further into structured territories and got a hold of this book on algebraic stacks/geometry. We

downloaded the raw Latex source file (a 16MB file) and trained a multilayer LSTM. Amazingly,

http://cs.stanford.edu/people/karpathy/char-rnn/wiki.txt
http://cs.stanford.edu/people/karpathy/char-rnn/wiki.txt
http://cs.stanford.edu/people/jcjohns/
http://stacks.math.columbia.edu/


the resulting sampled Latex almost compiles. We had to step in and fix a few issues manually

but then you get plausible looking math, it’s quite astonishing:

Sampled (fake) algebraic geometry. Here's the actual pdf.

Here’s another sample:

More hallucinated algebraic geometry. Nice try on the diagram (right).

http://cs.stanford.edu/people/jcjohns/fake-math/4.pdf


As you can see above, sometimes the model tries to generate latex diagrams, but clearly it

hasn’t really figured them out. I also like the part where it chooses to skip a proof (“Proof

omitted.”, top left). Of course, keep in mind that latex has a relatively difficult structured syntactic

format that I haven’t even fully mastered myself. For instance, here is a raw sample from the

model (unedited):

\begin{proof}

We may assume that $\mathcal{I}$ is an abelian sheaf on $\mathcal{C}$.

\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$

is an injective and let $\mathfrak q$ be an abelian sheaf on $X$.

Let $\mathcal{F}$ be a fibered complex. Let $\mathcal{F}$ be a category.

\begin{enumerate}

\item \hyperref[setain-construction-phantom]{Lemma}

\label{lemma-characterize-quasi-finite}

Let $\mathcal{F}$ be an abelian quasi-coherent sheaf on $\mathcal{C}$.

Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Then

$\mathcal{F}$ is an abelian catenary over $\mathcal{C}$.

\item The following are equivalent

\begin{enumerate}

\item $\mathcal{F}$ is an $\mathcal{O}_X$-module.

\end{lemma}

This sample from a relatively decent model illustrates a few common mistakes. For example,

the model opens a \begin{proof}  environment but then ends it with a \end{lemma} . This is

an example of a problem we’d have to fix manually, and is likely due to the fact that the

dependency is too long-term: By the time the model is done with the proof it has forgotten

whether it was doing a proof or a lemma. Similarly, it opens an \begin{enumerate}  but then

forgets to close it. We observed that these became less common with larger/better models, but

nonetheless, these are the kinds of mistakes that come up.

Linux Source Code

I wanted to push structured data to its limit, so for the final challenge I decided to use code. In

particular, I took all the source and header files found in the Linux repo on Github, concatenated

all of them in a single giant file (474MB of C code) (I was originally going to train only on the

kernel but that by itself is only ~16MB). Then I trained several as-large-as-fits-on-my-GPU 3-

layer LSTMs over a period of a few days. These models have about 10 million parameters,

which is still on the lower end for RNN models. The results are superfun:

https://github.com/torvalds/linux


/*

 * Increment the size file of the new incorrect UI_FILTER group information

 * of the size generatively.

 */

static int indicate_policy(void)

{

int error;

if (fd == MARN_EPT) {

/*

     * The kernel blank will coeld it to userspace.

     */

if (ss->segment < mem_total)

unblock_graph_and_set_blocked();

else

ret = 1;

goto bail;

}

segaddr = in_SB(in.addr);

selector = seg / 16;

setup_works = true;

for (i = 0; i < blocks; i++) {

seq = buf[i++];

bpf = bd->bd.next + i * search;

if (fd) {

current = blocked;

}

}

rw->name = "Getjbbregs";

bprm_self_clearl(&iv->version);

regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS

return segtable;

}

The code looks really quite great overall. Of course, I don’t think it compiles but when you scroll

through the generate code it feels very much like a giant C code base. Notice that the RNN

peppers its code with comments here and there at random. It is also very good at making very

few syntactic errors. For example, it uses strings properly, pointer notation, etc. It also opens

and closes brackets {[  correctly and learns to indent its code very well. A common error is that

it can’t keep track of variable names: It often uses undefined variables (e.g. rw  above),

declares variables it never uses (e.g. int error ), or returns non-existing variables. Lets see a



few more examples. Here’s another snippet that shows a wider array of operations that the RNN

learns:

/*

 * If this error is set, we will need anything right after that BSD.

 */

static void action_new_function(struct s_stat_info *wb)

{

unsigned long flags;

int lel_idx_bit = e->edd, *sys & ~((unsigned long) *FIRST_COMPAT);

buf[0] = 0xFFFFFFFF & (bit << 4);

min(inc, slist->bytes);

printk(KERN_WARNING "Memory allocated %02x/%02x, "

"original MLL instead\n"),

min(min(multi_run - s->len, max) * num_data_in),

frame_pos, sz + first_seg);

div_u64_w(val, inb_p);

spin_unlock(&disk->queue_lock);

mutex_unlock(&s->sock->mutex);

mutex_unlock(&func->mutex);

return disassemble(info->pending_bh);

}

static void num_serial_settings(struct tty_struct *tty)

{

if (tty == tty)

disable_single_st_p(dev);

pci_disable_spool(port);

return 0;

}

static void do_command(struct seq_file *m, void *v)

{

int column = 32 << (cmd[2] & 0x80);

if (state)

cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);

else

seq = 1;

for (i = 0; i < 16; i++) {

if (k & (1 << 1))

pipe = (in_use & UMXTHREAD_UNCCA) +

((count & 0x00000000fffffff8) & 0x000000f) << 8;

if (count == 0)



sub(pid, ppc_md.kexec_handle, 0x20000000);

pipe_set_bytes(i, 0);

}

/* Free our user pages pointer to place camera if all dash */

subsystem_info = &of_changes[PAGE_SIZE];

rek_controls(offset, idx, &soffset);

/* Now we want to deliberately put it to device */

control_check_polarity(&context, val, 0);

for (i = 0; i < COUNTER; i++)

seq_puts(s, "policy ");

}

Notice that in the second function the model compares tty == tty , which is vacuously true.

On the other hand, at least the variable tty  exists in the scope this time! In the last function,

notice that the code does not return anything, which happens to be correct since the function

signature is void . However, the first two functions were also declared void  and did return

values. This is again a form of a common mistake due to long-term interactions.

Sometimes the model decides that it’s time to sample a new file. This is usually a very amusing

part: The model first recites the GNU license character by character, samples a few includes,

generates some macros and then dives into the code:

/*

 *  Copyright (c) 2006-2010, Intel Mobile Communications.  All rights reserved.

 *

 *   This program is free software; you can redistribute it and/or modify it

 * under the terms of the GNU General Public License version 2 as published by

 * the Free Software Foundation.

 *

 *        This program is distributed in the hope that it will be useful,

 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

 *

 *  GNU General Public License for more details.

 *

 *   You should have received a copy of the GNU General Public License

 *    along with this program; if not, write to the Free Software Foundation,

 *  Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 */

#include <linux/kexec.h>

#include <linux/errno.h>



#include <linux/io.h>

#include <linux/platform_device.h>

#include <linux/multi.h>

#include <linux/ckevent.h>

#include <asm/io.h>

#include <asm/prom.h>

#include <asm/e820.h>

#include <asm/system_info.h>

#include <asm/setew.h>

#include <asm/pgproto.h>

#define REG_PG    vesa_slot_addr_pack

#define PFM_NOCOMP  AFSR(0, load)

#define STACK_DDR(type)     (func)

#define SWAP_ALLOCATE(nr)     (e)

#define emulate_sigs()  arch_get_unaligned_child()

#define access_rw(TST)  asm volatile("movd %%esp, %0, %3" : : "r" (0));   \

  if (__type & DO_READ)

static void stat_PC_SEC __read_mostly offsetof(struct seq_argsqueue, \

pC>[1]);

static void

os_prefix(unsigned long sys)

{

#ifdef CONFIG_PREEMPT

PUT_PARAM_RAID(2, sel) = get_state_state();

set_pid_sum((unsigned long)state, current_state_str(),

(unsigned long)-1->lr_full; low;

}

There are too many fun parts to cover- I could probably write an entire blog post on just this

part. I’ll cut it short for now, but here is 1MB of sampled Linux code for your viewing pleasure.

Generating Baby Names

Lets try one more for fun. Lets feed the RNN a large text file that contains 8000 baby names

listed out, one per line (names obtained from here). We can feed this to the RNN and then

generate new names! Here are some example names, only showing the ones that do not occur

in the training data (90% don’t):

http://cs.stanford.edu/people/karpathy/char-rnn/linux.txt
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/names/


Rudi Levette Berice Lussa Hany Mareanne Chrestina Carissy Marylen Hammine Janye Marlise

Jacacrie Hendred Romand Charienna Nenotto Ette Dorane Wallen Marly Darine Salina Elvyn

Ersia Maralena Minoria Ellia Charmin Antley Nerille Chelon Walmor Evena Jeryly Stachon

Charisa Allisa Anatha Cathanie Geetra Alexie Jerin Cassen Herbett Cossie Velen Daurenge

Robester Shermond Terisa Licia Roselen Ferine Jayn Lusine Charyanne Sales Sanny Resa

Wallon Martine Merus Jelen Candica Wallin Tel Rachene Tarine Ozila Ketia Shanne Arnande

Karella Roselina Alessia Chasty Deland Berther Geamar Jackein Mellisand Sagdy Nenc Lessie

Rasemy Guen Gavi Milea Anneda Margoris Janin Rodelin Zeanna Elyne Janah Ferzina Susta

Pey Castina

You can see many more here. Some of my favorites include “Baby” (haha), “Killie”, “Char”, “R”,

“More”, “Mars”, “Hi”, “Saddie”, “With” and “Ahbort”. Well that was fun.  Of course, you can

imagine this being quite useful inspiration when writing a novel, or naming a new startup :)

Understanding what’s going on

We saw that the results at the end of training can be impressive, but how does any of this work?

Lets run two quick experiments to briefly peek under the hood.

The evolution of samples while training

First, it’s fun to look at how the sampled text evolves while the model trains. For example, I

trained an LSTM of Leo Tolstoy’s War and Peace and then generated samples every 100

iterations of training. At iteration 100 the model samples random jumbles:

tyntd-iafhatawiaoihrdemot  lytdws  e ,tfti, astai f ogoh eoase rrranbyne 'nhthne

plia tklrgd t o idoe ns,smtt   h ne etie h,hregtrs nigtike,aoaenns lng

However, notice that at least it is starting to get an idea about words separated by spaces.

Except sometimes it inserts two spaces. It also doesn’t know that comma is amost always

followed by a space. At 300 iterations we see that the model starts to get an idea about quotes

and periods:

"Tmont thithey" fomesscerliund

Keushey. Thom here

sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

http://cs.stanford.edu/people/karpathy/namesGenUnique.txt


The words are now also separated with spaces and the model starts to get the idea about

periods at the end of a sentence. At iteration 500:

we counter. He stutn co des. His stanted out one ofler that concossions and was 

to gearang reay Jotrets and with fre colt otf paitt thin wall. Which das stimn 

the model has now learned to spell the shortest and most common words such as “we”, “He”,

“His”, “Which”, “and”, etc. At iteration 700 we’re starting to see more and more English-like text

emerge:

Aftair fall unsuch that the hall for Prince Velzonski's that me of

her hearly, and behs to so arwage fiving were to it beloge, pavu say falling mis

how, and Gogition is so overelical and ofter.

At iteration 1200 we’re now seeing use of quotations and question/exclamation marks. Longer

words have now been learned as well:

"Kite vouch!" he repeated by her

door. "But I would be done and quarts, feeling, then, son is people...."

Until at last we start to get properly spelled words, quotations, names, and so on by about

iteration 2000:

"Why do what that day," replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.

Pierre aking his soul came to the packs and drove up his father-in-law women.

The picture that emerges is that the model first discovers the general word-space structure and

then rapidly starts to learn the words; First starting with the short words and then eventually the

longer ones. Topics and themes that span multiple words (and in general longer-term

dependencies) start to emerge only much later.

Visualizing the predictions and the “neuron” firings in the RNN

Another fun visualization is to look at the predicted distributions over characters. In the

visualizations below we feed a Wikipedia RNN model character data from the validation set

(shown along the blue/green rows) and under every character we visualize (in red) the top 5

guesses that the model assigns for the next character. The guesses are colored by their



probability (so dark red = judged as very likely, white = not very likely). For example, notice that

there are stretches of characters where the model is extremely confident about the next letter

(e.g., the model is very confident about characters during the http://www. sequence).

The input character sequence (blue/green) is colored based on the firing of a randomly chosen

neuron in the hidden representation of the RNN. Think about it as green = very excited and blue

= not very excited (for those familiar with details of LSTMs, these are values between [-1,1] in

the hidden state vector, which is just the gated and tanh’d LSTM cell state). Intuitively, this is

visualizing the firing rate of some neuron in the “brain” of the RNN while it reads the input

sequence. Different neurons might be looking for different patterns; Below we’ll look at 4

different ones that I found and thought were interesting or interpretable (many also aren’t):

The neuron highlighted in this image seems to get very excited about URLs and turns off outside of the URLs.

The LSTM is likely using this neuron to remember if it is inside a URL or not.



The highlighted neuron here gets very excited when the RNN is inside the [[ ]] markdown environment and

turns off outside of it. Interestingly, the neuron can't turn on right after it sees the character "[", it must wait for

the second "[" and then activate. This task of counting whether the model has seen one or two "[" is likely

done with a different neuron.

Here we see a neuron that varies seemingly linearly across the [[ ]] environment. In other words its activation

is giving the RNN a time-aligned coordinate system across the [[ ]] scope. The RNN can use this information

to make different characters more or less likely depending on how early/late it is in the [[ ]] scope (perhaps?).

Here is another neuron that has very local behavior: it is relatively silent but sharply turns off right after the

first "w" in the "www" sequence. The RNN might be using this neuron to count up how far in the "www"

sequence it is, so that it can know whether it should emit another "w", or if it should start the URL.

Of course, a lot of these conclusions are slightly hand-wavy as the hidden state of the RNN is a

huge, high-dimensional and largely distributed representation. These visualizations were

produced with custom HTML/CSS/Javascript, you can see a sketch of what’s involved here if

you’d like to create something similar.

http://cs.stanford.edu/people/karpathy/viscode.zip


We can also condense this visualization by excluding the most likely predictions and only

visualize the text, colored by activations of a cell. We can see that in addition to a large portion

of cells that do not do anything interpretible, about 5% of them turn out to have learned quite

interesting and interpretible algorithms:





Again, what is beautiful about this is that we didn’t have to hardcode at any point that if you’re

trying to predict the next character it might, for example, be useful to keep track of whether or

not you are currently inside or outside of quote. We just trained the LSTM on raw data and it

decided that this is a useful quantitity to keep track of. In other words one of its cells gradually

tuned itself during training to become a quote detection cell, since this helps it better perform the

final task. This is one of the cleanest and most compelling examples of where the power in

Deep Learning models (and more generally end-to-end training) is coming from.



Source Code

I hope I’ve convinced you that training character-level language models is a very fun exercise.

You can train your own models using the char-rnn code I released on Github (under MIT

license). It takes one large text file and trains a character-level model that you can then sample

from. Also, it helps if you have a GPU or otherwise training on CPU will be about a factor of 10x

slower. In any case, if you end up training on some data and getting fun results let me know!

And if you get lost in the Torch/Lua codebase remember that all it is is just a more fancy version

of this 100-line gist.

Brief digression. The code is written in Torch 7, which has recently become my favorite deep

learning framework. I’ve only started working with Torch/LUA over the last few months and it

hasn’t been easy (I spent a good amount of time digging through the raw Torch code on Github

and asking questions on their gitter to get things done), but once you get a hang of things it

offers a lot of flexibility and speed. I’ve also worked with Caffe and Theano in the past and I

believe Torch, while not perfect, gets its levels of abstraction and philosophy right better than

others. In my view the desirable features of an effective framework are:

1. CPU/GPU transparent Tensor library with a lot of functionality (slicing, array/matrix

operations, etc. )

2. An entirely separate code base in a scripting language (ideally Python) that operates over

Tensors and implements all Deep Learning stuff (forward/backward, computation graphs,

etc)

3. It should be possible to easily share pretrained models (Caffe does this well, others don’t),

and crucially

4. NO compilation step (or at least not as currently done in Theano). The trend in Deep

Learning is towards larger, more complex networks that are are time-unrolled in complex

graphs. It is critical that these do not compile for a long time or development time greatly

suffers. Second, by compiling one gives up interpretability and the ability to log/debug

effectively. If there is an option to compile the graph once it has been developed for

efficiency in prod that’s fine.

Further Reading

Before the end of the post I also wanted to position RNNs in a wider context and provide a

sketch of the current research directions. RNNs have recently generated a significant amount of

buzz and excitement in the field of Deep Learning. Similar to Convolutional Networks they have

been around for decades but their full potential has only recently started to get widely

recognized, in large part due to our growing computational resources. Here’s a brief sketch of a

https://github.com/karpathy/char-rnn
https://gist.github.com/karpathy/d4dee566867f8291f086
http://torch.ch/


few recent developments (definitely not complete list, and a lot of this work draws from research

back to 1990s, see related work sections):

In the domain of NLP/Speech, RNNs transcribe speech to text, perform machine translation,

generate handwritten text, and of course, they have been used as powerful language models

(Sutskever et al.) (Graves) (Mikolov et al.) (both on the level of characters and words). Currently

it seems that word-level models work better than character-level models, but this is surely a

temporary thing.

Computer Vision. RNNs are also quickly becoming pervasive in Computer Vision. For example,

we’re seeing RNNs in frame-level video classification, image captioning (also including my own

work and many others), video captioning and very recently visual question answering. My

personal favorite RNNs in Computer Vision paper is Recurrent Models of Visual Attention, both

due to its high-level direction (sequential processing of images with glances) and the low-level

modeling (REINFORCE learning rule that is a special case of policy gradient methods in

Reinforcement Learning, which allows one to train models that perform non-differentiable

computation (taking glances around the image in this case)). I’m confident that this type of

hybrid model that consists of a blend of CNN for raw perception coupled with an RNN glance

policy on top will become pervasive in perception, especially for more complex tasks that go

beyond classifying some objects in plain view.

Inductive Reasoning, Memories and Attention. Another extremely exciting direction of research

is oriented towards addressing the limitations of vanilla recurrent networks. One problem is that

RNNs are not inductive: They memorize sequences extremely well, but they don’t necessarily

always show convincing signs of generalizing in the correct way (I’ll provide pointers in a bit that

make this more concrete). A second issue is they unnecessarily couple their representation size

to the amount of computation per step. For instance, if you double the size of the hidden state

vector you’d quadruple the amount of FLOPS at each step due to the matrix multiplication.

Ideally, we’d like to maintain a huge representation/memory (e.g. containing all of Wikipedia or

many intermediate state variables), while maintaining the ability to keep computation per time

step fixed.

The first convincing example of moving towards these directions was developed in DeepMind’s

Neural Turing Machines paper. This paper sketched a path towards models that can perform

read/write operations between large, external memory arrays and a smaller set of memory

registers (think of these as our working memory) where the computation happens. Crucially, the

NTM paper also featured very interesting memory addressing mechanisms that were

implemented with a (soft, and fully-differentiable) attention model. The concept of soft attention

has turned out to be a powerful modeling feature and was also featured in Neural Machine

Translation by Jointly Learning to Align and Translate for Machine Translation and Memory

Networks for (toy) Question Answering. In fact, I’d go as far as to say that

http://www.jmlr.org/proceedings/papers/v32/graves14.pdf
http://arxiv.org/abs/1409.3215
http://www.cs.toronto.edu/~graves/handwriting.html
http://www.cs.utoronto.ca/~ilya/pubs/2011/LANG-RNN.pdf
http://arxiv.org/abs/1308.0850
http://www.rnnlm.org/
http://arxiv.org/abs/1411.4389
http://arxiv.org/abs/1411.4555
http://arxiv.org/abs/1505.00487
http://arxiv.org/abs/1505.02074
http://arxiv.org/abs/1406.6247
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1503.08895
http://arxiv.org/abs/1503.08895


Now, I don’t want to dive into too many details but a soft attention scheme for memory

addressing is convenient because it keeps the model fully-differentiable, but unfortunately one

sacrifices efficiency because everything that can be attended to is attended to (but softly). Think

of this as declaring a pointer in C that doesn’t point to a specific address but instead defines an

entire distribution over all addresses in the entire memory, and dereferencing the pointer returns

a weighted sum of the pointed content (that would be an expensive operation!). This has

motivated multiple authors to swap soft attention models for hard attention where one samples a

particular chunk of memory to attend to (e.g. a read/write action for some memory cell instead of

reading/writing from all cells to some degree). This model is significantly more philosophically

appealing, scalable and efficient, but unfortunately it is also non-differentiable. This then calls for

use of techniques from the Reinforcement Learning literature (e.g. REINFORCE) where people

are perfectly used to the concept of non-differentiable interactions. This is very much ongoing

work but these hard attention models have been explored, for example, in Inferring Algorithmic

Patterns with Stack-Augmented Recurrent Nets, Reinforcement Learning Neural Turing

Machines, and Show Attend and Tell.

People. If you’d like to read up on RNNs I recommend theses from Alex Graves, Ilya Sutskever

and Tomas Mikolov. For more about REINFORCE and more generally Reinforcement Learning

and policy gradient methods (which REINFORCE is a special case of) David Silver’s class, or

one of Pieter Abbeel’s classes.

Code. If you’d like to play with training RNNs I hear good things about keras or passage for

Theano, the code released with this post for Torch, or this gist for raw numpy code I wrote a

while ago that implements an efficient, batched LSTM forward and backward pass. You can also

have a look at my numpy-based NeuralTalk which uses an RNN/LSTM to caption images, or

maybe this Caffe implementation by Jeff Donahue.

Conclusion

We’ve learned about RNNs, how they work, why they have become a big deal, we’ve trained an

RNN character-level language model on several fun datasets, and we’ve seen where RNNs are

going. You can confidently expect a large amount of innovation in the space of RNNs, and I

believe they will become a pervasive and critical component to intelligent systems.

Lastly, to add some meta to this post, I trained an RNN on the source file of this blog post.

Unfortunately, at about 46K characters I haven’t written enough data to properly feed the RNN,

but the returned sample (generated with low temperature to get a more typical sample) is:

The concept of attention is the most interesting recent architectural innovation in neural

networks.

http://arxiv.org/abs/1503.01007
http://arxiv.org/abs/1503.01007
http://arxiv.org/abs/1505.00521
http://arxiv.org/abs/1505.00521
http://arxiv.org/abs/1502.03044
http://www.cs.toronto.edu/~graves/
http://www.cs.toronto.edu/~ilya/
http://www.rnnlm.org/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Home.html
http://www.cs.berkeley.edu/~pabbeel/
https://github.com/fchollet/keras
https://github.com/IndicoDataSolutions/Passage
https://github.com/karpathy/char-rnn
https://gist.github.com/karpathy/587454dc0146a6ae21fc
https://github.com/karpathy/neuraltalk
http://jeffdonahue.com/lrcn/


I've the RNN with and works, but the computed with program of the 

RNN with and the computed of the RNN with with and the code

Yes, the post was about RNN and how well it works, so clearly this works :). See you next time!

EDIT (extra links):

Videos:

I gave a talk on this work at the London Deep Learning meetup (video).

Discussions:

HN discussion

Reddit discussion on r/machinelearning

Reddit discussion on r/programming

Replies:

Yoav Goldberg compared these RNN results to n-gram maximum likelihood (counting)

baseline

@nylk trained char-rnn on cooking recipes. They look great!

@MrChrisJohnson trained char-rnn on Eminem lyrics and then synthesized a rap song

with robotic voice reading it out. Hilarious :)

@samim trained char-rnn on Obama Speeches. They look fun!

João Felipe trained char-rnn irish folk music and sampled music

Bob Sturm also trained char-rnn on music in ABC notation

RNN Bible bot by Maximilien

Learning Holiness learning the Bible

Terminal.com snapshot that has char-rnn set up and ready to go in a browser-based

virtual machine (thanks @samim)

https://skillsmatter.com/skillscasts/6611-visualizing-and-understanding-recurrent-networks
https://news.ycombinator.com/item?id=9584325
http://www.reddit.com/r/MachineLearning/comments/36s673/the_unreasonable_effectiveness_of_recurrent/
http://www.reddit.com/r/programming/comments/36su8d/the_unreasonable_effectiveness_of_recurrent/
https://twitter.com/yoavgo
http://nbviewer.ipython.org/gist/yoavg/d76121dfde2618422139
http://nbviewer.ipython.org/gist/yoavg/d76121dfde2618422139
https://twitter.com/nylk
https://gist.github.com/nylki/1efbaa36635956d35bcc
https://twitter.com/MrChrisJohnson
https://twitter.com/samim
https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0
https://twitter.com/seaandsailor
https://soundcloud.com/seaandsailor/sets/char-rnn-composes-irish-folk-music
https://twitter.com/boblsturm
https://highnoongmt.wordpress.com/2015/05/22/lisls-stis-recurrent-neural-networks-for-folk-music-generation/
https://twitter.com/RNN_Bible
https://twitter.com/the__glu/with_replies
http://cpury.github.io/learning-holiness/
https://www.terminal.com/tiny/ZMcqdkWGOM
https://www.twitter.com/samim
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Max Loh

Reply

− ⚑

a year ago

Why did you delete my comment? Please don't delete this nor the article itself. Nearly 10

years later, this post still serves as the best showcase and historical time capsule of what

was considered possible by AI experts in 2015. It is an EXCELLENT sanity check against non-

technical people in 2024 claiming that LLMs are no more intelligent than a calculator, which

for some reason has become the new in-vogue anti-AI mantra. It is, in my mind, the most

ironic thing, that the non-technical people are claiming that non-coders are the ones who

believe a neural net is capable of any emergent inferences/intelligence whatsoever. Let this

article be a reminder of what a computer is "supposed" to be capable of, before the advent of

neural nets.

5 0

Alexander Patrakov

Reply

− ⚑

10 years ago

I wonder what happens if we teach these networks on non-text, but on compressed audio

files, bit by bit, with specific target: low-bitrate speech codecs with fixed frame size. E.g.

Codec2 already has explicit indication whether this is a voiced frame, and an approximation

of its excitation and pitch. IOW: will it speak?

8 1

Skguy Chen

Reply

− ⚑> Alexander Patrakov

8 months ago

It can already be achieved......

0 0

mertnesvat − ⚑> Alexander Patrakov

8 years ago

it would be fun to try :)

G

39

⥅
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S

⥅
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Reply0 0

Infinum

Reply

− ⚑

10 years ago

This approach seems to generate samples with roughly correct syntax and entropy of

characters similar to that of the source texts but the output is totally devoid of any meaning -

it is structured gibberish - just like dreams are.

The article though is still an interesting one, thanks.

3 0

Houshalter

Reply

− ⚑

10 years ago

RNNs are very suboptimal for language. To learn to recognize a sequence you need to learn

many seperate neurons, with many parameters. Each neuron learns to represent a single time

step of that sequence. E.g. to recognize the word "cat", one neuron must keep track that the

last letter was "c", another neuron must learn to keep track of the second to last letter being

"c", and another neuron must learn that the last letter was "a", and so on.

So you need a dozen neurons for each letter just to learn to mimic what a simple markov

chain can do. If you want to do computations based on sequences of words, you need to

learn tons of neurons to represent each word, based on how many timesteps in the past it

occurred.

Alternatively you can just feed it into a simple 1d convolutional neural network operating in

the time domain, and the convolution naturally favors learning these kinds of relationships.

5 1

allen7575

Reply

− ⚑

8 years ago

What If we drop those 95% uninterpretable cells out? Are the 95% cells

just no function? or just for redundancy in case other cells

malfunction?

1 0

mattmcirvin

Reply

− ⚑

10 years ago

...similarly, @samim's Robama figured out pretty clearly what kinds of formulae occur at the

beginning and end of a Presidential speech, which I don't think a simple Markov sort of

model would do.

1 0

Atul − ⚑

10 years ago
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Reply

Amazing work!

It seems though that the quality of the output correlates with how well you can give feedback

to the RNN. Although you haven't mentioned how, I'm assuming that correct words in the

output would imply positive feedback. So after many iterations you see correct words,

because the weights may be stabilizing for lack of any negative feedback. If you were able to

give feedback based on sentence structure, grammatical rules and perhaps even an

ontological representations of the words, it could produce even more meaningful output.

1 0

Avinier

Reply

− ⚑

2 months ago

historical shit

0 0

Sahil_._sharma

Reply

− ⚑

4 months ago edited

Reading it for the first time in 2025! I'm currently unaware of how "attention models" for NLP

work, though I'm aware that they are the key thing behind today's rise of LLMs. I came to this

blog article while reading this blog which I found while learning NLP with Sequence Models -

course from Deeplearning.AI .

It's wonderful, last month I built a n-gram model for next word prediction so gone through my

memory and computational issues, now entering into deep learning I can sense a bit where

the overall discussion of AI and scientific advancement in NLP is going!

Thanks!

Also wondering how discord server/chat is embedded to this blog post.

0 0

ISO provider

Reply

− ⚑

6 months ago

Great breakdown of RNNs. Your explanation really highlights their effectiveness and the

potential they hold for sequence data tasks. Achieve ISO Certification In Saudi Arabia to

boost efficiency, ensure quality, and build trust with clients.

0 0

julia

Reply

− ⚑

9 months ago

Your thoughts on it were very insightful. For more on this subject, here’s a helpful resource:<a

href=" https://www.totecopy.com/ ">ブランド コピー 優良店</a>.

0 0

Paul Le Meur − ⚑
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2 years ago

Thanks alot. This is a wonderful introduction. It would be even nicer with some connections

to modern large language models, and perhaps just a glimpse of the jungle of applications

besides text generation; because the reader can make some guesses but if he goes look

elsewhere he won't have the same notation as here so it won't be straightforward to relate to

the notations, assumptions, and other conventions used here. Thanks again.

0 0

Camilo Martin

Reply

− ⚑> Paul Le Meur

a year ago

This is from 9 years ago. This is an archaeological artifact, not a living document.

4 0

Massimo Buonaiuto

Reply

− ⚑

5 years ago

Wonderful post indeed. Thanks!

0 0

Rahul Raj

Reply

− ⚑

5 years ago

Loved it. Thanks.

0 0

André

Reply

− ⚑

5 years ago

Hello,

May I use your images in my article? I will give full credit.

0 0

Brian Jack

Reply

− ⚑

7 years ago

Has anyone thought more about the long-term context issue such as variable scope? This

issue of not learning variable scope is probably also related to the latex RNN not

remembering when it was in a proof or a lemma. Seems the "long" in LSTM is not long

enough.

0 0

SuckCocker

Reply

− ⚑

7 years ago

in short: SKYNET is not far away. Be proud to be a part of it!
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Aris

Reply

− ⚑

10 years ago

Which category of RNN (one-one, one-many, many-one, many-many) that character-level

model belongs to? My understanding is it's a one to one model, since it's character to

character. It'll be great to see your next blogs about more general cases for RNN.

0 0

feras

Reply

− ⚑

10 years ago

It is so impressive work and I'm so interested in your result. I have a question for you. if we

can train the system to imitate a language or a person. then by training the network with a

specific person could we decide if other text belongs to the same person r not? solving

semantic text meaning would so easier though.

0 0

gwern

Reply

− ⚑

10 years ago

I tried training char-rnn on CSS. Worked pretty well: http://www.gwern.net/AB%20t...

There could be some usability improvements, though:

- it would be *really* good if we could run GPU-created NNs on our CPUs or vice-versa. I paid

Amazon $25 for the work because my laptop GPU drivers currently are broken, and now I

can't run them on my laptop even if I think of something I might want to (slowly) test or

sample, which is unfortunate.

- validation/checkpointing seem conflated. It'd be nice if I could grab a checkpoint at any time

without waiting for the hardwired number of iterations to elapse. (Perhaps char-rnn could

catch Control-c?)

- when you specify ./data/$DATA/input.txt, train.lua crashes with a totally opaque error

message, rather than reminding you that the data dir argument needs a directory rather than

file. This confused me for a while.

- sampling seems to be greedy and I've seen sampling fall into repetition on some datasets

(the data URI issue with my CSS may reflect this, and someone else found that after training

on IRC logs, the samples might just repeat); is it possible that something like beam search

attempting to maximize joint probability would yield better results?

0 0

karpathy − ⚑Mod > gwern

10 years ago

Hey gwern! It's very nice to see you stumble by and play with the code, it looks like

you got quite far for a first attempt. And thanks a lot for the comments, I don't get

as much detailed feedback as you'd think so it's very valuable when it does come.

- I know that the GPU-CPU checkpoints is a pain point I just have to find time to fix

this A quick hack is a small script that converts a GPU checkpoint to a CPU
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this. A quick hack is a small script that converts a GPU checkpoint to a CPU

checkpoint. One has to iterate over checkpoint.protos (which stores the networks),

convert every element of this to CPU with :float(), and then save the checkpoint

back. I'll see if I can find time tonight, if not I'll do it tomorrow and push to repo.

There is a cleaner longer-term solution that will eliminate the issue of having to

think about this, I'll get to that too hopefully soon.

- Good points about val/checkpoint conflation and data_dir flag, I'll add more helpful

error messages.

- usually you see repeats when people force a low temperature. The very long data

URIs are an issue and as you point out this can be mitigated with seq_length, but

not if they are on average thousands of characters long. I'm not sure how to fix that.

Also as you point out beam search could give better and more joint samples, but I'm

not sure if this would fix the URI issue.

0 0

gwern

Reply

− ⚑> karpathy

10 years ago edited

Oh yes, before I forget, there seems to be an issue with non-ASCII text. I hit

some crashes while training which seemed to be connected to Unicode

but filtering with 'iconv' made them go away.

> but not if they are on average thousands of characters long

I took a look at the 20MB corpus again, and it seems most of the data

URIs are fairly short, a few hundred at most, but there are a few which are

as long as 7118 characters: 171, 235, 235, 239, 239, 243, 407, 595, 659,

1431, 1431, 1431, 1431, 1431, 1431, 3755, 3755, 3755, 3755, 3755, 3755,

7118 (Probably there are some even longer ones in the full 1GB corpus.)

https://www.dropbox.com/s/q... $ for LINE in `cat 20mb-datauris.txt`; do

echo $LINE | wc --char; done | sort -g

> Also as you point out beam search could give better and more joint

samples, but I'm not sure if this would fix the URI issue.

My thinking was that with a lot of RAM, the beam search would probably

be able to sample ')', which ends the data URI and then makes regular CSS

far more probable; and then since regular CSS is far more common than

data URIs, after a few more characters a finished data URI+CSS would

overall/globally look better than continuing the data URI. So possibly the

beam search can use the later high probability CSS to 'pull' the RNN out of

being forgetfully greedily stuck in the generating-data-URI local optima.

Just speculating there.

0 0

karpathy − ⚑Mod > gwern

10 years ago
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also RE: your comment on HN regarding DQN, see if this helps at

all:

http://cs.stanford.edu/peop...

1 0

karpathy

Reply

− ⚑Mod > gwern

10 years ago

I'm aware of ASCII issue. There is a patch for utf8 on Github but

apparently it seriously blows up the space needed to store the

data.

Also btw I just pushed the GPU -> CPU conversion script to

Github.

1 0

mattmcirvin

Reply

− ⚑

10 years ago edited

Just going by eyeball, the difference I can see between Yoav Goldberg's simple n-gram-based

model for pseudo-Shakespeare and the RNN is that the RNN is better at getting the line

lengths right (if, indeed, the newlines in these examples were generated by the model, which

I'm assuming they were).

0 0

xiaosae

Reply

− ⚑

10 years ago

I wonder how the article begins,with a few chars randomly?

0 0

Roman

Reply

− ⚑

10 years ago

On Mac OS I keep getting: "luajit: not enough memory" every time i try to use more than 200

neurons on 3 layers. I have 16gb onboard and basically it's all free. Do you have any idea how

to allow luajit to use more memory? I tried with "WITH_LUA_JIT=0 luarocks install torch" but

no luck at all. Thanks

0 0

Houshalter

Reply

− ⚑> Roman

10 years ago

Luajit can only use 1 GB of memory (or I think up to 4 if it's 32 bit.)

0 0

Roman − ⚑> Houshalter

10 years ago
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10 years ago

Thank you to begin with.

Is there any way to use the project without relying on Luajit in order to use

h b

https://github.com/karpathy
https://github.com/karpathy
https://github.com/karpathy
https://twitter.com/karpathy
https://twitter.com/karpathy
https://twitter.com/karpathy
https://karpathy.github.io/2015/05/21/rnn-effectiveness/#comment-2043943612
https://disqus.com/by/disqus_RM28eIYuKE/

