
towardsdatascience.com /recurrent-neural-networks-by-example-in-pyth…

Recurrent Neural Networks by

Example in Python

Will Koehrsen ⋮ 25-32 minutes ⋮ 11/4/2018

The first time I attempted to study recurrent neural networks, I

made the mistake of trying to learn the theory behind things like

LSTMs and GRUs first. After several frustrating days looking at

linear algebra equations, I happened on the following passage

in Deep Learning with Python:

In summary, you don’t need to understand everything

about the specific architecture of an LSTM cell; as a

human, it shouldn’t be your job to understand it. Just

keep in mind what the LSTM cell is meant to do: allow

past information to be reinjected at a later time.

This was the author of the library Keras (Francois Chollet), an

expert in deep learning, telling me I didn’t need to understand

everything at the foundational level! I realized that my mistake had

been starting at the bottom, with the theory, instead of just trying to

build a recurrent neural network.

Shortly thereafter, I switched tactics and decided to try

the most effective way of learning a data science

technique: find a problem and solve it!

https://towardsdatascience.com/recurrent-neural-networks-by-example-in-python-ffd204f99470/
https://www.manning.com/books/deep-learning-with-python

This top-down approach means learning how to implement a

method before going back and covering the theory. This way,

I’m able to figure out what I need to know along the way, and when

I return to study the concepts, I have a framework into which I can

fit each idea. In this mindset, I decided to stop worrying about the

details and complete a recurrent neural network project.

This article walks through how to build and use a recurrent neural

network in Keras to write patent abstracts. The article is light on the

theory, but as you work through the project, you’ll find you pick up

what you need to know along the way. The end result is you can

build a useful application and figure out how a deep learning

method for natural language processing works.

The full code is available as a series of Jupyter Notebooks on

GitHub. I’ve also provided all the pre-trained models so you don’t

have to train them for several hours yourself! To get started as

quickly as possible and investigate the models, see the Quick Start

to Recurrent Neural Networks, and for in-depth explanations, refer

to Deep Dive into Recurrent Neural Networks.

Recurrent Neural Network

It’s helpful to understand at least some of the basics before getting

to the implementation. At a high level, a recurrent neural

network (RNN) processes sequences — whether daily stock prices,

sentences, or sensor measurements — one element at a time while

https://course.fast.ai/about.html
https://github.com/WillKoehrsen/recurrent-neural-networks
https://github.com/WillKoehrsen/recurrent-neural-networks
https://github.com/WillKoehrsen/recurrent-neural-networks/tree/master/models
https://github.com/WillKoehrsen/recurrent-neural-networks/blob/master/notebooks/Quick%20Start%20to%20Recurrent%20Neural%20Networks.ipynb
https://github.com/WillKoehrsen/recurrent-neural-networks/blob/master/notebooks/Quick%20Start%20to%20Recurrent%20Neural%20Networks.ipynb
https://github.com/WillKoehrsen/recurrent-neural-networks/blob/master/notebooks/Deep%20Dive%20into%20Recurrent%20Neural%20Networks.ipynb
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

retaining a memory (called a state) of what has come previously in

the sequence.

Recurrent means the output at the current time step becomes the

input to the next time step. At each element of the sequence, the

model considers not just the current input, but what it remembers

about the preceding elements.

Overview of RNN (Source)

This memory allows the network to learn long-term

dependencies in a sequence which means it can take the entire

context into account when making a prediction, whether that be the

next word in a sentence, a sentiment classification, or the next

temperature measurement. A RNN is designed to mimic the human

way of processing sequences: we consider the entire sentence when

https://www.manning.com/books/deep-learning-with-python

forming a response instead of words by themselves. For example,

consider the following sentence:

“The concert was boring for the first 15 minutes while the band

warmed up but then was terribly exciting.”

A machine learning model that considers the words in isolation —

such as a bag of words model — would probably conclude this

sentence is negative. An RNN by contrast should be able to see the

words “but” and “terribly exciting” and realize that the sentence

turns from negative to positive because it has looked at the entire

sequence. Reading a whole sequence gives us a context for

processing its meaning, a concept encoded in recurrent neural

networks.

At the heart of an RNN is a layer made of memory cells. The most

popular cell at the moment is the Long Short-Term

Memory (LSTM) which maintains a cell state as well as a carry for

ensuring that the signal (information in the form of a gradient) is

not lost as the sequence is processed. At each time step the LSTM

considers the current word, the carry, and the cell state.

https://en.wikipedia.org/wiki/Bag-of-words_model
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory
https://stats.stackexchange.com/questions/185639/how-does-lstm-prevent-the-vanishing-gradient-problem

LSTM (Long Short Term Memory) Cell (Source)

The LSTM has 3 different gates and weight vectors: there is a

“forget” gate for discarding irrelevant information; an “input” gate

for handling the current input, and an “output” gate for producing

predictions at each time step. However, as Chollet points out, it is

fruitless trying to assign specific meanings to each of the elements

in the cell.

The function of each cell element is ultimately decided by the

parameters (weights) which are learned during training. Feel free to

label each cell part, but it’s not necessary for effective use! Recall,

the benefit of a Recurrent Neural Network for sequence learning is

it maintains a memory of the entire sequence preventing prior

information from being lost.

Problem Formulation

There are several ways we can formulate the task of training an

RNN to write text, in this case patent abstracts. However, we will

https://www.manning.com/books/deep-learning-with-python
https://machinelearningmastery.com/sequence-prediction-problems-learning-lstm-recurrent-neural-networks/

choose to train it as a many-to-one sequence mapper. That is, we

input a sequence of words and train the model to predict the very

next word. The words will be mapped to integers and then to

vectors using an embedding matrix (either pre-trained or trainable)

before being passed into an LSTM layer.

When we go to write a new patent, we pass in a starting sequence of

words, make a prediction for the next word, update the input

sequence, make another prediction, add the word to the sequence

and continue for however many words we want to generate.

The steps of the approach are outlined below:

1. Convert abstracts from list of strings into list of lists of integers

(sequences)

2. Create feature and labels from sequences

3. Build LSTM model with Embedding, LSTM, and Dense layers

4. Load in pre-trained embeddings

5. Train model to predict next work in sequence

6. Make predictions by passing in starting sequence

Keep in mind this is only one formulation of the problem: we could

also use a character level model or make predictions for each word

in the sequence. As with many concepts in machine learning, there

is no one correct answer, but this approach works well in practice.

Data Preparation

Even with a neural network’s powerful representation ability,

getting a quality, clean dataset is paramount. The raw data for this

project comes from USPTO PatentsView, where you can search for

information on any patent applied for in the United States. I

searched for the term “neural network” and downloaded the

resulting patent abstracts — 3500 in all. I found it best to train on a

narrow subject, but feel free to try with a different set of patents.

Patent Abstract Data

We’ll start out with the patent abstracts as a list of strings. The main

data preparation steps for our model are:

1. Remove punctuation and split strings into lists of individual

words

2. Convert the individual words into integers

These two steps can both be done using the Keras <a

href="https://keras.io/preprocessing/text/#tokenizer"

rel="noreferrer noopener"

target="_blank">Tokenizer class. By default, this removes

all punctuation, lowercases words, and then converts words

to sequences of integers. A Tokenizer is first fit on a list of

strings and then converts this list into a list of lists of integers. This

is demonstrated below:

http://www.patentsview.org/querydev/
https://keras.io/preprocessing/text/#tokenizer

The output of the first cell shows the original abstract and the

output of the second the tokenized sequence. Each abstract is now

represented as integers.

We can use the idx_word attribute of the trained tokenizer to figure

out what each of these integers means:

If you look closely, you’ll notice that the Tokenizer has removed all

punctuation and lowercased all the words. If we use these settings,

then the neural network will not learn proper English! We can

adjust this by changing the filters to the Tokenizer to not remove

punctuation.

Don't remove punctuation or uppercase
tokenizer

= Tokenizer(num_words=None,

filters='#$%&()*+-<=>@[\\]^_`{|}~\t\n',

lower = False, split = ' ')

See the notebooks for different implementations, but, when we use

pre-trained embeddings, we’ll have to remove the uppercase

because there are no lowercase letters in the embeddings. When

training our own embeddings, we don’t have to worry about this

because the model will learn different representations for lower and

upper case.

Features and Labels

The previous step converts all the abstracts to sequences of

integers. The next step is to create a supervised machine learning

problem with which to train the network. There are numerous ways

you can set up a recurrent neural network task for text generation,

but we’ll use the following:

Give the network a sequence of words and train it to

predict the next word.

The number of words is left as a parameter; we’ll use 50 for the

examples shown here which means we give our network 50 words

and train it to predict the 51st. Other ways of training the network

would be to have it predict the next word at each point in the

sequence — make a prediction for each input word rather than once

for the entire sequence — or train the model using individual

characters. The implementation used here is not necessarily

optimal — there is no accepted best solution — but it works well!

Creating the features and labels is relatively simple and for each

abstract (represented as integers) we create multiple sets of features

and labels. We use the first 50 words as features with the 51st as the

label, then use words 2–51 as features and predict the 52nd and so

on. This gives us significantly more training data which is beneficial

because the performance of the network is proportional to the

amount of data that it sees during training.

The implementation of creating features and labels is below:

features = []

labels = []

training_length = 50

Iterate through the sequences of tokens

for seq in sequences:

Create multiple training examples from each sequence

for i in range(training_length, len(seq)):

Extract the features and label

extract = seq[i - training_length:i + 1]

Set the features and label

https://research.google.com/pubs/archive/35179.pdf
https://research.google.com/pubs/archive/35179.pdf

features.append(extract[:-1])

labels.append(extract[-1])

features = np.array(features)

The features end up with shape (296866, 50) which means we

have almost 300,000 sequences each with 50 tokens. In the

language of recurrent neural networks, each sequence has

50 timesteps each with 1 feature.

We could leave the labels as integers, but a neural network is able to

train most effectively when the labels are one-hot encoded. We can

one-hot encode the labels with numpy very quickly using the

following:

To find the word corresponding to a row in label_array , we use:

After getting all of our features and labels properly formatted, we

want to split them into a training and validation set (see notebook

for details). One important point here is to shuffle the features and

labels simultaneously so the same abstracts do not all end up in one

set.

Building a Recurrent Neural Network

Keras is an incredible library: it allows us to build state-of-the-art

models in a few lines of understandable Python code.

Although other neural network libraries may be faster or allow

more flexibility, nothing can beat Keras for development time and

ease-of-use.

The code for a simple LSTM is below with an explanation following:

from keras.models import Sequential

from keras.layers import LSTM, Dense, Dropout, Masking,

Embedding

model = Sequential()

Embedding layer

model.add(

Embedding(input_dim=num_words,

input_length = training_length,

output_dim=100,

weights=[embedding_matrix],

trainable=False,

http://keras.io/
https://deepsense.ai/keras-or-pytorch/
https://deepsense.ai/keras-or-pytorch/

mask_zero=True))

Masking layer for pre-trained embeddings

model.add(Masking(mask_value=0.0))

Recurrent layer

model.add(LSTM(64, return_sequences=False,

dropout=0.1, recurrent_dropout=0.1))

Fully connected layer

model.add(Dense(64, activation='relu'))

Dropout for regularization

model.add(Dropout(0.5))

Output layer

model.add(Dense(num_words, activation='softmax'))

Compile the model

model.compile(

optimizer='adam', loss='categorical_crossentropy', metrics=

['accuracy'])

We are using the Keras Sequential API which means we build the

network up one layer at a time. The layers are as follows:

An Embedding which maps each input word to a 100-

dimensional vector. The embedding can use pre-trained weights

(more in a second) which we supply in

the weights parameter. trainable can be set False if we

don’t want to update the embeddings.

A Masking layer to mask any words that do not have a pre-

trained embedding which will be represented as all zeros. This

layer should not be used when training the embeddings.

The heart of the network: a layer of LSTM cells with dropout to

prevent overfitting. Since we are only using one LSTM layer,

it does not return the sequences, for using two or more layers,

make sure to return sequences.

A fully-connected Dense layer with relu activation. This adds

additional representational capacity to the network.

A Dropout layer to prevent overfitting to the training data.

A Dense fully-connected output layer. This produces a

probability for every word in the vocab

using softmax activation.

The model is compiled with the Adam optimizer (a variant on

Stochastic Gradient Descent) and trained using

the categorical_crossentropy loss. During training, the

network will try to minimize the log loss by adjusting the trainable

parameters (weights). As always, the gradients of the parameters

are calculated using back-propagation and updated with the

optimizer. Since we are using Keras, we don’t have to worry about

how this happens behind the scenes, only about setting up the

network correctly.

https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/
https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/
http://neuralnetworksanddeeplearning.com/chap2.html
https://machinelearningmastery.com/5-step-life-cycle-neural-network-models-keras/
https://machinelearningmastery.com/5-step-life-cycle-neural-network-models-keras/

LSTM network layout.

Without updating the embeddings, there are many fewer

parameters to train in the network. The input to the <a

href="https://machinelearningmastery.com/reshape-

input-data-long-short-term-memory-networks-keras/"

rel="noreferrer noopener"

target="_blank">LSTM layer is <a

href="https://machinelearningmastery.com/reshape-

input-data-long-short-term-memory-networks-keras/"

rel="noreferrer noopener" target="_blank">(None, 50,

100) which means that for each batch (the first dimension),

each sequence has 50 timesteps (words), each of which has 100

features after embedding. Input to an LSTM layer always has

the (batch_size, timesteps, features) shape.

There are many ways to structure this network and there are several

others covered in the notebook. For example, we can use

two LSTM layers stacked on each other, a Bidirectional

https://machinelearningmastery.com/reshape-input-data-long-short-term-memory-networks-keras/
https://machinelearningmastery.com/reshape-input-data-long-short-term-memory-networks-keras/
https://machinelearningmastery.com/reshape-input-data-long-short-term-memory-networks-keras/
https://github.com/WillKoehrsen/recurrent-neural-networks/blob/master/notebooks/Deep%20Dive%20into%20Recurrent%20Neural%20Networks.ipynb

LSTM layer that processes sequences from both directions, or

more Dense layers. I found the set-up above to work well.

Pre-Trained Embeddings

Once the network is built, we still have to supply it with the pre-

trained word embeddings. There are numerous embeddings you

can find online trained on different corpuses (large bodies of text).

The ones we’ll use are available from Stanford and come in 100,

200, or 300 dimensions (we’ll stick to 100). These embeddings are

from the GloVe (Global Vectors for Word

Representation) algorithm and were trained on Wikipedia.

Even though the pre-trained embeddings contain 400,000 words,

there are some words in our vocab that are included. When we

represent these words with embeddings, they will have 100-d

vectors of all zeros. This problem can be overcome by training our

own embeddings or by setting

the Embedding layer’s trainable parameter to True (and

removing the Masking layer).

We can quickly load in the pre-trained embeddings from disk and

make an embedding matrix with the following code:

Load in embeddings

glove_vectors =

'/home/ubuntu/.keras/datasets/glove.6B.100d.txt'

glove = np.loadtxt(glove_vectors, dtype='str', comments=None)

Extract the vectors and words

http://ahogrammer.com/2017/01/20/the-list-of-pretrained-word-embeddings/
http://ahogrammer.com/2017/01/20/the-list-of-pretrained-word-embeddings/
https://nlp.stanford.edu/data/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

vectors = glove[:, 1:].astype('float')

words = glove[:, 0]

Create lookup of words to vectors

word_lookup = {word: vector for word, vector in zip(words,

vectors)}

New matrix to hold word embeddings

embedding_matrix = np.zeros((num_words, vectors.shape[1]))

for i, word in enumerate(word_idx.keys()):

Look up the word embedding

vector = word_lookup.get(word, None)

Record in matrix

if vector is not None:

embedding_matrix[i + 1, :] = vector

What this does is assign a 100-dimensional vector to each word in

the vocab. If the word has no pre-trained embedding then this

vector will be all zeros.

To explore the embeddings, we can use the cosine similarity to find

the words closest to a given query word in the embedding space:

Embeddings are learned which means the representations apply

specifically to one task. When using pre-trained embeddings, we

hope the task the embeddings were learned on is close enough to

our task so the embeddings are meaningful. If these embeddings

were trained on tweets, we might not expect them to work well, but

since they were trained on Wikipedia data, they should be generally

applicable to a range of language processing tasks.

If you have a lot of data and the computer time, it’s usually better to

learn your own embeddings for a specific task. In the notebook I

take both approaches and the learned embeddings perform slightly

better.

Training the Model

With the training and validation data prepared, the network built,

and the embeddings loaded, we are almost ready for our model to

learn how to write patent abstracts. However, good steps to take

when training neural networks are to use ModelCheckpoint and

EarlyStopping in the form of Keras callbacks:

https://towardsdatascience.com/neural-network-embeddings-explained-4d028e6f0526
https://keras.io/callbacks/
https://keras.io/callbacks/

Model Checkpoint: saves the best model (as measured by

validation loss) on disk for using best model

Early Stopping: halts training when validation loss is no longer

decreasing

Using Early Stopping means we won’t overfit to the training data

and waste time training for extra epochs that don’t improve

performance. The Model Checkpoint means we can access the best

model and, if our training is disrupted 1000 epochs in, we won’t

have lost all the progress!

from keras.callbacks import EarlyStopping, ModelCheckpoint

Create callbacks

callbacks = [EarlyStopping(monitor='val_loss', patience=5),

ModelCheckpoint('../models/model.h5'), save_best_only=True,

save_weights_only=False)]

The model can then be trained with the following code:

history = model.fit(X_train, y_train,

batch_size=2048, epochs=150,

callbacks=callbacks,

validation_data=(X_valid, y_valid))

On an Amazon p2.xlarge instance ($0.90 / hour reserved), this took

just over 1 hour to finish. Once the training is done, we can load

back in the best saved model and evaluate a final time on the

validation data.

https://stats.stackexchange.com/questions/231061/how-to-use-early-stopping-properly-for-training-deep-neural-network
https://aws.amazon.com/ec2/instance-types/p2/

from keras import load_model

Load in model and evaluate on validation data

model = load_model('../models/model.h5')

model.evaluate(X_valid, y_valid)

Overall, the model using pre-trained word embeddings achieved a

validation accuracy of 23.9%. This is pretty good considering as a

human I find it extremely difficult to predict the next word in these

abstracts! A naive guess of the most common word (“the”) yields an

accuracy around 8%. The metrics for all the models in the notebook

are shown below:

The best model used pre-trained embeddings and the same

architecture as shown above. I’d encourage anyone to try training

with a different model!

Patent Abstract Generation

Of course, while high metrics are nice, what matters is if the

network can produce reasonable patent abstracts. Using the best

model we can explore the model generation ability. If you want to

run this on your own hardware, you can find the notebook here and

the pre-trained models are on GitHub.

https://github.com/WillKoehrsen/recurrent-neural-networks/blob/master/notebooks/Exploring%20Model%20Results.ipynb
https://github.com/WillKoehrsen/recurrent-neural-networks/tree/master/models

To produce output, we seed the network with a random sequence

chosen from the patent abstracts, have it make a prediction of the

next word, add the prediction to the sequence, and continue making

predictions for however many words we want. Some results are

shown below:

One important parameter for the output is the diversity of the

predictions. Instead of using the predicted word with the highest

probability, we inject diversity into the predictions and then choose

the next word with a probability proportional to the more diverse

predictions. Too high a diversity and the generated output starts to

seem random, but too low and the network can get into recursive

loops of output.

https://medium.com/machine-learning-at-petiteprogrammer/sampling-strategies-for-recurrent-neural-networks-9aea02a6616f
https://medium.com/machine-learning-at-petiteprogrammer/sampling-strategies-for-recurrent-neural-networks-9aea02a6616f

The output isn’t too bad! Some of the time it’s tough to determine

which is computer generated and which is from a machine. Part of

this is due to the nature of patent abstracts which, most of the time,

don’t sound like they were written by a human.

Another use of the network is to seed it with our own starting

sequence. We can use any text we want and see where the network

takes it:

Again, the results are not entirely believable but they do resemble

English.

Human or Machine?

As a final test of the recurrent neural network, I created a game to

guess whether the model or a human generated the output. Here’s

http://www.wipo.int/standards/en/pdf/03-12-a.pdf

the first example where two of the options are from a computer and

one is from a human:

What’s your guess? The answer is that the second is the actual

abstract written by a person (well, it’s what was actually in the

abstract. I’m not sure these abstracts are written by people). Here’s

another one:

This time the third had a flesh and blood writer.

There are additional steps we can use to interpret the model such as

finding which neurons light up with different input sequences. We

can also look at the learned embeddings (or visualize them with

the Projector tool). We’ll leave those topics for another time, and

conclude that we know now how to implement a recurrent neural

network to effectively mimic human text.

https://projector.tensorflow.org/

Conclusions

It’s important to recognize that the recurrent neural network has no

concept of language understanding. It is effectively a very

sophisticated pattern recognition machine. Nonetheless, unlike

methods such as Markov chains or frequency analysis, the rnn

makes predictions based on the ordering of elements in the

sequence. Getting a little philosophical here, you could argue that

humans are simply extreme pattern recognition machines and

therefore the recurrent neural network is only acting like a human

machine.

The uses of recurrent neural networks go far beyond text generation

to machine translation, image captioning, and authorship

identification. Although this application we covered here will not

displace any humans, it’s conceivable that with more training data

and a larger model, a neural network would be able to synthesize

new, reasonable patent abstracts.

https://bigthink.com/endless-innovation/humans-are-the-worlds-best-pattern-recognition-machines-but-for-how-long
https://bigthink.com/endless-innovation/humans-are-the-worlds-best-pattern-recognition-machines-but-for-how-long
https://machinelearningmastery.com/encoder-decoder-recurrent-neural-network-models-neural-machine-translation/
https://cs.stanford.edu/people/karpathy/sfmltalk.pdf
https://arxiv.org/ftp/arxiv/papers/1506/1506.04891.pdf
https://arxiv.org/ftp/arxiv/papers/1506/1506.04891.pdf

A Bi-Directional LSTM Cell (Source)

It can be easy to get stuck in the details or the theory behind a

complex technique, but a more effective method for learning data

science tools is to dive in and build applications. You can always go

back later and catch up on the theory once you know what a

technique is capable of and how it works in practice. Most of us

won’t be designing neural networks, but it’s worth learning how to

use them effectively. This means putting away the books, breaking

out the keyboard, and coding up your very own network.

As always, I welcome feedback and constructive criticism. I can be

reached on Twitter @koehrsen_will or through my website

at willk.online.

https://developer.nvidia.com/discover/lstm
https://github.com/DOsinga/deep_learning_cookbook
http://twitter.com/@koehrsen_will
https://willk.online/

