
brilliant.org /wiki/recurrent-neural-network/

Recurrent Neural Network | Brilliant Math &

Science Wiki

14-18 minutes

Contents

Problems with Modeling Sequences

Recurrent Neural Networks

Unrolling RNNs

Backpropagation through Time (BPTT)

Vanishing/Exploding Gradients Problem

Long Short-term Memory

References

Consider an application that needs to predict an output sequence

𝑦 = (𝑦
1

, 𝑦
2

, … , 𝑦𝑛) for a given input sequence 𝑥 = (𝑥1 , 𝑥2 , … , 𝑥𝑚). For example,

in an application for translating English to Spanish, the input 𝑥 might be the

English sentence "i like pizza" and the associated output sequence 𝑦 would be

the Spanish sentence "me gusta comer pizza". Thus, if the sequence was broken

up by character, then 𝑥1 = "i", 𝑥2 = " ", 𝑥3 = "l", 𝑥4 = "i", 𝑥5 = "k", all the way up

to 𝑥12 = "a". Similarly, 𝑦
1

= "m", 𝑦
2

= "e", 𝑦
3

= " ", 𝑦
4

= "g", all the way up to

𝑦
20

= "a". Obviously, other input-output pair sentences are possible, such as

("it is hot today", "hoy hace calor") and ("my dog is hungry", "mi perro tiene hambre").

It might be tempting to try to solve this problem using feedforward neural

networks, but two problems become apparent upon investigation. The first issue

is that the sizes of an input 𝑥 and an output 𝑦 are different for different input-

output pairs. In the example above, the input-output pair

("it is hot today", "hoy hace calor") has an input of length 15 and an output of

https://brilliant.org/wiki/recurrent-neural-network/

length 14 while the input-output pair ("my dog is hungry", "mi perro tiene hambre")

has an input of length 16 and an output of length 21. Feedforward neural

networks have fixed-size inputs and outputs, and thus cannot be automatically

applied to temporal sequences of arbitrary length.

The second issue is a bit more subtle. One can imagine trying to circumvent the

above issue by specifying a max input-output size, and then padding inputs and

outputs that are shorter than this maximum size with some special null

character. Then, a feedforward neural network could be trained that learns to

produce 𝑦𝑖 on input 𝑥𝑖 . Thus, in the example ("it is hot today", "hoy hace calor"),

the training pairs would be

{(𝑥1 = "i", 𝑦
1

= "h"), (𝑥2 = "t", 𝑦
2

= "o"), … , (𝑥14 = "a", 𝑦
14

= "r"), (𝑥15 = "y", 𝑥15 = "*")},

where the maximum size is 15 and the padding character is "*", used to pad the

output, which at length 14 is one short of the maximum length 15.

The problem with this is that there is no reason to believe that 𝑥1 has anything to

do with 𝑦
1
. In many Spanish sentences, the order of the words (and thus

characters) in the English translation is different. Thus, if the first word in an

English sentence is the last word in the Spanish translation, it stands to reason

that any network that hopes to perform the translation will need to remember

that first word (or some representation of it) until it outputs the end of the

Spanish sentence. Any neural network that computes sequences needs a way

to remember past inputs and computations, since they might be needed for

computing later parts of the sequence output. One might say that the neural

network needs a way to remember its context, i.e. the relation between its past

and its present.

Both of the issues outlined in the above section can be solved by using

recurrent neural networks. Recurrent neural networks, like feedforward layers,

have hidden layers. However, unlike feedforward neural networks, hidden layers

have connections back to themselves, allowing the states of the hidden layers at

one time instant to be used as input to the hidden layers at the next time instant.

This provides the aforementioned memory, which, if properly trained, allows

https://brilliant.org/wiki/recurrent-neural-network/#problems-with-modeling-sequences
https://brilliant.org/wiki/recurrent-neural-network/#problems-with-modeling-sequences

hidden states to capture information about the temporal relation between input

sequences and output sequences.

RNNs are called recurrent because they perform the same computation

(determined by the weights, biases, and activation functions) for every element

in the input sequence. The difference between the outputs for different elements

of the input sequence comes from the different hidden states, which are

dependent on the current element in the input sequence and the value of the

hidden states at the last time step.

In simplest terms, the following equations define how an RNN evolves over time:

𝑜𝑡 = 𝑓(ℎ𝑡
;𝜃)

ℎ𝑡
= 𝑔(ℎ𝑡 − 1

, 𝑥𝑡 ;𝜃),

where 𝑜𝑡 is the output of the RNN at time 𝑡, 𝑥𝑡 is the input to the RNN at time 𝑡,
and ℎ𝑡

 is the state of the hidden layer(s) at time 𝑡. The image below outlines a

simple graphical model to illustrate the relation between these three variables in

an RNN's computation graph.

 A graphical model for an RNN. The values 𝜃𝑖 , 𝜃ℎ ,

and 𝜃𝑜 represent the parameters associated with the inputs, previous hidden

layer states, and outputs, respectively.

The first equation says that, given parameters 𝜃 (which encapsulates the

weights and biases for the network), the output at time 𝑡 depends only on the

state of the hidden layer at time 𝑡, much like a feedforward neural network. The

second equation says that, given the same parameters 𝜃, the hidden layer at

time 𝑡 depends on the hidden layer at time 𝑡 − 1 and the input at time 𝑡. This

second equation demonstrates that the RNN can remember its past by allowing

past computations ℎ𝑡 − 1
 to influence the present computations ℎ𝑡

.

Thus, the goal of training the RNN is to get the sequence 𝑜𝑡 + 𝜏
 to match the

sequence 𝑦𝑡 , where 𝜏 represents the time lag (it's possible that 𝜏 = 0) between

the first meaningful RNN output 𝑜𝜏 + 1
 and the first target output 𝑦𝑡 . A time lag is

sometimes introduced to allow the RNN to reach an informative hidden state

ℎ𝜏 + 1
 before it starts producing elements of the output sequence. This is

analogous to how humans translate English to Spanish, which often starts by

reading the first few words in order to provide context for translating the rest of

the sentence. A simple case when this is actually required is when the last word

in the input sequence corresponds to the first word in the output sequence.

Then, it would be necessary to delay the output sequence until the entire input

sequence is read.

RNNs can be difficult to understand because of the cyclic connections between

layers. A common visualization method for RNNs is known as unrolling or

unfolding. An RNN is unrolled by expanding its computation graph over time,

effectively "removing" the cyclic connections. This is done by capturing the state

of the entire RNN (called a slice) at each time instant 𝑡 and treating it similar to

how layers are treated in feedforward neural networks. This turns the

computation graph into a directed acyclic graph, with information flowing in one

direction only. The catch is that, unlike a feedforward neural network, which has

a fixed number of layers, an unfolded RNN has a size that is dependent on the

size of its input sequence and output sequence. This means that RNNs

designed for very long sequences produce very long unrollings. The image

below illustrates unrolling for the RNN model outlined in the image above at

times 𝑡 − 1, 𝑡, and 𝑡 + 1.

 An unfolded RNN at time steps 𝑡 − 1,

𝑡, and 𝑡 + 1.

One thing to keep in mind is that, unlike a feedforward neural network's layers,

each of which has its own unique parameters (weights and biases), the slices in

an unrolled RNN all have the same parameters 𝜃𝑖 , 𝜃ℎ , and 𝜃𝑜 . This is because

RNNs are recurrent, and thus the computation is the same for different elements

of the input sequence. As mentioned earlier, the differences in the output

sequence arise from the context preserved by the previous, hidden layer state

ℎ𝑡 − 1
.

Furthermore, while each slice in the unrolling may appear to be similar to a layer

in the computation graph of a feedforward graph, in practice the variable ℎ𝑡
 in

an RNN can have many internal hidden layers. This allows the RNN to learn

more hierarchal features since a hidden layer's feature outputs can be another

hidden layer's inputs. Thus, each variable ℎ𝑡
 in the unrolling is more akin to the

entirety of hidden layers in a feedforward neural network. This allows RNNs to

learn complex "static" relationships between the input and output sequences in

addition to the temporal relationship captured by cyclic connections.

Training recurrent neural networks is very similar to training feedforward neural

networks. In fact, there is a variant of the backpropagation algorithm for

feedforward neural networks that works for RNNs, called backpropagation

through time (often denoted BPTT). As the name suggests, this is simply the

backpropagation algorithm applied to the RNN backwards through time.

Backpropagation through time works by applying the backpropagation algorithm

to the unrolled RNN. Since the unrolled RNN is akin to a feedforward neural

network with all elements 𝑜𝑡 as the output layer and all elements 𝑥𝑡 from the

input sequence 𝑥 as the input layer, the entire input sequence 𝑥 and output

sequence 𝑜 are needed at the time of training.

BPTT starts similarly to backpropagation, calculating the forward phase first to

determine the values of 𝑜𝑡 and then backpropagating (backwards in time) from

𝑜𝑡 to 𝑜1 to determine the gradients of some error function with respect to the

parameters 𝜃. Since the parameters are replicated across slices in the unrolling,

gradients are calculated for each parameter at each time slice 𝑡. The final

gradients output by BPTT are calculated by taking the average of the individual,

slice-dependent gradients. This ensures that the effects of the gradient update

on the outputs for each time slice are roughly balanced.

One issue with RNNs in general is known as the vanishing/exploding

gradients problem. This problem states that, for long input-output sequences,

RNNs have trouble modeling long-term dependencies, that is, the relationship

between elements in the sequence that are separated by large periods of time.

For example, in the sentence "The quick brown fox jumped over the lazy dog", the

words "fox" and "dog" are separated by a large amount of space in the

sequence. In the unrolling of an RNN for this sequence, this would be modeled

by a large difference Δ𝑡 in the time 𝑥𝑎 for the start of the word "fox" and 𝑥𝑎 + Δ𝑡
for the end of the word "dog". Thus, if an RNN was attempting to learn how to

identify subjects and objects in sentences, it would need to remember the word

"fox" (or some hidden state representing it), the subject, up until it reads the

word "dog", the object. Only then would the RNN be able to output the pair

("fox", "dog"), having finally identified both a subject and an object.

This problem arises due to the use of the chain rule in the backpropagation

algorithm. The actual proof is a bit messy, but the idea is that, because the

unrolled RNN for long sequences is so deep and the chain rule for

backpropagation involves the products of partial derivatives, the gradient at

early time slices is the product of many partial derivatives. In fact, the number of

factors in the product for early slices is proportional to the length of the input-

output sequence. This is a problem because, unless the partial derivatives are

all close in value to 1, their product will either become very small, i.e. vanishing,

when the partial derivatives are < 1, or very large, i.e. exploding, when the

partial derivatives are > 1. This causes learning to become either very slow (in

the vanishing case) or wildly unstable (in the exploding case).

Luckily, recent RNN variants such as LSTM (Long Short-Term Memory) have

been able to overcome the vanishing/exploding gradient problem, so RNNs can

safely be applied to extremely long sequences, even ones that contain millions

of elements. In fact, LSTMs addressing the gradient problem have been largely

responsible for the recent successes in very deep NLP applications such as

speech recognition, language modeling, and machine translation.

LSTM RNNs work by allowing the input 𝑥𝑡 at time 𝑡 to influence the storing or

overwriting of "memories" stored in something called the cell. This decision is

determined by two different functions, called the input gate for storing new

memories, and the forget gate for forgetting old memories. A final output gate

determines when to output the value stored in the memory cell to the hidden

layer. These gates are all controlled by the current values of the input 𝑥𝑡 and cell

𝑐𝑡 at time 𝑡, plus some gate-specific parameters. The image below illustrates the

computation graph for the memory portion of an LSTM RNN (i.e. it does not

include the hidden layer or output layer).

Computation graph for an LSTM RNN, with the cell denoted by 𝑐𝑡 . Note that, in

this illustration, 𝑜𝑡 is not the output of the RNN, but the output of the cell to the

hidden layer ℎ𝑡 .
[1]

While the general RNN formulation can theoretically learn the same functions as

an LSTM RNN, by constraining the form that memories can take and how they

are modified, LSTM RNNs can learn long-term dependencies quickly and stably,

and thus are much more useful in practice.

1. , B. Long_Short_Term_Memory. Retrieved October 4, 2015, from

https://commons.wikimedia.org/wiki/File:Long_Short_Term_Memory.png

https://commons.wikimedia.org/wiki/File:Long_Short_Term_Memory.png

