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Recurrent neural networks are one of the staples of deep learning, allowing neural networks to

work with sequences of data like text, audio and video. They can be used to boil a sequence down

into a high-level understanding, to annotate sequences, and even to generate new sequences from

scratch!
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One cell... can be used over... and over... and over...

x4 y4

again.

The basic RNN design struggles with longer sequences, but a special variant—“long short-term

memory” networks [1]—can even work with these. Such models have been found to be very

powerful, achieving remarkable results in many tasks including translation, voice recognition, and

image captioning. As a result, recurrent neural networks have become very widespread in the last

few years.

As this has happened, we’ve seen a growing number of attempts to augment RNNs with new

properties. Four directions stand out as particularly exciting:

Neural Turing Machines have external memory that they can read and write to.

Attentional Interfaces allow RNNs to focus on parts of their input.

Adaptive Computation Time allows for varying amounts of computation per step.

https://distill.pub/2016/augmented-rnns/
https://doi.org/10.1038/nature16961
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Neural Programmers can call functions, building programs as they run.

Individually, these techniques are all potent extensions of RNNs, but the really striking thing is

that they can be combined, and seem to just be points in a broader space. Further, they all rely on

the same underlying trick—something called attention—to work.

Our guess is that these “augmented RNNs” will have an important role to play in extending deep

learning’s capabilities over the coming years.

Neural Turing Machines

Neural Turing Machines [2] combine a RNN with an external memory bank. Since vectors are the

natural language of neural networks, the memory is an array of vectors:

Memory is an array of vectors.

Network A 

writes and reads 

from this memory 

each step.
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But how does reading and writing work? The challenge is that we want to make them

differentiable. In particular, we want to make them differentiable with respect to the location we

read from or write to, so that we can learn where to read and write. This is tricky because memory

addresses seem to be fundamentally discrete. NTMs take a very clever solution to this: every step,

they read and write everywhere, just to different extents.

As an example, let’s focus on reading. Instead of specifying a single location, the RNN outputs an

“attention distribution” that describes how we spread out the amount we care about different

memory positions. As such, the result of the read operation is a weighted sum.



attention

memory

The RNN gives an attention distribution 

which describe how we spread out the 

amount we care about different memory 

positions.

The read result is a weighted sum.

Similarly, we write everywhere at once to different extents. Again, an attention distribution

describes how much we write at every location. We do this by having the new value of a position in

memory be a convex combination of the old memory content and the write value, with the

position between the two decided by the attention weight.

attention

old memory

new memory

write value

The RNN gives an attention distribution, 

describing how much we should change 

each memory position towards the write 

value.

Instead of writing to one location, we write 

everywhere, just to different extents.

But how do NTMs decide which positions in memory to focus their attention on? They actually use

a combination of two different methods: content-based attention and location-based attention.

Content-based attention allows NTMs to search through their memory and focus on places that

match what they’re looking for, while location-based attention allows relative movement in

memory, enabling the NTM to loop.



First, the controller gives a query 

vector and each memory entry is 

scored for similarity with the 

query.

The scores are then converted 

into a distribution using softmax.

Next, we interpolate the 

attention from the previous 

time step.

We convolve the attention with 

a shift filter—this allows the 

controller to move its focus.

Finally, we sharpen the 

attention distribution. This 

final attention distribution is 

fed to the read or write 

operation.

memory

Blue shows high similarity, 

pink high dissimilarity.
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This capability to read and write allows NTMs to perform many simple algorithms, previously

beyond neural networks. For example, they can learn to store a long sequence in memory, and

then loop over it, repeating it back repeatedly. As they do this, we can watch where they read and

write, to better understand what they’re doing:
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See more experiments in [3]. This figure is based on the Repeat Copy experiment.

They can also learn to mimic a lookup table, or even learn to sort numbers (although they kind of

cheat)! On the other hand, they still can’t do many basic things, like add or multiply numbers.

Since the original NTM paper, there have been a number of exciting papers exploring similar

directions. The Neural GPU [4] overcomes the NTM’s inability to add and multiply numbers.

Zaremba & Sutskever [5] train NTMs using reinforcement learning instead of the differentiable

read/writes used by the original. Neural Random Access Machines [6] work based on pointers.

Some papers have explored differentiable data structures, like stacks and queues [7, 8]. And

memory networks [9, 10] are another approach to attacking similar problems.



In some objective sense, many of the tasks these models can perform—such as learning how to

add numbers—aren’t that objectively hard. The traditional program synthesis community would

eat them for lunch. But neural networks are capable of many other things, and models like the

Neural Turing Machine seem to have knocked away a very profound limit on their abilities.

Code

There are a number of open source implementations of these models. Open source

implementations of the Neural Turing Machine include Taehoon Kim’s (TensorFlow), Shawn

Tan’s (Theano), Fumin’s (Go), Kai Sheng Tai’s (Torch), and Snip’s (Lasagne). Code for the Neural

GPU publication was open sourced and put in the TensorFlow Models repository. Open source

implementations of Memory Networks include Facebook’s (Torch/Matlab), YerevaNN’s (Theano),

and Taehoon Kim’s (TensorFlow).

Attentional Interfaces

When I’m translating a sentence, I pay special attention to the word I’m presently translating.

When I’m transcribing an audio recording, I listen carefully to the segment I’m actively writing

down. And if you ask me to describe the room I’m sitting in, I’ll glance around at the objects I’m

describing as I do so.

Neural networks can achieve this same behavior using attention, focusing on part of a subset of

the information they’re given. For example, an RNN can attend over the output of another RNN.

At every time step, it focuses on different positions in the other RNN.

We’d like attention to be differentiable, so that we can learn where to focus. To do this, we use the

same trick Neural Turing Machines use: we focus everywhere, just to different extents.

Network B focuses on different 

information from network A at 

every step.

The attention distribution is usually generated with content-based attention. The attending RNN

generates a query describing what it wants to focus on. Each item is dot-producted with the query

to produce a score, describing how well it matches the query. The scores are fed into a softmax to

create the attention distribution.

https://github.com/carpedm20/NTM-tensorflow
https://github.com/shawntan/neural-turing-machines
https://github.com/shawntan/neural-turing-machines
https://github.com/fumin/ntm
https://github.com/kaishengtai/torch-ntm
https://github.com/snipsco/ntm-lasagne
https://github.com/tensorflow/models/tree/master/neural_gpu
https://github.com/facebook/MemNN
https://github.com/YerevaNN/Dynamic-memory-networks-in-Theano
https://github.com/carpedm20/MemN2N-tensorflow


The attending RNN generates a 

query describing what it wants 

to focus on.

Each item is dot producted with the 

query to produce a score, describing 

how well it matches the query. The 

scores are fed into a softmax to 

create the attention distribution.

One use of attention between RNNs is translation [11]. A traditional sequence-to-sequence model

has to boil the entire input down into a single vector and then expands it back out. Attention

avoids this by allowing the RNN processing the input to pass along information about each word it

sees, and then for the RNN generating the output to focus on words as they become relevant.
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Diagram derived from Fig. 3 of Bahdanau, et al. 2014

This kind of attention between RNNs has a number of other applications. It can be used in voice

recognition [12], allowing one RNN to process the audio and then have another RNN skim over it,

focusing on relevant parts as it generates a transcript.

https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
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Figure derived from Chan, et al. 2015

Other uses of this kind of attention include parsing text [13], where it allows the model to glance at

words as it generates the parse tree, and for conversational modeling [14], where it lets the model

focus on previous parts of the conversation as it generates its response.

Attention can also be used on the interface between a convolutional neural network and an RNN.

This allows the RNN to look at different position of an image every step. One popular use of this

kind of attention is for image captioning. First, a conv net processes the image, extracting high-

level features. Then an RNN runs, generating a description of the image. As it generates each word

in the description, the RNN focuses on the conv net’s interpretation of the relevant parts of the

image. We can explicitly visualize this:

Figure from [3]

More broadly, attentional interfaces can be used whenever one wants to interface with a neural

network that has a repeating structure in its output.

Attentional interfaces have been found to be an extremely general and powerful technique, and

are becoming increasingly widespread.

https://arxiv.org/pdf/1508.01211.pdf
https://arxiv.org/pdf/1508.01211.pdf
https://arxiv.org/pdf/1508.01211.pdf


Adaptive Computation Time

Standard RNNs do the same amount of computation for each time step. This seems unintuitive.

Surely, one should think more when things are hard? It also limits RNNs to doing O(n) operations

for a list of length n.

Adaptive Computation Time [15] is a way for RNNs to do different amounts of computation each

step. The big picture idea is simple: allow the RNN to do multiple steps of computation for each

time step.

In order for the network to learn how many steps to do, we want the number of steps to be

differentiable. We achieve this with the same trick we used before: instead of deciding to run for a

discrete number of steps, we have an attention distribution over the number of steps to run. The

output is a weighted combination of the outputs of each step.

For every time step the RNN can 

do multiple computation steps.

The output is a weighted combination 

of the computation step outputs.

The process is repeated for 

each time step.

A special bit is set to denote 

the first computation step.

There are a few more details, which were left out in the previous diagram. Here’s a complete

diagram of a time step with three computation steps.

That’s a bit complicated, so let’s work through it step by step. At a high-level, we’re still running

the RNN and outputting a weighted combination of the states:



The weight for each step is determined by a “halting neuron.” It’s a sigmoid neuron that looks at

the RNN state and gives a halting weight, which we can think of as the probability that we should

stop at that step.

halting neuron

We have a total budget for the halting weights of 1, so we track that budget along the top. When it

gets to less than epsilon, we stop.

When we stop, might have some left over halting budget because we stop when it gets to less than

epsilon. What should we do with it? Technically, it’s being given to future steps but we don’t want

to compute those, so we attribute it to the last step.



When training Adaptive Computation Time models, one adds a “ponder cost” term to the cost

function. This penalizes the model for the amount of computation it uses. The bigger you make

this term, the more it will trade-off performance for lowering compute time.

Adaptive Computation Time is a very new idea, but we believe that it, along with similar ideas, will

be very important.

Code

The only open source implementation of Adaptive Computation Time at the moment seems to be

Mark Neumann’s (TensorFlow).

Neural Programmer

Neural nets are excellent at many tasks, but they also struggle to do some basic things like

arithmetic, which are trivial in normal approaches to computing. It would be really nice to have a

way to fuse neural nets with normal programming, and get the best of both worlds.

The neural programmer [16] is one approach to this. It learns to create programs in order to solve

a task. In fact, it learns to generate such programs without needing examples of correct

programs. It discovers how to produce programs as a means to the end of accomplishing some

task.

The actual model in the paper answers questions about tables by generating SQL-like programs to

query the table. However, there are a number of details here that make it a bit complicated, so let’s

start by imagining a slightly simpler model, which is given an arithmetic expression and generates

a program to evaluate it.

The generated program is a sequence of operations. Each operation is defined to operate on the

output of past operations. So an operation might be something like “add the output of the

operation 2 steps ago and the output of the operation 1 step ago.” It’s more like a Unix pipe than a

program with variables being assigned to and read from.

https://github.com/DeNeutoy/act-tensorflow


The program is generated one operation at a time by a controller RNN. At each step, the controller

RNN outputs a probability distribution for what the next operation should be. For example, we

might be pretty sure we want to perform addition at the first time step, then have a hard time

deciding whether we should multiply or divide at the second step, and so on...

At each step the 

controller RNN outputs a 

probability distribution.

The resulting distribution over operations can now be evaluated. Instead of running a single

operation at each step, we do the usual attention trick of running all of them and then average the

outputs together, weighted by the probability we ran that operation.

We run all of the 

operations and average 

the outputs together.

As long as we can define derivatives through the operations, the program’s output is differentiable

with respect to the probabilities. We can then define a loss, and train the neural net to produce

programs that give the correct answer. In this way, the Neural Programmer learns to produce

programs without examples of good programs. The only supervision is the answer the program

should produce.

That’s the core idea of Neural Programmer, but the version in the paper answers questions about

tables, rather than arithmetic expressions. There are a few additional neat tricks:

Multiple Types: Many of the operations in the Neural Programmer deal with types other

than scalar numbers. Some operations output selections of table columns or selections of cells.

Only outputs of the same type get merged together.



Referencing Inputs: The neural programmer needs to answer questions like “How many

cities have a population greater than 1,000,000?” given a table of cities with a population

column. To facilitate this, some operations allow the network to reference constants in the

question they’re answering, or the names of columns. This referencing happens by attention,

in the style of pointer networks [17].

The Neural Programmer isn’t the only approach to having neural networks generate programs.

Another lovely approach is the Neural Programmer-Interpreter [18] which can accomplish a

number of very interesting tasks, but requires supervision in the form of correct programs.

We think that this general space, of bridging the gap between more traditional programming and

neural networks is extremely important. While the Neural Programmer is clearly not the final

solution, we think there are a lot of important lessons to be learned from it.

Code

The more recent version of Neural Programmer for question answering has been open sourced by

its authors and is available as a TensorFlow Model. There is also an implementation of the Neural

Programmer-Interpreter by Ken Morishita (Keras).

The Big Picture

A human with a piece of paper is, in some sense, much smarter than a human without. A human

with mathematical notation can solve problems they otherwise couldn’t. Access to computers

makes us capable of incredible feats that would otherwise be far beyond us.

In general, it seems like a lot of interesting forms of intelligence are an interaction between the

creative heuristic intuition of humans and some more crisp and careful media, like language or

equations. Sometimes, the medium is something that physically exists, and stores information for

us, prevents us from making mistakes, or does computational heavy lifting. In other cases, the

medium is a model in our head that we manipulate. Either way, it seems deeply fundamental to

intelligence.

Recent results in machine learning have started to have this flavor, combining the intuition of

neural networks with something else. One approach is what one might call “heuristic search.” For

example, AlphaGo [19] has a model of how Go works and explores how the game could play out

guided by neural network intuition. Similarly, DeepMath [20] uses neural networks as intuition

for manipulating mathematical expressions. The “augmented RNNs” we’ve talked about in this

article are another approach, where we connect RNNs to engineered media, in order to extend

their general capabilities.

https://openreview.net/pdf?id=ry2YOrcge
https://github.com/tensorflow/models/tree/master/neural_programmer
https://github.com/mokemokechicken/keras_npi


Interacting with media naturally involves making a sequence of taking an action, observing, and

taking more actions. This creates a major challenge: how do we learn which actions to take? That

sounds like a reinforcement learning problem and we could certainly take that approach. But the

reinforcement learning literature is really attacking the hardest version of this problem, and its

solutions are hard to use. The wonderful thing about attention is that it gives us an easier way out

of this problem by partially taking all actions to varying extents. This works because we can design

media—like the NTM memory—to allow fractional actions and to be differentiable. Reinforcement

learning has us take a single path, and try to learn from that. Attention takes every direction at a

fork, and then merges the paths back together.

A major weaknesses of attention is that we have to take every “action” every step. This causes the

computational cost to grow linearly as you do things like increase the amount of memory in a

Neural Turing Machine. One thing you could imagine doing is having your attention be sparse, so

that you only have to touch some memories. However, it’s still challenging because you may want

to do things like have your attention depend on the content of the memory, and doing that naively

forces you to look at each memory. We’ve seen some initial attempts to attack this problem, such

as [21], but it seems like there’s a lot more to be done. If we could really make such sub-linear time

attention work, that would be very powerful!

Augmented recurrent neural networks, and the underlying technique of attention, are incredibly

exciting. We look forward to seeing what happens next!
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