
Boosting

1 Boosting

Boosting refers to a general and effective method of producing accurate classifier
by combining moderately inaccurate classifiers, which are called weak learners.
In the lecture, we’ll describe three boosting algorithms: adaBoost, rankBoost
and gradient boosting. AdaBoost is the first successful instance of Boosting
algorithm in history. We’ll first introduce AdaBoost.

2 AdaBoost

2.1 Intuition

AdaBoost is motivated by the following observation: a committee can often
make accurate decisions, although each member only provides some weak judg-
ment. AdaBoost solves learning problems by gathering wisdom from incompe-
tent members. It assumes there is a weak learning algorithm available. For
example, a weak learner can be a decision tree. Given some training data, a
weak learner can produce a weak hypothesis which is not entirely trivial in the
sense that it does at least a little bit better than random guessing. Weak learn-
ers trained with different data can produce different hypotheses. These weak
learners serves as committee members. To gather wisdom from these members,
adaBoost tries to solve two problems: First, how to select a diverse set of mem-
bers with different strengths and weaknesses, so that they can compensate each
other? Second, how to combine their inaccurate judgments together to get a
better decision?

To solve the first problem, adaBoost picks its weak learners h in such a
fashion that each newly added weak learner is able to infer something new about
the data. To implement this idea, adaBoost maintains a weight distribution D
among all data points. Each data point is assigned a weight D(i) indicting its
importance. When measuring a weak learner’s performance, adaBoost takes
into consideration each data point’s weight. A misclassified high-weight data
point will contribute more to the overall weighted error than a misclassified
low-weight data point. To get a low weighted error, a weak learner must focus
on high-weight data points and try to predict them correctly. Therefore by
manipulating the weight distribution, we can guide the weak learner to pay
attention to different part of the data. AdaBoost proceeds by rounds. In each

1

round t, we update weight distribution and find a weak learner that minimize
the weighted error with respect to the current weight distribution Dt. At the
first round, all weights are equal. On later rounds, we increase the weights of
misclassified data points, and decrease the weights of correctly classified data
points. So essentially, in each round, we ask the weak learner to focus on hard
data points that previous weak learners cannot handle well.

Now we have trained a set of weak learners with different strength, how
do we combine them in order to make predictions? Each weak leaner is trained
with different weight distributions. So we can think that we’ve assigned different
tasks to different weak learners and each weak learner tried its best to do its
given task. Intuitively, when we take into account one weak leaner’s judgment
into the final prediction, we are willing to trust the weak leaner more if it did
well on its previous task, and less if it did badly on its previous task. In other
words, when we combine different weak learners’ judgments, we take a weighted
vote. We assign to each weak leaner a confidence value αt, which depends on
the weak learner’s performance on its assigned task.

Before we go into the details of the algorithm, let’s look at an example
(Figure 1). Here we have 10 data points labeled as -1 or +1. Suppose our weak
learners are vertical lines or horizontal lines. It’s easy to see no single line can
classify all 10 data points correctly. As we will see, adaBoost can do perfectly
on the data set by combining three weak learners.

On the first round, each data point has equal weight. A weak learner h1
is trained to minimize the weighted error. It mis-classifies three data points
(circled in the figure 1). On round 2, these three data points’ weights are
increased (as indicted by the size), and other data points’ weights are decreased.
Now h2 pays more attentions to these three data points and correctly classifies
them. But h2 mis-classified some other data points with lower weights. On
round 3, h3 only mis-classifies three data points with very low weights. The
weighted vote of h1, h2 and h3 is in Figure 2. As can be seen, the combined
classifier makes no mistake.

Figure 1: Weight distribution and weak learner in each iteration. Source: Figure
1.1 of [7]

2.2 Algorithm

Now we are ready to present the algorithm in detail.
Given (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1, 1}.
Initialize D1(i) = 1/m for i = 1, ...,m.

2

Figure 2: Ensemble of weak learners. Source: Figure 1.2 of [7]

For t = 1, . . . , T :

• Train weak learner using distribution Dt.

• Get weak hypothesis ht: X → {−1, 1}.

• Aim: select ht to minimize the weighted error:

εt = Pri∼Dt [ht(xt) 6= yi]

• Choose αt = 1
2 ln(1−εt

εt
)

• Update

Dt+1(i) =
Dt(i)

Zt
×

{
e−αt if ht(xi) = yi

eαt if ht(xi) 6= yi

=
Dt(i)exp(−αtyiht(xi)))

Zt

where Zt is a normalization factor (chosen so that Dt+1 will be a distri-
bution).

Output the final hypothesis:

H(x) = sign(

T∑
t=1

αtht(x))

2.3 AdaBoost’s Training Error

Let γ = 1
2 − εt, and let D1 be an arbitrary initial distribution over the training

set. It can be shown [7] that the weighted training error of the combined classifier
H with respect to D1 is bounded as

Pri∼D1
[H(xi) 6= yi] ≤

T∏
t=1

√
1− 4γ2t ≤ exp(−2

T∑
t=1

γ2t)

3

Proof: Define F (x) =
∑T
t=1 αtht(x). We have

DT+1(i) = D1(i)× e−yiα1h1(xi)

Z1
× · · · × e−yiαThT (xi)

ZT

=
D1(i)exp(−yi

∑T
t=1 αtht(xi))∏T

t=1 Zt

=
D1(i)exp(−yiF (xi))∏T

t=1 Zt

Pri∼D1
[H(xi) 6= yi] =

m∑
i=1

D1(i)1{H(xi) 6= yi}

≤
m∑
i=1

D1(i)exp(−yiF (xi))

=

m∑
i=1

DT+1(i)

T∏
t=1

Zt

=

T∏
t=1

Zt

Zt =

m∑
i=1

Dt(i)e
−αtyiht(xi)

=
∑

i:yi=ht(xi)

Dt(i)e
−αt +

∑
i:yi 6=ht(xi)

Dt(i)e
αt

= e−αt(1− εt) + eαtεt

= e−αt(
1

2
+ γt) + eαt(

1

2
− γt)

=
√

1− 4γ2t

Corollary:
There are two possibilities for ending AdaBoost training
1. Training error goes to 0
2. γt=0(equivalent ε = 0.5). Boosting gets stuck: the boosting weights on

training set are in such a way that every weak learner has 50 % error.

3 RankBoost

3.1 Learning to Rank

In this section, we describe the RankBoost algorithm, which is a special boosting
algorithm used in ranking problems. Ranking problems arise in many different

4

domains. For example, in web search, a search engine ranks web pages according
to their relevance to a user’s query. In product recommendations, the system
ranks products according to the chance that the viewer will like them or buy
them. In learning to rank problems, the goal is to find good ranking rule.
RankBoost is an efficient algorithm that can automatically learn a ranking rule
based on some training data.

We first describe the setting of learning to rank problems. The objects to
be ranked are called data points. The set of all data points are denoted as X .
The leaner is provided with a collection of training data V ⊂ X . Usually, each
training data point comes with its user rating, rated on some scale. For example,
In a movie recommendation problem, we can have some movies, each of which
rated from 1 star to 5 stars. A 5-star movie is preferred to a 4-star movie;
but there is no direct comparisons between two 4-star movies. Formally, let
V = V1∪V2 · · ·∪VJ be given training data points, where V1, ..., VJ are J disjoint
subsets of X . For j < k, all data points in Vk are ranked above all data points
in Vj . We call such user feedback layered feedback. Let E = {(u, v)|v is ranked
above u}. E is the set of preference pairs. Then E =

⋃
1≤j<k≤J Vj × Vk. Our

aim is to find a good ranking rule that is maximally consistent with the training
data. Mathematically, the ranking rule is a real-valued function F : X → R
with the interpretation that F ranks v above u if F (v) > F (u). The degree of
inconsistency can be measured by the fraction of misorderings:

1

|E|
∑

(u,v)∈E

1{F (v) ≤ F (u)}

This is also called empirical ranking loss.

3.2 RankBoost Algorithm

To minimize empirical ranking loss, different versions of RankBoost algorithms
are developed. The algorithm presented below reduces the ranking problem to
binary classification problems. The reduction is inexact; but the resulting pro-
cedure is very efficient. For each data point x, we assign two labels −1 and +1
with different probabilities(or weights) D(x,−1) and D(x,+1). In each itera-
tion, the distribution of weights is recomputed, and a weak learner (classifier)
is trained to minimized the weighted error. To recompute weight distributions,
first we make one scan of the data to get St,j(y) based on the current predictions.
Second we combine St,j(y) to get Ct,j(y). Ct,j(y) is the same for all x ∈ Vj .
Finally, Dt(x, y) is computed based on Ct,j(y). The algorithm is very efficient
because each iteration takes O(|V |) time, regardless of J . The full algorithm [7]
is presented below:
Given: nonempty, disjoint subsets V1, ..., VJ of X representing preference pairs

E =
⋃

1≤j<k≤J

Vj × Vk.

Initialize: F0 = 0.
For t = 1, ..., T ::

5

• For j = 1, ..., J and y ∈ {−1,+1}, let

St,j(y) =
∑
x∈Vj

exp(yFt−1(x))

and let

Ct,j(+1) =

j−1∑
k=1

St,k(+1),

Ct,j(−1) =

J∑
k=j+1

St,k(−1).

• Train instance-based weak learner using distribution Dt, where, for x ∈ Vj ,
j = 1, ..., J and y ∈ {−1,+1},

Dt(x, y) =
1

2Z
· exp(−yFt−1(x)) · Ct,j(y),

and where Zt is a normalization factor (chosen so thatDt is a distribution).

• Get weak classifier ht : X → {−1,+1}.

• Aim: Choose ht to minimize the weighted error:

εt = Pr(x,y)∼D[ht(x) 6= y]

• Choose αt = 1
2 ln(1−εt

εt
)

• Update: Ft = Ft−1 + 1
2αtht.

Output the final ranking: F (x) = FT (x) = 1
2

∑T
t=1 αtht(x).

4 Gradient Boosting

4.1 Introduction

Gradient Boosting is a powerful and versatile machine learning algorithm. It
can be used in regression, classification and ranking problems. In 2009, gradient
boosting won Track 1 of the Yahoo Learning to Rank Challenge. As the names
suggests, gradient boosting is a combination of boosting and gradient descent
ideas.

6

4.2 Boosting as a forward stage-wise additive model fit-
ting algorithm

As described in the previous section, AdaBoost fits an additive model (ensemble)∑
t ρtht(x) in a forward stage-wise manner. In each stage, AdaBoost introduces

a weak learner to compensate the shortcomings of existing weak learners.In
AdaBoost,“shortcomings” are identified by high-weight data points.

Gradient Boosting employs the same idea. Gradient Boosting fits an additive
model (ensemble)

∑
t ρtht(x) in a forward stage-wise manner. In each stage,

Gradient Boosting introduces a weak learner to compensate the shortcomings
of existing weak learners. In Gradient Boosting, “shortcomings” are identified
by gradients. Both high-weight data points and gradients tell us how to improve
our model.

Historically, AdaBoost is the first successful boosting algorithm [4, 3]. Later,
Breiman formulated AdaBoost as gradient descent with a special loss function[2,
1]. Then Freiman generalized AdaBoost to Gradient Boosting in order to handle
a variety of loss functions [5, 6].

4.3 Gradient Boosting for Regression Problems

Gradient Boosting can solve regression problems naturally. It solves classifica-
tion and ranking problems by casting them into regression problems. So we will
start with regression problems.

4.3.1 Regression with Square Loss

Let’s play a game... You are given (x1, y1), (x2, y2), ..., (xn, yn), and the task is
to fit a model F (x) to minimize square loss. Suppose your friend wants to help
you and gives you a model F . You check his model and find the model is good
but not perfect. There are some mistakes: F (x1) = 0.8, while y1 = 0.9, and
F (x2) = 1.4 while y2 = 1.3... How can you improve this model?

Rule of the game:

• You are not allowed to remove anything from F or change any parameter
in F .

• You can add an additional model (regression tree) h to F , so the new
prediction will be F (x) + h(x).

Here is a simple solution:
You wish to improve the model such that

F (x1) + h(x1) = y1

F (x2) + h(x2) = y2

...

F (xn) + h(xn) = yn

7

Figure 3: Gradient Descent. Source: http://en.wikipedia.org/wiki/

Gradient_descent

Or, equivalently, you wish

h(x1) = y1 − F (x1)

h(x2) = y2 − F (x2)

...

h(xn) = yn − F (xn)

Can any regression tree h achieve this goal perfectly?
Can any regression tree h achieve this goal perfectly? Maybe not.... But

some regression tree might be able to do this approximately. How?
Just fit a regression tree h to data (x1, y1−F (x1)), (x2, y2−F (x2)), ..., (xn, yn−

F (xn)). Congratulations, you get a better model!
yi − F (xi) are called residuals. These are the parts that existing model

F cannot do well. The role of h is to compensate the shortcoming of existing
model F . If the new model F + h is still not satisfactory, we can add another
regression tree...

You may wonder, we are improving the predictions of training data, is the
procedure also useful for test data? The answer is Yes! Because we are building
a model, and the model can be applied to test data as well.

This is the basic idea of Gradient Boosting for regression problem. Clearly, it
follows the boosting idea, which is about introducing a weak learner to compen-
sate the shortcomings of existing weak learners. Let’s look at how it is related
to gradient descent.

Gradient descent algorithm minimizes a function by moving in the opposite
direction of the gradient.

θi := θi − ρ
∂J

∂θi

In the Gradient Boosting algorithm, we have the square loss function L(y, F (x)) =
(y − F (x))2/2. Our goal is to minimize J =

∑
i L(yi, F (xi)) by adjusting

8

F (x1), F (x2), ..., F (xn). Notice that F (x1), F (x2), ..., F (xn) are just some num-
bers. We can treat F (xi) as parameters and take derivatives

∂J

∂F (xi)
=
∂
∑
i L(yi, F (xi))

∂F (xi)
=
∂L(yi, F (xi))

∂F (xi)
= F (xi)− yi

So we can interpret residuals as negative gradients.

yi − F (xi) = − ∂J

∂F (xi)

Compare this with gradient descent, we see:

F (xi) := F (xi) + h(xi)

F (xi) := F (xi) + yi − F (xi)

F (xi) := F (xi)− 1
∂J

∂F (xi)

θi := θi − ρ
∂J

∂θi

For regression with square loss,

residual⇔ negative gradient

fit h to residual⇔ fit h to negative gradient

update F based on residual⇔ update F based on negative gradient

So we are actually updating our model using gradient descent!
It turns out that the concept of gradients is more general and useful than

the concept of residuals. So from now on, let’s stick with gradients. The reason
will be explained later.

Let us summarize the algorithm we just derived using the concept of gradi-
ents. Negative gradient:

−g(xi) = −∂L(yi, F (xi))

∂F (xi)
= yi − F (xi)

start with an initial model, say, F (x) =
∑n

i=1 yi
n

iterate until converge:
calculate negative gradients −g(xi)
fit a regression tree h to negative gradients −g(xi)
F := F + ρh, where ρ = 1

9

4.3.2 Regression with Other Loss Functions

The benefit of formulating this algorithm using gradients is that it allows us
to consider other loss functions and derive the corresponding algorithms in the
same way.

You may ask, why do we need to consider other loss functions? Isn’t square
loss good enough?

Square loss is:

X Easy to deal with mathematically

× Not robust to outliers

Outliers are heavily punished because the error is squared.
Let’s look at an example:

yi 0.5 1.2 2 5*
F (xi) 0.6 1.4 1.5 1.7

L = (y − F)2/2 0.005 0.02 0.125 5.445

Suppose the last data point is mislabeled. We can see the that data point
alone contributes about 97 % to the overall square loss. The consequence is that
the algorithm pays too much attention to outliers. It tries hard to incorporate
outliers into the model. Doing so may degrade the overall performance.

There are some alternatives to square loss.

• Absolute loss (more robust to outliers)

L(y, F) = |y − F |

• Huber loss (more robust to outliers)

L(y, F) =

{
1
2 (y − F)2 |y − F | ≤ δ
δ(|y − F | − δ/2) |y − F | > δ

yi 0.5 1.2 2 5*
F (xi) 0.6 1.4 1.5 1.7

Square loss 0.005 0.02 0.125 5.445
Absolute loss 0.1 0.2 0.5 3.3

Huber loss(δ = 0.5) 0.005 0.02 0.125 1.525

Following the Gradient Boosting idea, we can derive an algorithm for Re-
gression with Absolute Loss:
Negative gradient:

−g(xi) = −∂L(yi, F (xi))

∂F (xi)
= sign(yi − F (xi))

10

start with an initial model, say, F (x) =
∑n

i=1 yi
n

iterate until converge:
calculate gradients −g(xi)
fit a regression tree h to negative gradients −g(xi)
F := F + ρh

Following the Gradient Boosting idea, we can derive an algorithm for Re-
gression with Huber Loss:
Negative gradient: Negative gradient:

−g(xi) = −∂L(yi, F (xi))

∂F (xi)

=

{
yi − F (xi) |yi − F (xi)| ≤ δ
δsign(yi − F (xi)) |yi − F (xi)| > δ

start with an initial model, say, F (x) =
∑n

i=1 yi
n

iterate until converge:
calculate negative gradients −g(xi)
fit a regression tree h to negative gradients −g(xi)
F := F + ρh

Now we can summarize the above three algorithms into a general procedure:
Regression with loss function L:
Give any differentiable loss function L

start with an initial model, say F (x) =
∑n

i=1 yi
n

iterate until converge:

calculate negative gradients −g(xi) = −∂L(yi,F (xi))
∂F (xi)

fit a regression tree h to negative gradients −g(xi)
F := F + ρh

In general,
negative gradients 6⇔ residuals

We should follow negative gradients rather than residuals. Why? Let’s look at
the updat rule for Huber loss.

If we update by negative gradient:

h(xi) = −g(xi) =

{
yi − F (xi) |yi − F (xi)| ≤ δ
δsign(yi − F (xi)) |yi − F (xi)| > δ

If we update by residual:
h(xi) = yi − F (xi)

We can see the difference: updating by negative gradient takes advantage of the
robust loss function and pays less attention to outliers.

We didn’t talk about how to choose a proper learning rate for each gradient
boosting algorithm. For detailed discussions, see [6].

11

4.4 Gradient Boosting for Classification

We will discuss how to apply Gradient Boosting to classification problems
through an letter recognition example. The task is to recognize the given hand
written capital letter. In this multi-class classification problem, we have 26
classes, i.e., A,B,C...,Z. The letter recognition data set can be downloaded from
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition. There are
20000 data points, each of which has 16 extracted features.

In our Gradient Boosting algorithm, there are 26 score functions (our mod-
els): FA, FB , FC , ..., FZ . Give a data point x, each score function assigns a score
for one class. For example, FA(x) assigns a score for class A. These scores are
used to calculate class probabilities.

PA(x) =
eFA(x)∑Z
c=A e

Fc(x)

PB(x) =
eFB(x)∑Z
c=A e

Fc(x)

...

PZ(x) =
eFZ(x)∑Z
c=A e

Fc(x)

Then the predicted label is just the class which has the highest probability.
Gradient Boosting works by approximating the true conditional probabilities

p(y = k|x). To measure how good the approximation is, we use KL-divergence.
KL-divergence between two probability distributions is defined as

DKL(p||q) =
∑
i

pi log
pi
qi

Here p is usually the true distribution, q is our estimated distribution. KL-
divergence works as a loss function. More precisely, in our problem, we calculate
the loss function for each data point using the following steps:

Step 1 turn the label yi into a (true) probability distribution Yc(xi)

For example: y5=G, YA(x5) = 0, YB(x5) = 0, ..., YG(x5) = 1, ..., YZ(x5) =
0. See Fig 2.

Step 2 calculate the predicted probability distribution Pc(xi) based on the current
model FA, FB , ..., FZ .

PA(x5) = 0.03, PB(x5) = 0.05, ..., PG(x5) = 0.3, ..., PZ(x5) = 0.05. See
Fig 3.

Step 3 calculate the difference between the true probability distribution and the
predicted probability distribution using DKL(Y ||P).

12

Figure 4: true probability distribution

Figure 5: predicted probability distribution based on current model

13

As we can see, Gradient Boosting translates the classification problem into
a regression problem. Our goal is to minimize the total loss (KL-divergence).
For each data point, we wish the predicted probability distribution to match
the true probability distribution as closely as possible. We try achieve this goal
by adjusting our models FA, FB , ..., FZ .

Comparing the setups of Gradient Boosting for classification and Gradient
Boosting for regression, we can see now we have more parameters to optimize.
The followings are the differences:

• FA, FB , ..., FZ vs F

• a matrix of parameters to optimize vs a column of parameters to optimize

FA(x1) FB(x1) ... FZ(x1)
FA(x2) FB(x2) ... FZ(x2)

...
FA(xn) FB(xn) ... FZ(xn)

• a matrix of gradients vs a column of gradients

∂L
FA(x1)

∂L
FB(x1)

... ∂L
FZ(x1)

∂L
FA(x2)

∂L
FB(x2)

... ∂L
FZ(x2)

...
∂L

FA(xn)
∂L

FB(xn)
... ∂L

FZ(xn)

Given the above differences, one can imagine that the Gradient Boosting
procedure for classification problems is very similar to that for regression prob-
lems, except that now we need to optimize each column of parameters.

start with initial models FA, FB , FC , ..., FZ
iterate until converge:

calculate negative gradients for class A: −gA(xi) = − ∂L
∂FA(xi)

= YA(xi)− PA(xi)

calculate negative gradients for class B: −gB(xi) = − ∂L
∂FB(xi)

= YB(xi)− PB(xi)

...
calculate negative gradients for class Z:−gZ(xi) = − ∂L

∂FZ(xi)
= YZ(xi)− PZ(xi)

fit a regression tree hA to negative gradients −gA(xi)
fit a regression tree hB to negative gradients −gB(xi)
...
fit a regression tree hZ to negative gradients −gZ(xi)
FA := FA + ρAhA
FB := FA + ρBhB
...
FZ := FA + ρZhZ

The following tables illustrate its update procedure:

14

round 0
i y YA YB YC YD YE YF YG YH YI YJ YK YL YM YN YO YP YQ YR YS YT YU YV YW YX YY YZ
1 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
2 I 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 D 0 0 0 1 0
4 N 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
5 G 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
... ...

i y FA FB FC FD FE FF FG FH FI FJ FK FL FM FN FO FP FQ FR FS FT FU FV FW FX FY FZ
1 T 0
2 I 0
3 D 0
4 N 0
5 G 0
... ...

i y PA PB PC PD PE PF PG PH PI PJ PK PL PM PN PO PP PQ PR PS PT PU PV PW PX PY PZ
1 T 0.04
2 I 0.04
3 D 0.04
4 N 0.04
5 G 0.04
... ...

i y YA −
PA

YB −
PB

YC −
PC

YD −
PD

YE −
PE

YF −
PF

YG −
PG

YH −
PH

YI −
PI

YJ −
PJ

YK −
PK

YL −
PL

YM −
PM

YN −
PN

YO −
PO

YP −
PP

YQ −
PQ

YR −
PR

YS −
PS

YT −
PT

YU −
PU

YV −
PV

YW −
PW

YX −
PX

YY −
PY

YZ −
PZ

1 T -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 0.96 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
2 I -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 0.96 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
3 D -0.04 -0.04 -0.04 0.96 -0.04
4 N -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 0.96 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
5 G -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 0.96 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
... ...

round 1
i y YA YB YC YD YE YF YG YH YI YJ YK YL YM YN YO YP YQ YR YS YT YU YV YW YX YY YZ
1 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
2 I 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 D 0 0 0 1 0
4 N 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
5 G 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
... ...

i y FA FB FC FD FE FF FG FH FI FJ FK FL FM FN FO FP FQ FR FS FT FU FV FW FX FY FZ
1 T -0.08 -0.07 -0.06 -0.07 -0.02 -0.02 -0.08 -0.02 -0.03 -0.03 -0.06 -0.04 -0.08 -0.08 -0.07 -0.07 -0.02 -0.04 -0.04 0.59 -0.01 -0.07 -0.07 -0.05 -0.06 -0.07
2 I -0.08 0.23 -0.06 -0.07 -0.02 -0.02 0.16 -0.02 -0.03 -0.03 -0.06 -0.04 -0.08 -0.08 -0.07 -0.07 -0.02 -0.04 -0.04 -0.07 -0.01 -0.07 -0.07 -0.05 -0.06 -0.07
3 D -0.08 0.23 -0.06 -0.07 -0.02 -0.02 -0.08 -0.02 -0.03 -0.03 -0.06 -0.04 -0.08 -0.08 -0.07 -0.07 -0.02 -0.04 -0.04 -0.07 -0.01 -0.07 -0.07 -0.05 -0.06 -0.07
4 N -0.08 -0.07 -0.06 -0.07 -0.02 -0.02 0.16 -0.02 -0.03 -0.03 0.26 -0.04 -0.08 0.3 -0.07 -0.07 -0.02 -0.04 -0.04 -0.07 -0.01 -0.07 -0.07 -0.05 -0.06 -0.07
5 G -0.08 0.23 -0.06 -0.07 -0.02 -0.02 0.16 -0.02 -0.03 -0.03 -0.06 -0.04 -0.08 -0.08 -0.07 -0.07 -0.02 -0.04 -0.04 -0.07 -0.01 -0.07 -0.07 -0.05 -0.06 -0.07
... ...

i y PA PB PC PD PE PF PG PH PI PJ PK PL PM PN PO PP PQ PR PS PT PU PV PW PX PY PZ
1 T 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.07 0.04 0.04 0.04 0.04 0.04 0.04
2 I 0.04 0.05 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
3 D 0.04 0.05 0.04
4 N 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
5 G 0.04 0.05 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
... ...

i y YA −
PA

YB −
PB

YC −
PC

YD −
PD

YE −
PE

YF −
PF

YG −
PG

YH −
PH

YI −
PI

YJ −
PJ

YK −
PK

YL −
PL

YM −
PM

YN −
PN

YO −
PO

YP −
PP

YQ −
PQ

YR −
PR

YS −
PS

YT −
PT

YU −
PU

YV −
PV

YW −
PW

YX −
PX

YY −
PY

YZ −
PZ

1 T -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 0.93 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
2 I -0.04 -0.05 -0.04 -0.04 -0.04 -0.04 -0.05 -0.04 0.96 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
3 D -0.04 -0.05 -0.04 0.96 -0.04
4 N -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.05 -0.04 -0.04 -0.04 -0.05 -0.04 -0.04 0.95 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
5 G -0.04 -0.05 -0.04 -0.04 -0.04 -0.04 0.95 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
... ...

round 2
i y YA YB YC YD YE YF YG YH YI YJ YK YL YM YN YO YP YQ YR YS YT YU YV YW YX YY YZ
1 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
2 I 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 D 0 0 0 1 0
4 N 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
5 G 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
... ...

i y FA FB FC FD FE FF FG FH FI FJ FK FL FM FN FO FP FQ FR FS FT FU FV FW FX FY FZ
1 T -0.15 -0.14 -0.12 -0.14 -0.03 0.28 -0.14 -0.04 1.49 -0.07 -0.11 -0.08 -0.14 -0.17 -0.13 -0.13 -0.04 -0.11 -0.07 1.05 0.19 0.25 -0.16 -0.09 0.33 -0.14
2 I -0.15 0.16 -0.12 -0.14 -0.03 -0.08 0.33 -0.04 -0.07 -0.07 -0.11 -0.08 -0.14 -0.17 -0.13 -0.13 -0.04 -0.11 -0.07 -0.11 -0.07 -0.15 -0.16 -0.09 -0.13 -0.14
3 D -0.15 0.16 -0.12 -0.14 -0.03 -0.08 0.1 -0.04 -0.07 -0.07 -0.11 -0.08 -0.14 -0.17 -0.13 -0.13 -0.04 0.19 -0.07 -0.11 -0.07 -0.15 -0.16 -0.09 -0.13 -0.14
4 N -0.15 -0.14 -0.12 -0.14 -0.03 -0.08 0.1 -0.04 -0.07 -0.07 0.46 -0.08 -0.14 0.5 -0.13 -0.13 -0.04 -0.11 -0.07 -0.11 -0.07 -0.15 0.25 -0.09 -0.13 -0.14
5 G -0.15 0.16 -0.12 -0.14 -0.03 -0.08 0.33 -0.04 -0.07 -0.07 -0.11 -0.08 -0.14 -0.17 -0.13 -0.13 -0.04 0.19 -0.07 -0.11 -0.07 -0.15 -0.16 -0.09 -0.13 -0.14
... ...

i y PA PB PC PD PE PF PG PH PI PJ PK PL PM PN PO PP PQ PR PS PT PU PV PW PX PY PZ
1 T 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.15 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.09 0.04 0.04 0.03 0.03 0.05 0.03
2 I 0.04 0.05 0.04 0.04 0.04 0.04 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
3 D 0.04 0.05 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
4 N 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.04 0.03 0.06 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.03 0.05 0.04 0.03 0.03
5 G 0.03 0.05 0.04 0.04 0.04 0.04 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04
... ...

i y YA −
PA

YB −
PB

YC −
PC

YD −
PD

YE −
PE

YF −
PF

YG −
PG

YH −
PH

YI −
PI

YJ −
PJ

YK −
PK

YL −
PL

YM −
PM

YN −
PN

YO −
PO

YP −
PP

YQ −
PQ

YR −
PR

YS −
PS

YT −
PT

YU −
PU

YV −
PV

YW −
PW

YX −
PX

YY −
PY

YZ −
PZ

1 T -0.03 -0.03 -0.03 -0.03 -0.03 -0.04 -0.03 -0.03 -0.15 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 0.91 -0.04 -0.04 -0.03 -0.03 -0.05 -0.03
2 I -0.04 -0.05 -0.04 -0.04 -0.04 -0.04 -0.06 -0.04 0.96 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
3 D -0.04 -0.05 -0.04 0.96 -0.04 -0.04 -0.05 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.05 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
4 N -0.03 -0.03 -0.03 -0.03 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.06 -0.04 -0.03 0.94 -0.03 -0.03 -0.04 -0.04 -0.04 -0.04 -0.04 -0.03 -0.05 -0.04 -0.03 -0.03
5 G -0.03 -0.05 -0.04 -0.04 -0.04 -0.04 0.94 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.05 -0.04 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04
... ...

We can see how the predicted probability distribution of a particular data
point (with true label = G) gets updated.

15

Figure 6: true probability distribution

References

[1] Leo Breiman. Prediction games and arcing algorithms. Neural computation,
11(7):1493–1517, 1999.

[2] Leo Breiman et al. Arcing classifier (with discussion and a rejoinder by the
author). The annals of statistics, 26(3):801–849, 1998.

[3] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of computer and
system sciences, 55(1):119–139, 1997.

[4] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting
algorithm. In ICML, volume 96, pages 148–156, 1996.

[5] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Special invited
paper. additive logistic regression: A statistical view of boosting. Annals of
statistics, pages 337–374, 2000.

[6] Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of Statistics, pages 1189–1232, 2001.

[7] Robert E Schapire and Yoav Freund. Boosting: Foundations and Algorithms.
MIT Press, 2012.

16

Figure 7: predicted probability distribution at round 0

Figure 8: predicted probability distribution at round 1

17

Figure 9: predicted probability distribution at round 2

Figure 10: predicted probability distribution at round 10

18

Figure 11: predicted probability distribution at round 20

Figure 12: predicted probability distribution at round 30

19

Figure 13: predicted probability distribution at round 40

Figure 14: predicted probability distribution at round 50

20

Figure 15: predicted probability distribution at round 100

21

Gradient Derivation in Gradient Boosting for Binary
Classification

Setup

We consider binary classification with labels yi ∈ {0, 1}, and a model output function F (x)
defined as an additive ensemble:

F (x) =
M∑

m=1

fm(x)

The predicted probability uses the logistic (sigmoid) function:

p(x) =
1

1 + e−F (x)

The log-likelihood for a single data point is:

ℓi(F) = yi log p(xi) + (1− yi) log(1− p(xi))

Gradient Derivation

To compute the gradient of the log-likelihood with respect to F (xi), we use the chain rule:

∂ℓi
∂F (xi)

=
∂

∂F (xi)

[
yi log

(
1

1 + e−F (xi)

)
+ (1− yi) log

(
e−F (xi)

1 + e−F (xi)

)]

= −yi ·
e−F (xi)

1 + e−F (xi)
+ (1− yi)(−1) + (1− yi) ·

e−F (xi)

1 + e−F (xi)

= yi ·
e−F (xi)

1 + e−F (xi)
− (1− yi) + (1− yi) ·

e−F (xi)

1 + e−F (xi)

=
e−F (xi)

1 + e−F (xi)
(yi + (1− yi))− (1− yi) =

1

1 + eF (xi)
− (1− yi)

= (1− p(xi))− (1− yi) = yi − p(xi)

1

Gradient Expression

The final gradient of the log-likelihood with respect to F (xi) is:

∂ℓi
∂F (xi)

= yi − p(xi)

In gradient boosting, we fit the weak learner fm(x) to the negative gradient (residual):

r
(m)
i = − ∂ℓi

∂F (xi)
= p(xi)− yi

Summary Table

Concept Expression
Predicted probability p(x) = 1

1+e−F (x)

Log-likelihood ℓi(F) = yi log p(x) + (1− yi) log(1− p(x))
Gradient of loss ∂ℓi

∂F (xi)
= yi − p(xi)

Boosting target r
(m)
i = p(xi)− yi

2

Gradient Derivation in Multiclass Gradient Boosting

Setup

We consider multiclass classification with L classes. Each observation xi has a true label
yi ∈ {1, 2, . . . , L}.

Let Fk(x) be the model score (logit) for class k. The predicted class probabilities are
computed using the softmax function:

pk(x) =
eFk(x)∑L
j=1 e

Fj(x)

The negative log-likelihood (cross-entropy) loss for a single sample is:

ℓi(F) = −
L∑

k=1

1{yi=k} log pk(xi) = − log pyi(xi)

Gradient Derivation

We compute the gradient of the loss with respect to the score Fk(xi). There are two cases:

Case 1: k = yi

ℓi = − log

(
eFk(xi)∑L
j=1 e

Fj(xi)

)
= −Fk(xi) + log

(
L∑

j=1

eFj(xi)

)

∂ℓi
∂Fk(xi)

= −1 +
eFk(xi)∑L
j=1 e

Fj(xi)
= −1 + pk(xi)

Case 2: k ̸= yi

Only the softmax denominator contributes:

∂ℓi
∂Fk(xi)

=
eFk(xi)∑L
j=1 e

Fj(xi)
= pk(xi)

1

Final Result

Combining both cases:

∂ℓi
∂Fk(xi)

= pk(xi)− 1{yi=k}

This is a vector-valued gradient for each training example.

Summary Table

Quantity Expression

Softmax probability pk(x) =
eFk(x)∑L
j=1 e

Fj(x)

Loss per sample ℓi = − log pyi(xi)
Gradient ∂ℓi

∂Fk(xi)
= pk(xi)− 1{yi=k}

2

