Hidden Markov Models: A Detailed Overview

1. Introduction

A Hidden Markov Model (HMM) is a probabilistic model used to describe systems that
are assumed to be a Markov process with unobserved (hidden) states.

Applications: speech recognition, bioinformatics, finance, and natural language pro-
cessing.

2. Components of an HMM
An HMM is defined by the following:

A set of hidden states: 73, Zs, ..., Zy, where each Z; € {1,2,... K}

A set of observations: Xq, Xs,..., Xy, with X; € O

Initial state distribution: 7w = [my,..., k], where m, = P(Z; = k)

Transition probabilities: A = [a;;], where a;; = P(Zi1 = J | Z; = 1)

Emission probabilities: B = [b;(0)], where b;(0) = P(X; =0 | Z; = j)

3. Joint Probability

The joint probability of a sequence of hidden states z and observations @ is:

P(z,z)=P(Z))[[P(Z | Z-) [[ P(X: | Z0)

t=2 t=1

4. Inference Tasks
e Evaluation: Compute the likelihood of a sequence: P(x)
e Decoding: Find the most likely sequence of states: arg max, P(z | x)

e Learning: Estimate the parameters (7, A, B) from data



5. Forward Algorithm (Evaluation)
Define forward probabilities:
Oét(j> = P(Xl, R ,Xt, Zt = j)

Recursion:

Final probability:

6. Viterbi Algorithm (Decoding)

Define:
5,5(]) = max P(Zl,...,Zt_l,Zt :j,Xl,...,Xt)
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Recursion:

61(j) = Za [5t 1 (4 )aij] 'bj($t>

Backtrace to recover the best state sequence.

7. EM for HMM (Baum-Welch Algorithm)

We aim to maximize P(zx | §) with latent states z. Use EM:

E-step:
Compute:

(i) =P(Zi=i|x), &(i,j)=P(Zi=i,Z11=]|x)

Use forward-backward algorithm:

/Bt<l) == P(Xt+1,...,XT | Zt == Z)



M-step:

Update parameters:
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8. Summary

Hidden Markov Models are powerful tools for modeling temporal or sequential data. They
combine latent state modeling with efficient algorithms for inference and learning.



