

10-701 Introduction to Machine Learning

Logistic Regression

Readings:

Bishop 4.2-4.3 Murphy Ch. 8.1-3, 8.6 Elken (2014) Notes Matt Gormley Lecture 5 September 21, 2016

Reminders

- Homework 1:
 - due 9/26/16
- Project Proposal:
 - due 10/3/16
 - start early!

Outline

Motivation:

- Choosing the right classifier
- Example: Image Classification

Logistic Regression

- Background: Hyperplanes
- Data, Model, Learning, Prediction
- Log-odds
- Bernoulli interpretation
- Maximum Conditional Likelihood Estimation

Gradient descent for Logistic Regression

- Stochastic Gradient Descent (SGD)
- Computing the gradient
- Details (learning rate, finite differences)

Logistic Regression and Overfitting

- (non-stochastic) Gradient Descent
- Difference of expectations

Newton's Method for Logistic Regression

- Taylor Series approximation
- Hessian matrix
- Newton's Method
- Iteratively Reweighted Least Squares
- Discriminative vs. Generative Classifiers

Classifiers

Which classification method should we use?

- The one that gives the best predictions...
 - on the training data
 - on the (unseen) test data
 - on the (held-out) validation data
- 2. The one that is computationally efficient...
 - during training
 - during classification
- 3. The most interpretable one...
 - in terms of its parameters
 - as a model
- 4. The one that is easiest to implement...
 - for learning
 - for classification

Classifiers

Which classification method should we use?

Naïve Bayes defined a generative model p(x, y) of the features x and the class y.

Why should we define a model of p(x, y) at all?

Why not directly model $p(y \mid x)$?

Example: Image Classification

- ImageNet LSVRC-2010 contest:
 - Dataset: 1.2 million labeled images, 1000 classes
 - Task: Given a new image, label it with the correct class
 - Multiclass classification problem
- Examples from http://image-net.org/

Bird

IM . GENET

Warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings

2126 pictures 92.85% Popularity Percentile Wordnet

marine animal, marine creature, sea animal, sea creature (1)	
⊩ scavenger (1)	
- biped (0)	
r predator, predatory animal (1)	
⊩ larva (49)	
- acrodont (0)	
- feeder (0)	
- stunt (0)	
chordate (3087)	
tunicate, urochordate, urochord (6)	
cephalochordate (1)	
vertebrate, craniate (3077)	
mammal, mammalian (1169)	
bird (871)	
dickeybird, dickey-bird, dickybird, dicky-bird (0)	
cock (1)	П
- hen (0)	
- nester (0)	ı
night bird (1)	
- bird of passage (0)	
- protoavis (0)	
archaeopteryx, archeopteryx, Archaeopteryx lithographi	ı
- Sinornis (0)	ı
- Ibero-mesornis (0)	ı
- archaeornis (0)	U
ratite, ratite bird, flightless bird (10)	
- carinate, carinate bird, flying bird (0)	
passerine, passeriform bird (279)	
nonpasserine bird (0)	
bird of prey, raptor, raptorial bird (80)	
gallinaceous bird, gallinacean (114)	



Not logged in. Login I Signup

German iris, Iris kochii

IM GENET

Iris of northern Italy having deep blue-purple flowers; similar to but smaller than Iris germanica

469 pictures 49.6% Popularity Percentile

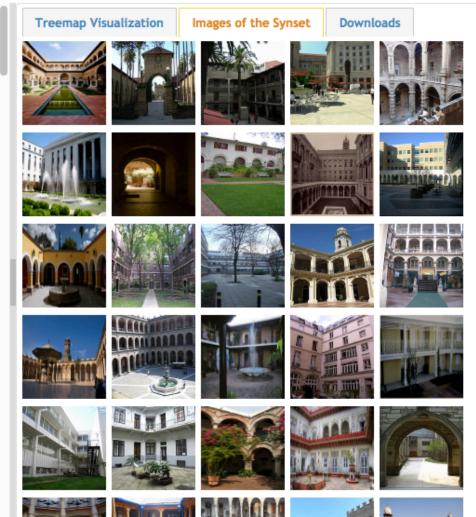
Not logged in. Login I Signup

Court, courtyard

An area wholly or partly surrounded by walls or buildings; "the house was built around an inner court"

165 pictures 92.61% Popularity Percentile

Numbers in brackets: (the number of synsets in the subtree).
∜- ImageNet 2011 Fall Release (32326)
plant, flora, plant life (4486)
geological formation, formation (175)
natural object (1112)
- sport, athletics (176)
artifact, artefact (10504)
instrumentality, instrumentation (5494)
structure, construction (1405)
airdock, hangar, repair shed (0)
altar (1)
arcade, colonnade (1)
arch (31)
rea (344)
aisle (0)
auditorium (1)
- baggage claim (0)
⊸ box (1)
breakfast area, breakfast nook (0)
- bullpen (0)
- chancel, sanctuary, bema (0)
- choir (0)
corner, nook (2)
• court, courtyard (6)
- atrium (0)
- bailey (0)
- cloister (0)
- food court (0) - forecourt (0)
narvis (0)



Example: Image Classification

CNN for Image Classification

(Krizhevsky, Šutskever & Hinton, 2011) 17.5% error on ImageNet LSVRC-2010 contest

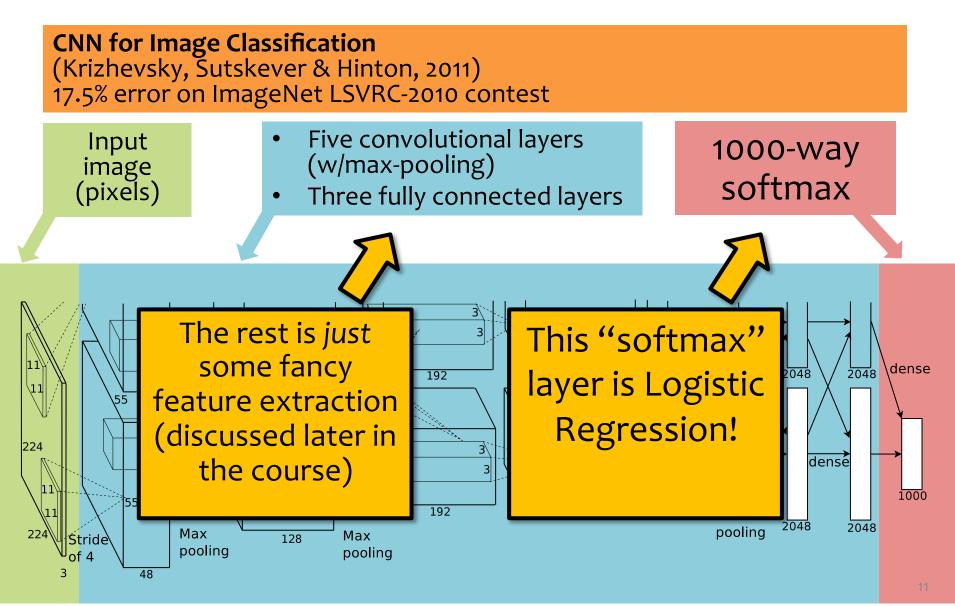
Input image (pixels)

- Five convolutional layers (w/max-pooling)
- Three fully connected layers

1000-way softmax



Example: Image Classification

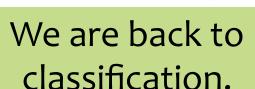


LOGISTIC REGRESSION

Logistic Regression

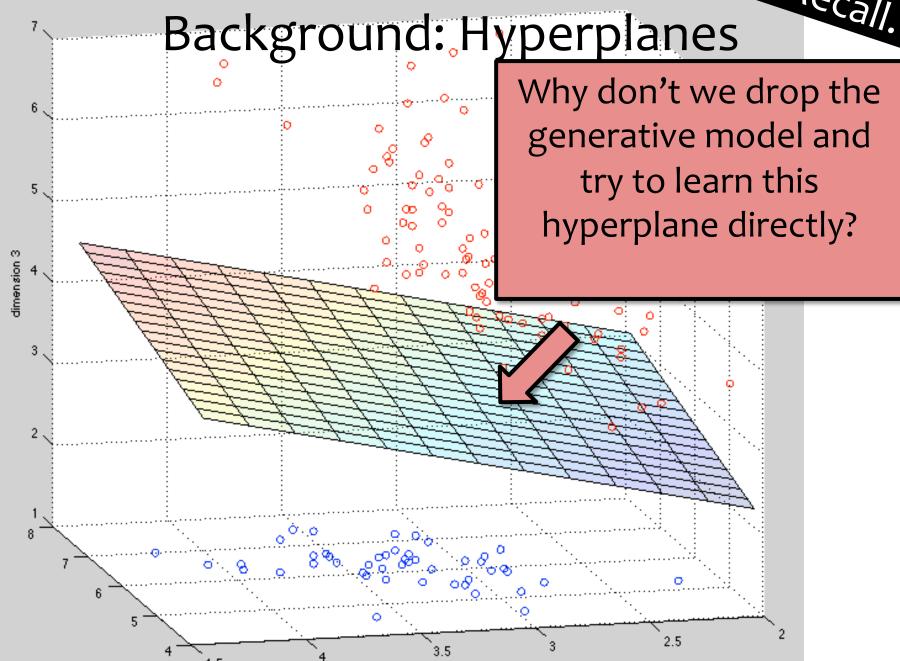
Data: Inputs are continuous vectors of length K. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$$
 where $\mathbf{x} \in \mathbb{R}^K$ and $y \in \{0, 1\}$

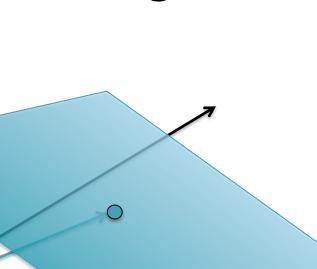


Despite the name logistic regression.

Recall...



Background: Hyperplanes



Hyperplane (Definition 1):

$$\mathcal{H} = \{\mathbf{x} : \mathbf{w}^T \mathbf{x} = b\}$$

Hyperplane (Definition 2):

$$\mathcal{H} = \{ \mathbf{x} : \mathbf{w}^T \mathbf{x} = 0$$
 and $x_1 = 1 \}$

Half-spaces:

$$\mathcal{H}^+ = \{ \mathbf{x} : \mathbf{w}^T \mathbf{x} > 0 \text{ and } x_1 = 1 \}$$

$$\mathcal{H}^- = \{\mathbf{x} : \mathbf{w}^T \mathbf{x} < 0 \text{ and } x_1 = 1\}$$

Directly modeling the hyperplane would use a decision function:

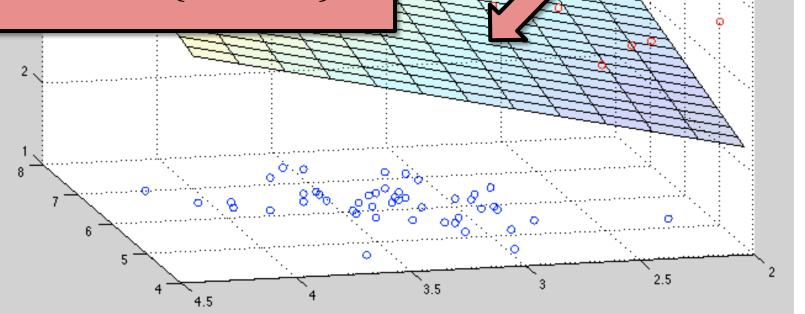
$$h(\mathbf{x}) = \mathsf{sign}(\boldsymbol{\theta}^T \mathbf{x})$$

for:

$$y \in \{-1, +1\}$$

d: Hyperplanes

Why don't we drop the generative model and try to learn this hyperplane directly?



Using gradient ascent for linear classifiers

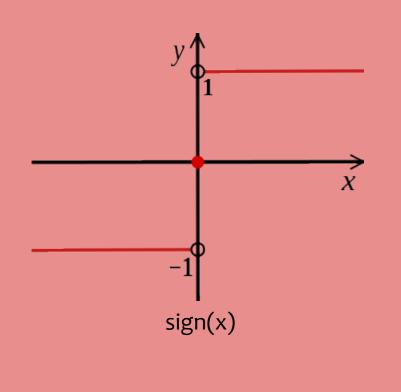
Key idea behind today's lecture:

- Define a linear classifier (logistic regression)
- Define an objective function (likelihood)
- Optimize it with gradient descent to learn parameters
- 4. Predict the class with highest probability under the model

Using gradient ascent for linear classifiers

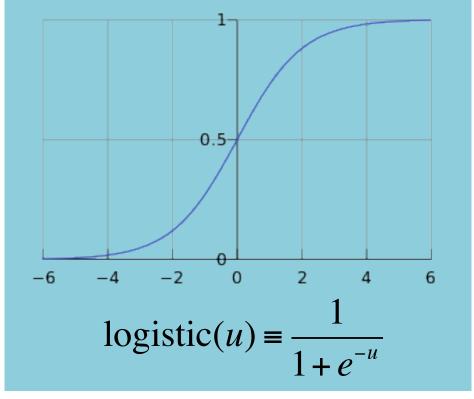
This decision function isn't differentiable:

$$h(\mathbf{x}) = \mathsf{sign}(\boldsymbol{\theta}^T \mathbf{x})$$



Use a differentiable function instead:

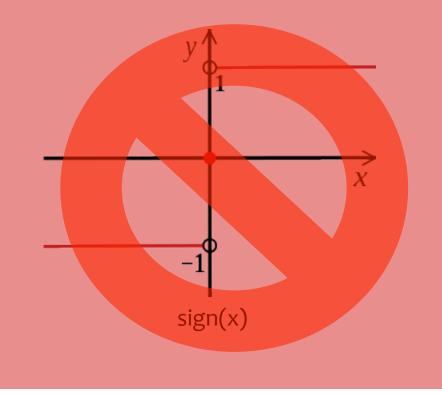
$$p_{\boldsymbol{\theta}}(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$



Using gradient ascent for linear classifiers

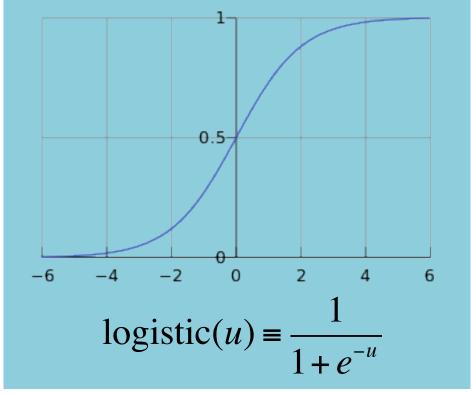
This decision function isn't differentiable:

$$h(\mathbf{x}) = \mathsf{sign}(\boldsymbol{\theta}^T \mathbf{x})$$



Use a differentiable function instead:

$$p_{\theta}(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$



Logistic Regression

Data: Inputs are continuous vectors of length K. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N \text{ where } \mathbf{x} \in \mathbb{R}^K \text{ and } y \in \{0, 1\}$$

Model: Logistic function applied to dot product of parameters with input vector.

$$p_{\boldsymbol{\theta}}(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$

Learning: finds the parameters that minimize some objective function. ${m heta}^* = \mathop{\mathrm{argmin}}_{{m heta}} J({m heta})$

Prediction: Output is the most probable class.

$$\hat{y} = \operatorname*{argmax} p_{\boldsymbol{\theta}}(y|\mathbf{x})$$
$$y \in \{0,1\}$$

Whiteboard

- Log-odds
- Bernoulli interpretation

Maximum **Conditional** Likelihood Estimation

Learning: finds the parameters that minimize some objective function.

$$\boldsymbol{\theta}^* = \operatorname*{argmin}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

We minimize the negative log conditional likelihood:

$$J(\boldsymbol{\theta}) = -\log \prod_{i=1}^{N} p_{\boldsymbol{\theta}}(y^{(i)}|\mathbf{x}^{(i)})$$

Why?

- 1. We can't maximize likelihood (as in Naïve Bayes) because we don't have a joint model p(x,y)
- It worked well for Linear Regression (least squares is MCLE)

Maximum **Conditional** Likelihood Estimation

Learning: Four approaches to solving $\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta)$

Approach 1: Gradient Descent (take larger – more certain – steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD) (take many small steps opposite the gradient)

Approach 3: Newton's Method (use second derivatives to better follow curvature)

Approach 4: Closed Form??? (set derivatives equal to zero and solve for parameters)

Maximum **Conditional** Likelihood Estimation

Learning: Four approaches to solving $\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta)$

Approach 1: Gradient Descent (take larger – more certain – steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD) (take many small steps opposite the gradient)

Approach 3: Newton's Method (use second derivatives to better follow curvature)

Approach 4: Closed Form???

(set derivatives equal to zero and solve for parameters)

Gradient Descent

Algorithm 1 Gradient Descent

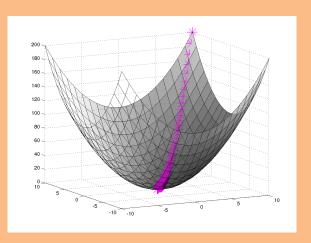
1: **procedure**
$$GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$$

2:
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$$

3: while not converged do

4:
$$\theta \leftarrow \theta + \lambda \nabla_{\theta} J(\theta)$$

5: return θ



In order to apply GD to Logistic Regression all we need is the **gradient** of the objective function (i.e. vector of partial derivatives).

$$abla_{m{ heta}} J(m{ heta}) = egin{bmatrix} rac{d heta_1}{d heta_2} J(m{ heta}) \ dots \ rac{d}{d heta_1} J(m{ heta}) \ dots \ rac{d}{d heta_1} J(m{ heta}) \end{bmatrix}$$

Recall...

1500

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

```
1: procedure SGD(\mathcal{D}, \boldsymbol{\theta}^{(0)})
2: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}
3: while not converged do
4: for i \in \text{shuffle}(\{1, 2, \dots, N\}) do
5: \boldsymbol{\theta}_k \leftarrow \boldsymbol{\theta}_k + \lambda \frac{d}{d\boldsymbol{\theta}_k} J^{(i)}(\boldsymbol{\theta})
7: return \boldsymbol{\theta}
```

We can also apply SGD to solve the MCLE problem for Logistic Regression.

We need a per-example objective:

Let
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$
 where $J^{(i)}(\boldsymbol{\theta}) = -\log p_{\boldsymbol{\theta}}(y^i|\mathbf{x}^i)$.

Optimization for Linear Reg. vs. Logistic Reg.

- Can use the same tricks for both:
 - regularization
 - tuning learning rate on development data
 - shuffle examples out-of-core (if can't fit in memory) and stream over them
 - local hill climbing yields global optimum (both problems are convex)
 - etc.
- But Logistic Regression does not have a closed form solution for MLE parameters.

GRADIENT FOR LOGISTIC REGRESSION

Likelihood on one example is:

$$\log P(Y = y | X = \mathbf{x}, \mathbf{w}) = \begin{cases} \log p & \text{if } y = 1\\ \log(1 - p) & \text{if } y = 0 \end{cases}$$
$$p \equiv \frac{1}{1 + e^{-\mathbf{x} \cdot \mathbf{w}}} = \frac{1}{1 + \exp(-\sum_{j} x^{j} w^{j})}$$

We're going to dive into this thing here: d/dw(p)

$$(\log f)' = \frac{1}{f}f'$$

$$\frac{\partial}{\partial w^j} \log P(Y = y | X = \mathbf{x}, \mathbf{w}) = \begin{cases} \frac{1}{p} \left[\frac{\partial}{\partial w^j} p \right] & \text{if } y = 1\\ \frac{1}{1-p} \left(-\frac{\partial}{\partial w^j} p \right) & \text{if } y = 0 \end{cases}$$

$$p \equiv \frac{1}{1 + e^{-\mathbf{x} \cdot \mathbf{w}}} = \frac{1}{1 + \exp(-\sum_{j} x^{j} w^{j})}$$

$$1 - p = \frac{1 + \exp(-\sum_{j} x^{j} w^{j})}{1 + \exp(-\sum_{j} x^{j} w^{j})} - \frac{1}{1 + \exp(-\sum_{j} x^{j} w^{j})} = \underbrace{\frac{\exp(-\sum_{j} x^{j} w^{j})}{1 + \exp(-\sum_{j} x^{j} w^{j})}}_{\text{1 + exp}}$$

$$\frac{\partial}{\partial w^{j}}p = \frac{\partial}{\partial w^{j}}(1 + \exp(-\sum_{j} x^{j}w^{j}))^{-1} \qquad (f^{n})' = nf^{n-1} \cdot (e^{f})' = e^{f} \cdot$$

 $\frac{\partial w^j}{\partial w^j}p = p(1-p)x$

$$p \equiv \frac{1}{1 + e^{-\mathbf{x} \cdot \mathbf{w}}} = \frac{1}{1 + \exp(-\sum_{j} x^{j} w^{j})}$$

$$\left(\frac{\partial}{\partial w^j}p\right) = p(1-p)x^j$$

$$\log P(Y = y | X = \mathbf{x}, \mathbf{w}) = \begin{cases} \log p & \text{if } y = 1\\ \log(1 - p) & \text{if } y = 0 \end{cases}$$

$$\frac{\partial}{\partial w^{j}} \log P(Y = y | X = \mathbf{x}, \mathbf{w}) = \begin{cases} \frac{1}{p} \frac{\partial}{\partial w^{j}} p & \text{if } y = 1\\ \frac{1}{1 - p} (-\frac{\partial}{\partial w^{j}} p) & \text{if } y = 0 \end{cases}$$

$$\frac{\partial}{\partial w^{j}} p = p(1 - p)x^{j}$$

$$\frac{\partial}{\partial w^{j}} \log P(Y = y | X = \mathbf{x}, \mathbf{w}) = \begin{cases} \frac{1}{p} p(1 - p) x^{j} & \text{if } y = 1\\ \frac{1}{1-p} (-1) p(1 - p) x^{j} = -p x^{j} & \text{if } y = 0 \end{cases}$$

$$\frac{\partial}{\partial w^j} \log P(Y = y | X = \mathbf{x}, \mathbf{w}) = (y - p)x^j$$

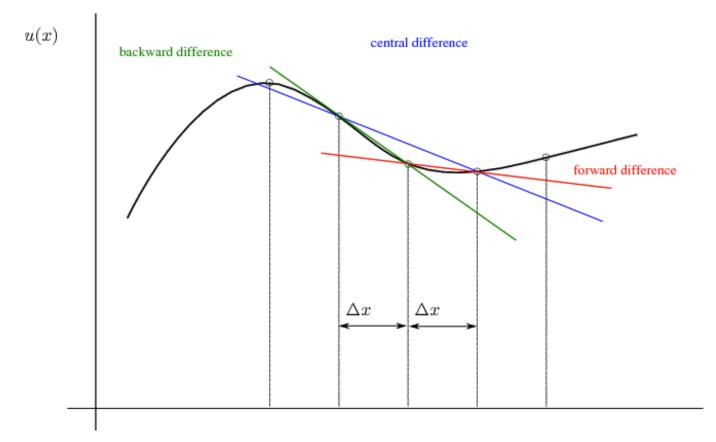
$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \lambda(y - p)\mathbf{x}$$

Details: Picking learning rate

- Use grid-search in log-space over small values on a tuning set:
 - e.g., 0.01, 0.001, ...
- Sometimes, decrease after each pass:
 - e.g factor of 1/(1 + dt), t=epoch
 - sometimes $1/t^2$
- Fancier techniques I won't talk about:
 - Adaptive gradient: scale gradient differently for each dimension (Adagrad, ADAM,)

Details: Debugging

- Check that gradient is indeed a locally good approximation to the likelihood
 - "finite difference test"



SGD for Logistic Regression

```
Algorithm 1 SGD for Logistic Regression

1: procedure SGD(\mathcal{D}, \boldsymbol{\theta}^{(0)})

2: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}

3: while not converged do

4: for i \in \text{shuffle}(\{1,2,\ldots,N\}) do

5: for k \in \{1,2,\ldots,K\} do

6: \theta_k \leftarrow \theta_k + \lambda(\mu^{(i)} - y^{(i)})x_k^{(i)}

7: where \mu^{(i)} := h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) = 1/(1 + \exp(-\boldsymbol{\theta}^T\mathbf{x}))

8: return \boldsymbol{\theta}
```

We can also apply SGD to solve the MCLE problem for Logistic Regression.

We need a per-example objective:

Let
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$
 where $J^{(i)}(\boldsymbol{\theta}) = -\log p_{\boldsymbol{\theta}}(y^i|\mathbf{x}^i)$.

LOGISTIC REGRESSION: OVERFITTING

Convexity and logistic regression

This LCL function is *convex:* there is only one local minimum.

So gradient descent will give the *global* minimum.

Non-stochastic gradient descent

$$\frac{\partial}{\partial w^j} \log P(Y = y | X = \mathbf{x}, \mathbf{w}) = (y - p)x^j$$

• In batch gradient descent, average the gradient over all the examples $D = \{(x_1, y_1), \dots, (x_n, y_n)\}$

$$\frac{\partial}{\partial w^j} \log P(D|\mathbf{w}) = \frac{1}{n} \sum_i (y_i - p_i) x_i^j =$$

$$= \left(\frac{1}{n} \sum_{i:x_i^j = 1} y_i - \left(\frac{1}{n} \sum_{i:x_i^j = 1} p_i\right)\right)$$

Non-stochastic gradient descent

- This can be interpreted as a difference between the expected value of $y|x^j=1$ in the data and the expected value of $y|x^j=1$ as predicted by the model
- Gradient ascent tries to make those equal

$$\frac{\partial}{\partial w^j} \log P(D|\mathbf{w}) = \frac{1}{n} \sum_{i} (y_i - p_i) x_i^j =$$

$$= \left[\frac{1}{n} \sum_{i:x_i^j = 1} y_i \right] - \left[\frac{1}{n} \sum_{i:x_i^j = 1} p_i \right]$$

This LCL function "overfits"

- This can be interpreted as a difference between the expected value of $y|x^j=1$ in the data and the expected value of $y|x^j=1$ as predicted by the model
- Gradient ascent tries to make those equal

$$\frac{\partial}{\partial w^{j}} \log P(D|\mathbf{w}) = \frac{1}{n} \sum_{i} (y_{i} - p_{i}) x_{i}^{j} = \frac{1}{n} \sum_{i:x_{i}^{j}=1} y_{i} - \frac{1}{n} \sum_{i:x_{i}^{j}=1} p_{i}$$

- That's impossible for some w^{j} !
 - e.g., if $x^j = 1$ only in positive examples, the gradient is always positive

This LCL function "overfits"

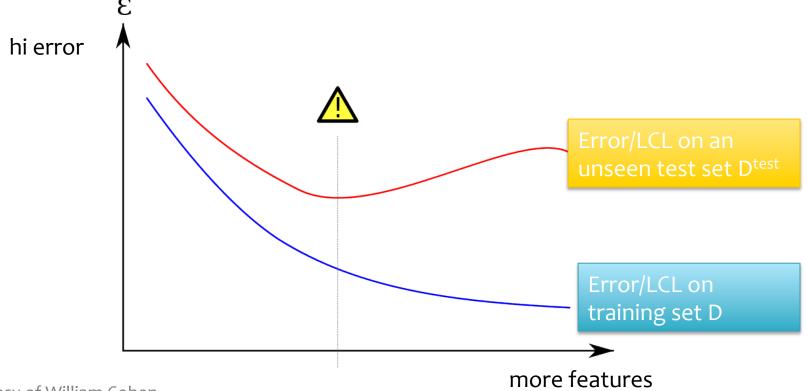
- This can be interpreted as a difference between the expected value of $y|x^j=1$ in the data and the expected value of $y|x^j=1$ as predicted by the model
- Gradient ascent tries to make those equal

$$\frac{\partial}{\partial w^j} \log P(D|\mathbf{w}) = \frac{1}{n} \sum_i (y_i - p_i) x_i^j = \frac{1}{n} \sum_{i:x_i^j = 1} y_i - \frac{1}{n} \sum_{i:x_i^j = 1} p_i$$

- That's impossible for some w^{j} e.g., if they appear only in positive examples, gradient is always possible.
- Using this LCL function for text: practically, it's important to *discard* rare features to get good results.

This LCL function "overfits"

- Overfitting is often a problem in supervised learning.
 - When you fit the data (minimize LCL) are you fitting "real structure" in the data or "noise" in the data?
 - Will the patterns you see appear in a test set or not?



Iteratively Reweighted Least Squares (IRLS)

NEWTON'S METHOD FOR LOGISTIC REGRESSION

Newton's Method

- From linear regression, we know that we can find the minimizer to a quadratic function analytically (i.e. closed form).
- Yet gradient descent may take many steps to converge to that optimum.
- The motivation behind Newton's method is to use a quadratic approximation of our function to make a good guess where we should step next.

Background: Taylor Series

How can we approximate a function in 1-dimension?

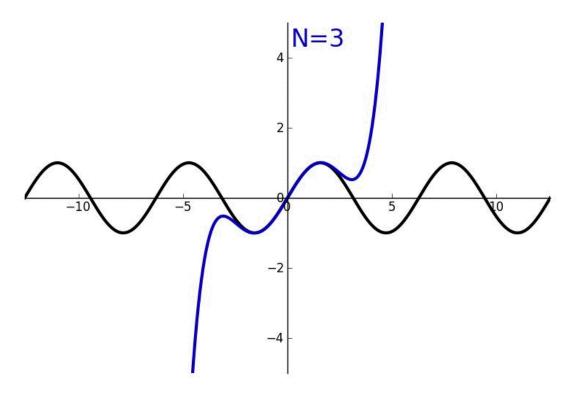
The **Taylor series expansion** for an infinitely differentiable function f(x), $x \in \mathbb{R}$, about a point $v \in \mathbb{R}$ is:

$$f(x) = f(v) + \frac{(x-v)f'(x)}{1!} + \frac{(x-v)^2f''(x)}{2!} + \frac{(x-v)^3f'''(x)}{3!} + \dots$$

The **2nd-order Taylor series approximation** cuts off the expansion after the quadratic term:

$$f(x) \approx f(v) + \frac{(x-v)f'(x)}{1!} + \frac{(x-v)^2 f''(x)}{2!}$$

Background: Taylor Series



https://upload.wikimedia.org/wikipedia/commons/c/cc/Sine_GIF.gif

Hessian Matrix

Definition: the **Hessian** of a K-dimensional function is the matrix of partial second derivatives with respect to each pair of dimensions.

$$H_f(\mathbf{x}) := \nabla^2 f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1^2} & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_K} \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_1} & \frac{\partial^2 f(\mathbf{x})}{\partial x_2^2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_K} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_K \partial x_1} & \frac{\partial^2 f(\mathbf{x})}{\partial x_K \partial x_2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_2^2} \end{bmatrix}$$

Background: Taylor Series

How can we approximate a function in K-dimensions?

The **Taylor series expansion** for an infinitely differentiable function $f(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^K$, about a point $\mathbf{v} \in \mathbb{R}^K$ is:

$$f(\mathbf{x}) = f(\mathbf{v}) + \frac{(\mathbf{x} - \mathbf{v})^T \nabla f(\mathbf{x})}{1!} + \frac{(\mathbf{x} - \mathbf{v})^T \nabla^2 f(\mathbf{x})(\mathbf{x} - \mathbf{v})}{2!} + \dots$$

The **2nd-order Taylor series approximation** cuts off the expansion after the quadratic term:

$$f(\mathbf{x}) \approx f(\mathbf{v}) + \frac{(\mathbf{x} - \mathbf{v})^T \nabla f(\mathbf{x})}{1!} + \frac{(\mathbf{x} - \mathbf{v})^T \nabla^2 f(\mathbf{x})(\mathbf{x} - \mathbf{v})}{2!}$$

Background: Taylor Series

How can we approximate a function in K-dimensions?

The **2nd-order Taylor series approximation** cuts off the expansion after the quadratic term:

$$f(\mathbf{x}) \approx \widetilde{f}(\mathbf{x}) := f(\mathbf{v}) + \frac{(\mathbf{x} - \mathbf{v})^T \nabla f(\mathbf{x})}{1!} + \frac{(\mathbf{x} - \mathbf{v})^T \nabla^2 f(\mathbf{x})(\mathbf{x} - \mathbf{v})}{2!}$$

Taking the derivative of $f(\mathbf{v})$ and setting to $\mathbf{0}$ gives us the closed form minimizer of this (convex) quadratic function:

$$\underset{\mathbf{x}}{\operatorname{argmin}} \tilde{f}(\mathbf{x}) = \mathbf{x} - (\nabla^2 f(\mathbf{x}))^{-1} \nabla f(\mathbf{x})$$

The addend $\nabla \mathbf{x}_{nt} = -(\nabla^2 f(\mathbf{x}))^{-1} \nabla f(\mathbf{x})$ is called Newton's step.

Newton's Method

Goal:
$$\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x}} f(\mathbf{x})$$

1. Approximate the function with the 2nd-order Taylor series

$$f(\mathbf{x}) \approx \tilde{f}(\mathbf{x}) := f(\mathbf{v}) + \frac{(\mathbf{x} - \mathbf{v})^T \nabla f(\mathbf{x})}{1!} + \frac{(\mathbf{x} - \mathbf{v})^T \nabla^2 f(\mathbf{x})(\mathbf{x} - \mathbf{v})}{2!}$$

2. Compute its minimizer

$$\underset{\mathbf{x}}{\operatorname{argmin}} \, \tilde{f}(\mathbf{x}) = \mathbf{x} - (\nabla^2 f(\mathbf{x}))^{-1} \nabla f(\mathbf{x})$$

3. Step to that minimizer

$$\mathbf{x} \leftarrow \mathbf{x} - (\nabla^2 f(\mathbf{x}))^{-1} \nabla f(\mathbf{x})$$

4. Repeat

Also called the Newton-Raphson method

Newton's Method

Intuition

A. If $f(\mathbf{x})$ is quadratic, $x + \nabla x_{nt}$ exactly maximizes f.

B. $\tilde{f}(\mathbf{x})$ is a good quadratic approximation to the function f near the point \mathbf{v} . So if $f(\mathbf{x})$ is locally quadratic, then $f(\mathbf{x})$ is locally well approximated by $\tilde{f}(\mathbf{x})$.

Whiteboard

- Example in 1D
- Comparison with Gradient Descent

Newton's Method for Log. Reg.

Algorithm 1 Newton-Raphson Method

```
1: procedure NR(\mathcal{D}, \boldsymbol{\theta}^{(0)})
2: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)} \triangleright Initialize parameters
3: while not converged do
4: \mathbf{g} \leftarrow \nabla J(\boldsymbol{\theta}) \triangleright Compute gradient
5: \mathbf{H} \leftarrow \nabla^2 J(\boldsymbol{\theta}) \triangleright Compute Hessian
6: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \mathbf{H}^{-1}\mathbf{g} \triangleright Update parameters
7: return \boldsymbol{\theta}
```

Now we can apply this to MLE for **Logistic Regression**.

We just need the gradient and Hessian.

Logistic Regression

Data: Inputs are continuous vectors of length K. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N \text{ where } \mathbf{x} \in \mathbb{R}^K \text{ and } y \in \{0, 1\}$$

Model: Logistic function applied to dot product of parameters with input vector.

$$p_{\boldsymbol{\theta}}(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$

Learning: finds the parameters that minimize some objective function. ${m heta}^* = \mathop{\mathrm{argmin}}_{{m heta}} J({m heta})$

Prediction: Output is the most probable class.

$$\hat{y} = \operatorname*{argmax} p_{\theta}(y|\mathbf{x})$$
$$y \in \{0,1\}$$

Maximum **Conditional** Likelihood Estimation

Learning: finds the parameters that minimize some objective function.

$$\boldsymbol{\theta}^* = \operatorname*{argmin}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

We minimize the negative log conditional likelihood:

$$J(\boldsymbol{\theta}) = -\log \prod_{i=1}^{N} p_{\boldsymbol{\theta}}(y^{(i)}|\mathbf{x}^{(i)})$$

Why?

- 1. We can't maximize likelihood (as in Naïve Bayes) because we don't have a joint model p(x,y)
- It worked well for Linear Regression (least squares is MCLE)

Maximum **Conditional** Likelihood Estimation

$$J(\theta) = -\log \prod_{i=1}^{N} p_{\theta}(y^{(i)}|\mathbf{x}^{(i)})$$

$$= -\log \prod_{i=1}^{N} h_{\theta}(\mathbf{x}^{(i)})^{y^{(i)}} (1 - h_{\theta}(\mathbf{x}^{(i)}))^{(1-y^{(i)})}$$

$$= -\sum_{i=1}^{N} y^{(i)} \log h_{\theta}(\mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(\mathbf{x}^{(i)}))$$

$$= -\sum_{i=1}^{N} y^{(i)} \log \mu^{(i)} + (1 - y^{(i)}) \log(1 - \mu^{(i)})$$
where $\mu^{(i)} := h_{\theta}(\mathbf{x}^{(i)}) = 1/(1 + \exp(-\theta^T \mathbf{x}))$

Gradient / Hessian for Log. Reg.

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{N} y^{(i)} \log \mu^{(i)} + (1 - y^{(i)}) \log(1 - \mu^{(i)})$$

$$\text{where } \mu^{(i)} := h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) = 1/(1 + \exp(-\boldsymbol{\theta}^T \mathbf{x}))$$

$$\mathbf{g} := \nabla J(\boldsymbol{\theta}) = \sum_{i=1}^{N} (\mu^{(i)} - y^{(i)}) \mathbf{x}^{(i)}$$

$$= \mathbf{X}^T (\boldsymbol{\mu} - \mathbf{y})$$

$$\begin{split} \mathbf{H} := \nabla^2 J(\boldsymbol{\theta}) &= \sum_{i=1}^N \mu^{(i)} (1 - \mu^{(i)}) \mathbf{x}^{(i)} (\mathbf{x}^{(i)})^T \\ &= \mathbf{X}^T \mathbf{S} \mathbf{X} \\ \text{where } \mathbf{S} &= \text{diag}(\mu^{(i)} (1 - \mu^{(i)})) \end{split}$$

Newton's Method for Log. Reg.

Algorithm 1 Newton-Raphson Method

```
1: procedure NR(\mathcal{D}, \boldsymbol{\theta}^{(0)})
2: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)} \triangleright Initialize parameters
3: while not converged do
4: \mathbf{g} \leftarrow \nabla J(\boldsymbol{\theta}) \triangleright Compute gradient
5: \mathbf{H} \leftarrow \nabla^2 J(\boldsymbol{\theta}) \triangleright Compute Hessian
6: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \mathbf{H}^{-1}\mathbf{g} \triangleright Update parameters
7: return \boldsymbol{\theta}
```

For Logistic Regression:

$$-\mathbf{H}^{-1}\mathbf{g} = -(\mathbf{X}^T \mathbf{S} \mathbf{X})^{-1} (\mathbf{X}^T (\boldsymbol{\mu} - \mathbf{y}))$$

Newton's Method for Log. Reg.

Algorithm 1 Newton-Raphson Method 1: $\mathbf{procedure} \ \mathsf{NR}(\mathcal{D}, \boldsymbol{\theta}^{(0)})$ 2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$ 3: $\mathbf{while} \ \mathsf{not} \ \mathsf{converged} \ \mathbf{do}$ 4: $\mathbf{g} \leftarrow \nabla J(\boldsymbol{\theta})$ 5: $\mathbf{H} \leftarrow \nabla^2 J(\boldsymbol{\theta})$ 6: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \mathbf{H}^{-1} \mathbf{g}$ Puestion: How does Newton step compare computationally to solving Least Squares in closed form closed form > Update parameters 7: $\mathbf{return} \ \boldsymbol{\theta}$

For Logistic Regression:

$$-\mathbf{H}^{-1}\mathbf{g} = -(\mathbf{X}^T \mathbf{S} \mathbf{X})^{-1} (\mathbf{X}^T (\boldsymbol{\mu} - \mathbf{y}))$$

Newton's Method for Log. Reg. (Iteratively Reweighted Least Squares)

Question: How does Newton step compare computationally to solving Least Squares in closed form

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta} - \mathbf{H}^{-1}\mathbf{g}$$

$$= oldsymbol{ heta} - (\mathbf{X}^T\mathbf{S}\mathbf{X})^{-1}(\mathbf{X}^T(oldsymbol{\mu} - \mathbf{y}))$$
By substituting in \mathbf{H} and \mathbf{g}

$$= (\mathbf{X}^T\mathbf{S}\mathbf{X})^{-1}\left((\mathbf{X}^T\mathbf{S}\mathbf{X})oldsymbol{ heta} - (\mathbf{X}^T(oldsymbol{\mu} - \mathbf{y}))\right)$$
By factoring out the inverse term
$$= (\mathbf{X}^T\mathbf{S}\mathbf{X})^{-1}\mathbf{X}^T(\mathbf{S}\mathbf{X}oldsymbol{ heta} - (oldsymbol{\mu} - \mathbf{y}))$$
By factoring out \mathbf{X}^T

$$= (\mathbf{X}^T\mathbf{S}\mathbf{X})^{-1}\mathbf{X}^T\mathbf{S}\left(\mathbf{X}oldsymbol{ heta} - \mathbf{S}^{-1}(oldsymbol{\mu} - \mathbf{y})\right)$$
By factoring out \mathbf{S}

$$= (\mathbf{X}^T\mathbf{S}\mathbf{X})^{-1}\mathbf{X}^T\mathbf{S}\mathbf{z}$$
where $\mathbf{z} = \mathbf{X}oldsymbol{ heta} - \mathbf{S}^{-1}(oldsymbol{\mu} - \mathbf{y})$

Recall LMS

Cost function in matrix form:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$
$$= \frac{1}{2} (\mathbf{X} \theta - \bar{y})^{T} (\mathbf{X} \theta - \bar{y})$$

$$\mathbf{X} = \begin{bmatrix} -- & \mathbf{x}_1 & -- \\ -- & \mathbf{x}_2 & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_n & -- \end{bmatrix}$$

$$\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

To minimize $J(\theta)$, take derivative and set to zero:

$$\nabla_{\theta} J = \frac{1}{2} \nabla_{\theta} \operatorname{tr} \left(\theta^{T} X^{T} X \theta - \theta^{T} X^{T} \vec{y} - \vec{y}^{T} X \theta + \vec{y}^{T} \vec{y} \right)$$

$$= \frac{1}{2} \left(\nabla_{\theta} \operatorname{tr} \theta^{T} X^{T} X \theta - 2 \nabla_{\theta} \operatorname{tr} \vec{y}^{T} X \theta + \nabla_{\theta} \operatorname{tr} \vec{y}^{T} \vec{y} \right)$$

$$= \frac{1}{2} \left(X^{T} X \theta + X^{T} X \theta - 2 X^{T} \vec{y} \right)$$

$$= X^{T} X \theta - X^{T} \vec{y} = \mathbf{0}$$

$$\Rightarrow X^T X \theta = X^T \vec{y}$$
The normal equations

$$\theta^* = \left(X^T X\right)^{-1} X^T \vec{y}$$

Newton's Method for Log. Reg. (Iteratively Reweighted Least Squares)

Question: How does Newton step compare computationally to solving Least Squares in closed form

$$egin{aligned} oldsymbol{ heta} &\leftarrow oldsymbol{ heta} - \mathbf{H}^{-1}\mathbf{g} \ &= (\mathbf{X}^T\mathbf{S}\mathbf{X})^{-1}\mathbf{X}^T\mathbf{S}\mathbf{z} \ & ext{where } \mathbf{z} = \mathbf{X}oldsymbol{ heta} - \mathbf{S}^{-1}(oldsymbol{\mu} - \mathbf{y}) \end{aligned}$$

The above update yields the minimizer for the weighted least squares problem:

$$\theta^* \leftarrow \underset{\theta}{\operatorname{argmin}} (\mathbf{z} - \mathbf{X}\theta)^T \mathbf{S} (\mathbf{z} - \mathbf{X}\theta)$$

$$= \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{N} S_{ii} (z_i - \theta^T \mathbf{x}^{(i)})^2$$

where S_{ii} is the weight of the *i*th "training example" consisting of the pair $(\mathbf{x}^{(i)}, z_i)$.

Newton's Method for Log. Reg.

Algorithm 1 Newton-Raphson Method

```
1: procedure NR(\mathcal{D}, \boldsymbol{\theta}^{(0)})
```

- 2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
- 3: **while** not converged **do**

4:
$$\mathbf{g} \leftarrow \nabla J(\boldsymbol{\theta})$$

5:
$$\mathbf{H} \leftarrow \nabla^2 J(\boldsymbol{\theta})$$

6:
$$heta \leftarrow heta - \mathbf{H}^{-1}\mathbf{g}$$

 $_{7:}$ return θ

Question: How does Newton step compare computationally to solving Least Squares in closed form

N Undata parameters

Answer: It's solving a weighted version of the same problem.

Hence the name "Iteratively Reweighted Least Squares (IRLS)".

For Logistic Regression:

$$-\mathbf{H}^{-1}\mathbf{g} = -(\mathbf{X}^T\mathbf{S}\mathbf{X})$$

$$(\mathbf{X}^{\star}(\mathbf{\mu} - \mathbf{y}))$$

Newton's Method for Linear Regression

Newton's method applied to Linear Regression (or any convex quadratic function) converges in exactly 1-step to the true optimum.

This is **equivalent** to solving the Normal Equations

Matching Game

Goal: Match the Algorithm to its Update Rule

1. SGD for Logistic Regression

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = p(y|x)$$

2. Least Mean Squares

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}$$

3. Perceptron (next lecture)

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$$

4.
$$\theta_k \leftarrow \theta_k + (h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) - y^{(i)})$$

5.
$$\theta_k \leftarrow \theta_k + \frac{1}{1 + \exp \lambda(h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) - y^{(i)})}$$

6.
$$\theta_k \leftarrow \theta_k + \lambda (h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)}) x_k^{(i)}$$

$$C. 1=6, 2=4, 3=4$$

DISCRIMINATIVE AND GENERATIVE CLASSIFIERS

Generative vs. Discriminative

Generative Classifiers:

- Example: Naïve Bayes
- Define a joint model of the observations ${\bf x}$ and the labels y: $p({\bf x},y)$
- Learning maximizes (joint) likelihood
- Use Bayes' Rule to classify based on the posterior: $p(y|\mathbf{x}) = p(\mathbf{x}|y)p(y)/p(\mathbf{x})$

Discriminative Classifiers:

- Example: Logistic Regression
- Directly model the conditional: $p(y|\mathbf{x})$
- Learning maximizes conditional likelihood

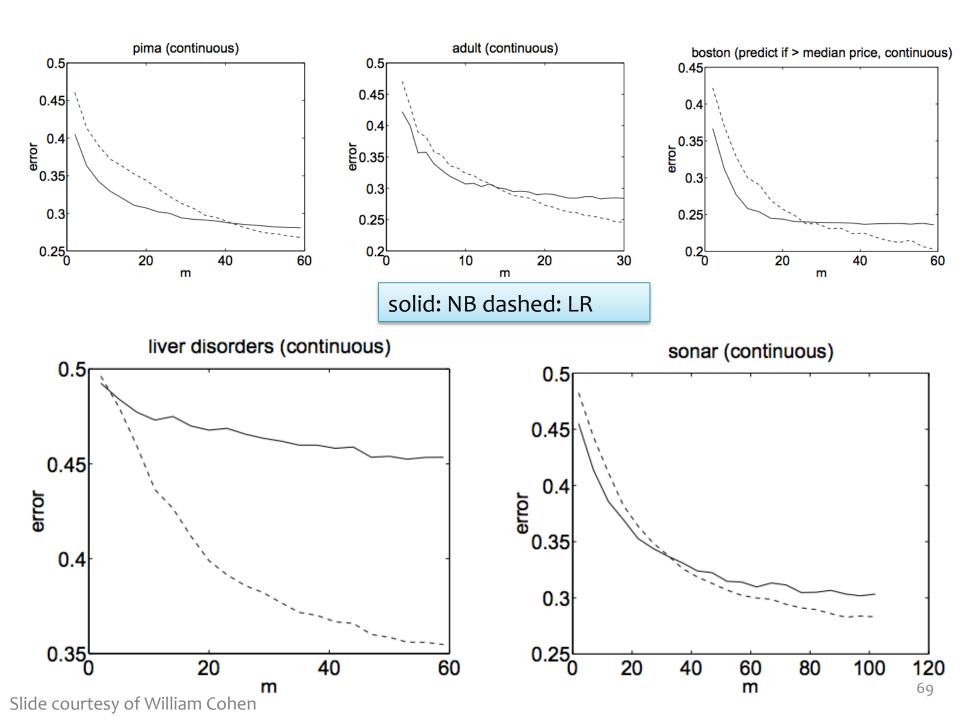
Generative vs. Discriminative

Finite Sample Analysis (Ng & Jordan, 2002)

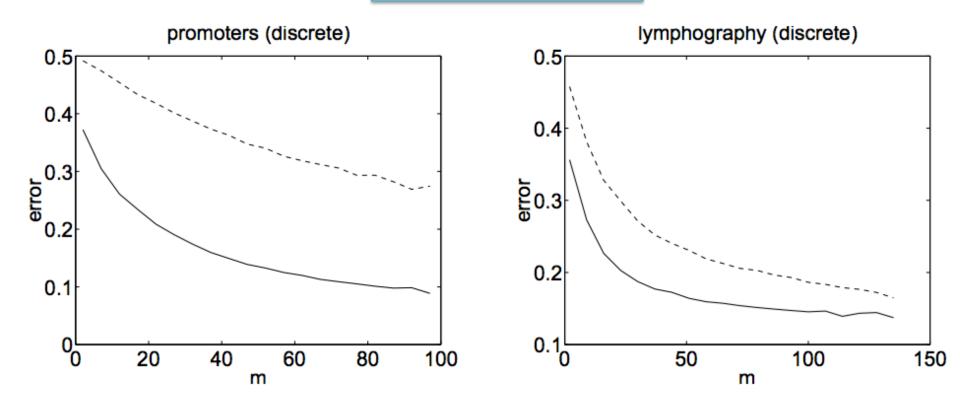
[Assume that we are learning from a finite training dataset]

If model assumptions are correct: Naive Bayes is a more efficient learner (requires fewer samples) than Logistic Regression

If model assumptions are incorrect: Logistic Regression has lower asymtotic error, and does better than Naïve Bayes



solid: NB dashed: LR



Naïve Bayes makes stronger assumptions about the data but needs fewer examples to estimate the parameters

"On Discriminative vs Generative Classifiers:" Andrew Ng and Michael Jordan, NIPS 2001.

Generative vs. Discriminative

Learning (Parameter Estimation)

Naïve Bayes:

Parameters are decoupled > Closed form solution for MLE

Logistic Regression:

Parameters are coupled → No closed form solution – must use iterative optimization techniques instead

Naïve Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naïve Bayes:

Parameters are probabilities \rightarrow Beta prior (usually) pushes probabilities away from zero / one extremes

Logistic Regression:

Parameters are not probabilities

Gaussian prior encourages parameters to be close to zero

(effectively pushes the probabilities away from zero / one extremes)

Naïve Bayes vs. Logistic Reg.

Features

Naïve Bayes:

Features x are assumed to be conditionally independent given y. (i.e. Naïve Bayes Assumption)

Logistic Regression:

No assumptions are made about the form of the features x. They can be dependent and correlated in any fashion.

Summary

- 1. Discriminative classifiers directly model the conditional, p(y|x)
- Logistic regression is a simple linear classifier, that retains a probabilistic semantics
- Parameters in LR are learned by iterative optimization (e.g. SGD)
- 4. Regularization helps to avoid overfitting