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Reminders

e Homework 1:
— due 9/26/16

* Project Proposal:
— due 10/3/16
— start early!



Outline

Motivation:

— Choosing the right classifier

— Example: Image Classification
Logistic Regression

— Background: Hyperplanes

— Data, Model, Learning, Prediction

— Log-odds

— Bernoulli interpretation

— Maximum Conditional Likelihood Estimation
Gradient descent for Logistic Regression

— Stochastic Gradient Descent (SGD)

— Computing the gradient

— Details (learning rate, finite differences)
Logistic Regression and Overfitting

— (non-stochastic) Gradient Descent

— Difference of expectations
Newton’s Method for Logistic Regression

— Taylor Series approximation

— Hessian matrix

— Newton’s Method

— Iteratively Reweighted Least Squares
Discriminative vs. Generative Classifiers



Classifiers

Which classification method should we use?

1. The one that gives the best predictions...
— on the training data
— onthe (unseen) test data
— on the (held-out) validation data
2. The one that is computationally efficient...
—  during training
—  during classification
3. The mostinterpretable one...
— interms of its parameters
— as amodel
4. The one thatis easiest to implement...
—  forlearning
—  for classification



Classifiers

Which classification method should we use?

Naive Bayes defined a generative model p(x, y)
of the features x and the class y.

Why should we define a model of p(x, y) at all?

Why not directly model p(y | x)?



Example: Image Classification
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Example: Image Classification

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest
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Example: Image Classification

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input * Five convolutional layers _
image (w/max-pooling) 1000-way
(pixels)  Three fully connected layers softmax

| f —
7
7

The rest is just
some fancy

> | feature extraction |

(discussed laterin
the course)
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LOGISTIC REGRESSION



Logistic Regression

Data: Inputs are continuous vectors of length K. Outputs are
discrete. | |
D = {xW y N wherex € R andy € {0,1}

We are back to
classification.

Despite the name
logistic regression.



dimenzion 3
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Why don’t we drop the

generative model and
try to learn this

hyperplane directly?




Background: Hyperplanes

Hyperplane (Deﬁnltlon 1):
H={x:wlx =0}

Hyperplane (Definition 2):
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decision function:

h(x) = sign(6” x)

Why don’t we drop the
generative model and
try to learn this
hyperplane directly?




Using gradient ascent for linear

classifiers
Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)

3. Optimize it with gradient descent to learn
parameters

4. Predict the class with highest probability under
the model



Using gradient ascent for linear

classifiers
This decision function isn’t Use a differentiable function
differentiable: instead: :
h(X) — sign(BTx) Pely = 1) = 1+ exp(—0'x)
A 1 —
g
0.51‘"’/"
® >
X
() | 1 = | |
-1 -6 -4 2 0 2 4 6
sign(x) logistic(u) = !



Using gradient ascent for linear
classifiers




Logistic Regression

Data: Inputs are continuous vectors of length K. Outputs are
discrete.

D = {xW y N wherex € R andy € {0,1}

Model: Logistic function applied to dot product of
parameters with input vector. 1

pe(y = 1]x) =

1 + exp(—0' %)

Learning: finds the parameters that minimize some

objective function. @* — argmin J(0)
0

Prediction: Output is the most probable class.

y = argmax pg (y|x)
ye{0,1}



Whiteboard

* Log-odds
* Bernoulliinterpretation



Maximum Conditional
Likelihood Estimation

Learning: finds the parameters that minimize some
objective function.

0" = argmin J(0)
0
We minimize the negative log conditional likelihood:

N
J(6) = —log | [ pe (v x")
Why? =1

1.  We can’t maximize likelihood (as in Naive Bayes)
because we don’t have a joint model p(x,y)

It worked well for Linear Regression (least squares is
MCLE)



Maximum Conditional
Likelihood Estimation

Learning: Four approaches to solving 0" = aguaitn J(6)

Approach 1: Gradient Descent
(take larger — more certain — steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

Approach 4: Closed Form???
(set derivatives equal to zero and solve for parameters)



Maximum Conditional
Likelihood Estimation

Learning: Four approaches to solving 0" = aguaitn J(6)

Approach 1: Gradient Descent
(take larger — more certain — steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

: Closed Form???
(set derivatives equal to ze ters



Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, ')

1:

2 0+ 0

3: while not converged do
4 0 < 0+ A\VoJ(0)

5 return 6

In order to apply GD to Logistic
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).

VeJ(6) =




Stochastic Gradient Descent (SW

Algorithm 2 Stochastic Gradient Descent (SGD)

1. procedure SGD(D, 8V)

2 0+ 0V
3: while not converged do
4: for ¢ € shuffle({1,2,...,N}) do

5 for k € {1,2,...,K} do

6 O < O + A55-J ()

7 return 6

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

We need a per-example objective:
Let J(0) = 1L, J)(6)
where J(9)(0) = — log pe(y|x*).



Optimization for

Linear Reg. vs. Logistic Reg.
* Can use the same tricks for both:
— regularization
— tuning learning rate on development data

— shuffle examples out-of-core (if can’t fit in
memory) and stream over them

— local hill climbing yields global optimum (both
problems are convex)

— etc.

* But Logistic Regression does not have a
closed form solution for MLE parameters.



GRADIENT FOR LOGISTIC
REGRESSION



Likelihood on one example is:
‘ B B | logp ity =1
logP(Y—y|X—x,w)—{ log(1—p) if y =0

1 1
p=
1 +exw 1+ exp(— >, v/ w?)

We’re going to dive into this thing here: d/dw(p)

0 L0 if y=1
—log P(Y =yl X =x,w) = PQ{’W ‘ .
owi 8 (Y =yl W) { i —(,)ij) if y=0

29
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I 1

P=7 +exw 14 exp(— > wIw)
1 —p= 1+ exp(—X; 2/uw?) B 1 [ exp(= X, 2w’
P = 1 + exp(— >, viwl) 1+ exp(— > I w?) 1+ exp(— D I )
9, 0 . n-
5P | = (1 4 exp(— Zx’wf (f")=nf""f'
w owl (ef) = el f’
= (—=1)(1+ exp(— Zﬂfuﬂ 8 exp Zﬂwy
= (—=1)(1+ exp(— Z rw?)) "% exp(— Z ijj
p
_ 1 T exp(— Y ; .L]’LU]) \W.’Ej
1 + exp(—_; :cjwj)Ji-F exp(— 2, l'j’ij
Y,

5P = P~ p)a’
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Slide courtesy of William Cohen
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log P(Y = y|X =x,w) = { log(1—p) ify=

— oo P — ylX = x. o p\Qw’ ‘ .
s 98P =31 =5 I
B0l = p(1 —p)a’
d / —p)a? if y=1
%logP( =yl =xw) = {/f(— //Pﬂz—pﬂ ify=0
8?0 log P(Y = y|X =x,w) = (y — p)a’

wit) — w1 \(y — p)x

Slide courtesy of William Cohen



Details: Picking learning rate

* Use grid-search in log-space over small
values on a tuning set:

—e.g., 0.01, 0.001, ...

* Sometimes, decrease after each pass:
— e.g factor of 1/(1 + dt), t=epoch
— sometimes 1/t2

* Fancier techniques | won’t talk about:

— Adaptive gradient: scale gradient differently for
each dimension (Adagrad, ADAM, ....)

Slide courtesy of William Cohen



Details: Debugging

* Check that gradient is indeed a locally good approximation
to the likelihood

— “finite difference test”

u(z)

central difference

backward difference

forward difference

Slide courtesy of William Cohen



SGD for Logistic Regression

Algorithm 1 SGD for Logistic Regression 9 NN

. procedure SGD(D, 8'?)
6 — 60
while not converged do
for i € shuffle({1,2,...,N})do

O O + A(u® — D)z

1

2

3

4

5: fork € {1,2,...,K}do L o
6

7 where ;{9 := hg(xV)) = 1/(1 + exp(—0" %))
8

return 0

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

We need a per-example objective:

Let J(0) = 1L, J)(6)

where J(9)(0) = — log pe(y|x*).




LOGISTIC REGRESSION:
OVERFITTING



Convexity and logistic regression

This LCL function is convex: there is
only one local minimum.

So gradient descent will give the global
minimum.

Slide courtesy of William Cohen



Non-stochastic gradient descent

0 .
log P(Y = y|X =x,w) = (y — p)z’
Owi
* In batch gradient descent, average the gradient over
all the examples D={(x,,y,)...,(X,, Yn
% log P(Dlw) = — 3 (s~ p)]
O 1 i = ). p—
Owi 5 n < Yi — P
(. N (G N
1 1
= Z Yi —|— Pi
't | 't ix) =
\_ ' N

Slide courtesy of William Cohen




Non-stochastic gradient descent

* This can be interpreted as a difference between the
expected value of y|x/=1in the data and the expected
value of y|xi=1 as predicted by the model

 Gradient ascent tries to make those equal
0 | ]-
5.7 108 P(DIW) = =3 (y; = p;)] =

T

39
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This LCL function “overfits”

* This can be interpreted as a difference between the
expected value of y|x/=1in the data and the expected
value of y|xi=1 as predicted by the model

* Gradient ascent tries to make those equal

9, 1

%10’ (D|W):EZ(%—P }?:— Z Yi —f Z Pi

t ll—l l.l—l

* That’s impossible for some w' !

* e.g,if ¥ =1 only in positive examples, the gradient
is always positive

40
Slide courtesy of William Cohen



This LCL function “overfits”

* This can be interpreted as a difference between the
expected value of y|x/=1in the data and the expected
value of y|xi=1 as predicted by the model

* Gradient ascent tries to make those equal

9, 1

mlo’ (D|W):EZ(%—P f:— Z Yi —f Z Pi

t ll—l l.l—l

* That’s impossible for some w’ e.g., if they appear only
in positive examples, gradient is always possible.

* Using this LCL function for text: practically, it’s
important to discard rare features to get good results.

41
Slide courtesy of William Cohen



This LCL function “overfits”

* Overfitting is often a problem in supervised learning.

 When you fit the data (minimize LCL) are you fitting
“real structure” in the data or “noise” in the data?

» Will the patterns you see appear in a test set or not?

E

hi error A

A\

Slide courtesy of William Cohen

>
more features



NEWTON’S METHOD FOR
LOGISTIC REGRESSION



Newton’s Method

* From linear regression, we know that we can
find the minimizer to a quadratic function
analytically (i.e. closed form).

* Yet gradient descent may take many steps to
converge to that optimum.

* The motivation behind Newton's method is to
use a quadratic approximation of our function

to make a good guess where we should step
next.



Background: Taylor Series
How can we approximate a function in 1-dimension?

The Taylor series expansion for an infinitely differen-
tiable function f(z), z € R, about a point v € Riis:

x—v)f(x r—v)°f"(z z—v)3f"(x
=) | o) a0

flz) = f(v) +

The 2nd-order Taylor series approximation cuts off the
expansion after the quadratic term:

x—v)f(x r—v)2f"(x
L 1)!()+( ;! ()

+ ...



Background: Taylor Series

N=3
4




Hessian Matrix

Definition: the Hessian of a K-dimensional
function is the matrix of partial second
derivatives with respect to each pair of

dimensions.

- 0% f(=) 9% f (=) % f(z) 1
Ox? O0x10xo T 91,07k
0° f(x) Zf(x) 0% f(x)
Oxo0 2 Oxo0
Hf(X) — VQf(LE) _ 20X oxs T2 O0X K¢
0° f(x) 0° f(x) 0° f(x)
| 8:13}{8331 833}(8332 o (933%{ -




Background: Taylor Series

How can we approximate a function in K-dimensions?

The Taylor series expansion for an infinitely differen-
tiable function f(x), x € R¥, about a point v € RE
is:

x —v)I'Vf(x x —v)IV2f(x)(x —v
LBV | )

The 2nd-order Taylor series approximation cuts off the
expansion after the quadratic term:

(x = V)'VIx) |, (x= V) VEIx)(x ~ V)

f(x) = f(v)+ T o




Background: Taylor Series

How can we approximate a function in K-dimensions?

The 2nd-order Taylor series approximation cuts off the
expansion after the quadratic term:

Fx) 0| = () + ELIID V) VGO )

Taking the derivative of f(v) and setting to 0 gives us
the closed form minimizer of this (convex) quadratic
function:

argmin| f (x)| = x — (V?f(x)) "'V f(x)

X

The addend Vx,; = —(V2f(x))"'Vf(x) is called
Newton’s step.



Newton’s Method

Goal: x* = argmin f(x)

1.

. Repeat

Approximate the function with the 2"d-

order Taylor series

f(X) ~ f(X) ‘= f(V) 4 (X — V)l'Vf(X) n (X — V) VQ{(X)(X — V)

. Compute its minimizer

argmin f(x) = x — (V*f(x)) "'V f(x)

. Step to that minimizer

x — x — (V2f(x) "'V f(x)

Also called the
Newton-Raphson method




Newton’s Method

Intuition

A. If f(x)is quadratic, z + Vz,,; exactly maximizes f.

B. f(x)isa good quadratic approximation to the function
f near the point v. So if f(x) is locally quadratic, then
f(x) is locally well approximated by f(x).



Whiteboard

* Examplein1D
* Comparison with Gradient Descent



Newton’s Method for Log. Reg.

Algorithm 1 Newton-Raphson Method
procedure NR(D, 0(0))

1:

2: 0« 6 > Initialize parameters
3 while not converged do

4: g+ VJ(O) > Compute gradient
5: H «+ V2J(0) > Compute Hessian
6 0+ 0-H!g > Update parameters
7 return 6

Now we can apply this to MLE for Logistic
Regression.

We just need the gradient and Hessian.



Logistic Regression %

Data: Inputs are continuous vectors of length K. Outputs are
discrete.

D = {xW y N wherex € R andy € {0,1}

Model: Logistic function applied to dot product of
parameters with input vector. 1

pe(y = 1]x) =

1 + exp(—0' %)

Learning: finds the parameters that minimize some

objective function. @* — argmin J(0)
0

Prediction: Output is the most probable class.

y = argmax pg (y|x)
ye{0,1}



Maximum Conditional %
Likelihood Estimation

Learning: finds the parameters that minimize some

objective function.

0" = argmin J(0)
0
We minimize the negative log conditional likelihood:

N
J(6) = —log | [ pe (v x")
Why? =1

1.  We can’t maximize likelihood (as in Naive Bayes)
because we don’t have a joint model p(x,y)

It worked well for Linear Regression (least squares is
MCLE)



Maximum Conditional
Likelihood Estimation

N
J(6) = —log | [ pe(y"[x")

1=1

N
3 (2) 3 _ (%)
:_1Oth9(X())y (1 — he(x))1=v"")

1=1
= —> yDloghe(x?) + (1 — y)log(1 — he(x?))
1=1
= —> yPlogp® + (1 —y@)log(1 — p?)
1=1

where u¥ := ho(x\?) = 1/(1 + exp(—07 %))



Gradient / Hessian for Log. Reg.

J(0)=—> yDlogu® + (1 -y")log(1 — ut)

i=1
where 19 := hg(xV) = 1/(1 4 exp(—0'x))
N
g:=VJ(O) =) (u—y")x®
i=1
=X"(n—y)

N
H:=V270) =Y pP(1—puD)xDxD)T
1=1

= X1'sX
where S = diag(p'¥ (1 — p9))



Newton’s Method for Log. Reg.

Algorithm 1 Newton-Raphson Method
procedure NR(D, H(O))

1:

2: 0« 6 > Initialize parameters
3 while not converged do

4: g+ VJ(O) > Compute gradient
5: H «+ V2J(0) > Compute Hessian
6 0+ 0-H!g > Update parameters
7 return 6

For Logistic Regression:

~—H 'g=-X'SX)" "X (u —y))



Newton’s Method for Log. Reg.

Algorithm 1 Newton-Raphson Method
procedure NR(D, 0(0))

12
0
2 0« 0 Question: How does Newton
3 while not converged do| step compare computationally
4: g VJ(Q) to solving Least Squares in
s H « V2.7 (0) @ closed form
6 0+ 0-H!g > Update parameters
7 return 6

For Logistic Regression:

~—H 'g=-X'SX)" "X (u —y))



Newton’s Method for Log. Reg.
(Iteratively Reweighted Least Squares)

Question: How does

Newton step compare el

computationally to 0—0-H g

solving Least Squares in _p_(xT —1~T(,,
closed form 0 — (X'SX)" (X" (1 ~y))

By substitutingin Hand g
= (X'8X)" (X'8X)0 — (X" (1 —y)))
By factoring out the inverse term
= (X'SX)'X" (SX0 — (1 —y))
By factoring out X*
= (X'SX)"'X'S (X0 —S ' (p—y))
By factoring out S
= (XTSX)" xSz
wherez = X0 — S ' (u —y)



Recall LMS ot

e (Cost function in matrix form: = X ==
J(ﬁ) = — (Xl,TH—yi)Z . . .
2 £ o x
1 =\ = [ V1]
- - (X0-y)(x0-
5 (x6-5) (x6-5) I

e [0 minimize J(6), take derivative and set to zero:

V,J = %Vgtr(ﬁTXTXé’ O XT5-F XO+7" )

1 (VgtrHTXTXH -2V, try’ X0 + Vet@Ty)

=| X'X0=X"y

2 The normal equations
- %(XTX9+ X"X0-2X"5) I

1 N

=X"X0-X"5=0 6’*=(XTX) XTy

© Eric Xing @ CMU, 2005-2015 61




Newton’s Method for Log. Reg.
(Iteratively Reweighted Least Squares)

Question: How does
Newton step compare
computationally to
solving Least Squares in
closed form

0—60—-—H g
= (XTSX) X' Sz
wherez = X0 — S~ ' (u —y)

The above update yields the minimizer for the weighted
least squares problem:

0" < argmin(z — X0)''S(z — X0)
6

where S;; is the weight of the ¢th “training example”
consisting of the pair (x(¥), z;).



Newton’s Method for Log. Reg.

Algorithm 1 Newton-Raphson Method
i procedure NR(D, 8'?)

2 0« 6 Question: How does Newton

B while not converged do| step compare computationally

4: g+ VJ(O) to solving Least Squares in

5: H VQJ(H) @ closed form

6: 0« 0-H g~ Iodiacmmorae
Answer: It’s solving a weighted

7; return 0

version of the same problem.

Hence the name “Iteratively

For Logistic Regression:  |Reweighted LeastSquares
(IRLS)”.

~—H 'g=—-(X"'SX| Xz —y))



Newton’s Method for
Linear Regression

Newton’s method applied to Linear
Regression (or any convex quadratic function)
converges in exactly 1-step to the true
optimum.

This is equivalent to solving the Normal
Equations



Matching Game

Goal: Match the Algorithm to its Update Rule

1. SGD for Logistic Regression 4 0 0, + (he (X(i)) _ y(i))
he(x) = p(ylz)
2. Least Mean Squares 5. 1
O < 01 + . -
ho(x) = 6Tx P Tt exp Ao (x®) — y®)
3. Perceptron (next lecture) O O + A(h (x@) B (Z-)) (4)
ho(x) = sign(6” x) g g ¢ e
A.1=5,2=4, 3=6
B. 1=5, 2=6, 3=4
C.1=6, 2=4, 3=4
D. 1=5, 2=6, 3=6

E. 1=6, 2=6, 3=6
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DISCRIMINATIVE AND
GENERATIVE CLASSIFIERS



Generative vs. Discriminative

* Generative Classifiers:
— Example: Naive Bayes
— Define a joint model of the observations x and the

labels y: p(x, vy)
— Learning maximizes (joint) likelihood

— Use Bayes’ Rule to classify based on the posterior:
ply|x) = p(x|y)p(y)/p(x)

* Discriminative Classifiers:
— Example: Logistic Regression
— Directly model the conditional: p(y|x)
— Learning maximizes conditional likelihood



Generative vs. Discriminative

Finite Sample Analysis (Ng & Jordan, 2002)

[Assume that we are learning from a finite
training dataset]

If model assumptions are correct: Naive Bayes is a more

efficient learner (requires fewer samples) than Logistic
Regression

If model assumptions are incorrect: Logistic Regression has
lower asymtotic error, and does better than Naive Bayes
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Naive Bayes makes stronger assumptions about the data
but needs fewer examples to estimate the parameters
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““On Discriminative vs Generative Classifiers: ....” Andrew Ng
and Michael Jordan, NIPS 2001.
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Generative vs. Discriminative

Learning (Parameter Estimation)

Naive Bayes:
Parameters are decoupled = Closed form solution for MLE

Logistic Regression:
Parameters are coupled = No closed form solution - must
use iterative optimization techniques instead



Naive Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naive Bayes:
Parameters are probabilities = Beta prior (usually) pushes
probabilities away from zero [ one extremes

Logistic Regression:
Parameters are not probabilities > Gaussian prior
encourages parameters to be close to zero

(effectively pushes the probabilities away from zero / one
extremes)



Naive Bayes vs. Logistic Reg.

Features

Naive Bayes:
Features x are assumed to be conditionally independent
given y. (i.e. Naive Bayes Assumption)

Logistic Regression:
No assumptions are made about the form of the features x.
They can be dependent and correlated in any fashion.



Summary

1. Discriminative classifiers directly model the
conditional, p(y|x)

2. Logistic regression is a simple linear
classifier, that retains a probabilistic
semantics

3. Parametersin LR are learned by iterative
optimization (e.g. SGD)
4. Regularization helps to avoid overfitting



