
R-tree
Type tree

Invented 1984

Invented by Antonin Guttman

Time complexity in big O notation
Operation Average Worst case
Search O(logMn) O(n)[1]

Insert O(n)

Space complexity

R-tree
R-trees are tree data structures used
for spatial access methods, i.e., for
indexing multi-dimensional
information such as geographical
coordinates, rectangles or polygons.
The R-tree was proposed by Antonin
Guttman in 1984[2] and has found
significant use in both theoretical and
applied contexts.[3] A common real-
world usage for an R-tree might be to
store spatial objects such as restaurant
locations or the polygons that typical
maps are made of: streets, buildings,
outlines of lakes, coastlines, etc. and then find answers quickly to queries such as
"Find all museums within 2 km of my current location", "retrieve all road segments
within 2 km of my location" (to display them in a navigation system) or "find the
nearest gas station" (although not taking roads into account). The R-tree can also
accelerate nearest neighbor search[4] for various distance metrics, including great-
circle distance.[5]

The key idea of the data structure is to group nearby objects and represent them
with their minimum bounding rectangle in the next higher level of the tree; the "R"
in R-tree is for rectangle. Since all objects lie within this bounding rectangle, a query
that does not intersect the bounding rectangle also cannot intersect any of the

R-tree idea
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Simple example of an R-tree for 2D rectangles

contained objects. At
the leaf level, each
rectangle describes a
single object; at higher
levels the aggregation
includes an increasing
number of objects. This
can also be seen as an
increasingly coarse
approximation of the
data set.

Similar to the B-tree,
the R-tree is also a
balanced search tree
(so all leaf nodes are at
the same depth),
organizes the data in
pages, and is designed
for storage on disk (as
used in databases). Each page can contain a maximum number of entries, often
denoted as . It also guarantees a minimum fill (except for the root node), however
best performance has been experienced with a minimum fill of 30%–40% of the
maximum number of entries (B-trees guarantee 50% page fill, and B*-trees even
66%). The reason for this is the more complex balancing required for spatial data as
opposed to linear data stored in B-trees.

As with most trees, the searching algorithms (e.g., intersection, containment,
nearest neighbor search) are rather simple. The key idea is to use the bounding
boxes to decide whether or not to search inside a subtree. In this way, most of the
nodes in the tree are never read during a search. Like B-trees, R-trees are suitable
for large data sets and databases, where nodes can be paged to memory when
needed, and the whole tree cannot be kept in main memory. Even if data can be fit in
memory (or cached), the R-trees in most practical applications will usually provide
performance advantages over naive check of all objects when the number of objects
is more than few hundred or so. However, for in-memory applications, there are
similar alternatives that can provide slightly better performance or be simpler to
implement in practice. To maintain in-memory computing for R-tree in a computer
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Visualization of an R*-tree for 3D points using ELKI (the cubes are
directory pages)

cluster where
computing nodes are
connected by a
network, researchers
have used RDMA
(Remote Direct
Memory Access) to
implement data-
intensive applications
under R-tree in a
distributed
environment.[6] This
approach is scalable for
increasingly large
applications and
achieves high
throughput and low
latency performance
for R-tree.

The key difficulty of R-
tree is to build an
efficient tree that on
one hand is balanced (so the leaf nodes are at the same height) on the other hand the
rectangles do not cover too much empty space and do not overlap too much (so that
during search, fewer subtrees need to be processed). For example, the original idea
for inserting elements to obtain an efficient tree is to always insert into the subtree
that requires least enlargement of its bounding box. Once that page is full, the data is
split into two sets that should cover the minimal area each. Most of the research and
improvements for R-trees aims at improving the way the tree is built and can be
grouped into two objectives: building an efficient tree from scratch (known as bulk-
loading) and performing changes on an existing tree (insertion and deletion).

R-trees do not guarantee good worst-case performance, but generally perform well
with real-world data.[7] While more of theoretical interest, the (bulk-loaded) Priority
R-tree variant of the R-tree is worst-case optimal,[8] but due to the increased
complexity, has not received much attention in practical applications so far.
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When data is organized in an R-tree, the neighbors within a given distance r and the
k nearest neighbors (for any Lp-Norm) of all points can efficiently be computed
using a spatial join.[9][10] This is beneficial for many algorithms based on such
queries, for example the Local Outlier Factor. DeLi-Clu,[11] Density-Link-Clustering
is a cluster analysis algorithm that uses the R-tree structure for a similar kind of
spatial join to efficiently compute an OPTICS clustering.

Priority R-tree
R*-tree
R+ tree
Hilbert R-tree
X-tree

Data in R-trees is organized in pages that can have a variable number of entries (up
to some pre-defined maximum, and usually above a minimum fill). Each entry
within a non-leaf node stores two pieces of data: a way of identifying a child node,
and the bounding box of all entries within this child node. Leaf nodes store the data
required for each child, often a point or bounding box representing the child and an
external identifier for the child. For point data, the leaf entries can be just the points
themselves. For polygon data (that often requires the storage of large polygons) the
common setup is to store only the MBR (minimum bounding rectangle) of the
polygon along with a unique identifier in the tree.

In range searching, the input is a search rectangle (Query box). Searching is quite
similar to searching in a B+ tree. The search starts from the root node of the tree.
Every internal node contains a set of rectangles and pointers to the corresponding
child node and every leaf node contains the rectangles of spatial objects (the pointer
to some spatial object can be there). For every rectangle in a node, it has to be

Variants

Algorithm

Data layout

Search
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decided if it overlaps the search rectangle or not. If yes, the corresponding child
node has to be searched also. Searching is done like this in a recursive manner until
all overlapping nodes have been traversed. When a leaf node is reached, the
contained bounding boxes (rectangles) are tested against the search rectangle and
their objects (if there are any) are put into the result set if they lie within the search
rectangle.

For priority search such as nearest neighbor search, the query consists of a point or
rectangle. The root node is inserted into the priority queue. Until the queue is empty
or the desired number of results have been returned the search continues by
processing the nearest entry in the queue. Tree nodes are expanded and their
children reinserted. Leaf entries are returned when encountered in the queue.[12]

This approach can be used with various distance metrics, including great-circle
distance for geographic data.[5]

To insert an object, the tree is traversed recursively from the root node. At each step,
all rectangles in the current directory node are examined, and a candidate is chosen
using a heuristic such as choosing the rectangle which requires least enlargement.
The search then descends into this page, until reaching a leaf node. If the leaf node is
full, it must be split before the insertion is made. Again, since an exhaustive search is
too expensive, a heuristic is employed to split the node into two. Adding the newly
created node to the previous level, this level can again overflow, and these overflows
can propagate up to the root node; when this node also overflows, a new root node is
created and the tree has increased in height.

The algorithm needs to decide in which subtree to insert. When a data object is fully
contained in a single rectangle, the choice is clear. When there are multiple options
or rectangles in need of enlargement, the choice can have a significant impact on the
performance of the tree.

The objects are inserted into the subtree that needs the least enlargement. A Mixture
heuristic is employed throughout. What happens next is it tries to minimize the
overlap (in case of ties, prefer least enlargement and then least area); at the higher

Insertion

Choosing the insertion subtree
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levels, it behaves similar to the R-tree, but on ties again preferring the subtree with
smaller area. The decreased overlap of rectangles in the R*-tree is one of the key
benefits over the traditional R-tree.

Since redistributing all objects of a node into two nodes has an exponential number
of options, a heuristic needs to be employed to find the best split. In the classic R-
tree, Guttman proposed two such heuristics, called QuadraticSplit and LinearSplit.
In quadratic split, the algorithm searches for the pair of rectangles that is the worst
combination to have in the same node, and puts them as initial objects into the two
new groups. It then searches for the entry which has the strongest preference for one
of the groups (in terms of area increase) and assigns the object to this group until all
objects are assigned (satisfying the minimum fill).

There are other splitting strategies such as Greene's Split,[13] the R*-tree splitting
heuristic[14] (which again tries to minimize overlap, but also prefers quadratic pages)
or the linear split algorithm proposed by Ang and Tan[15] (which however can
produce very irregular rectangles, which are less performant for many real world
range and window queries). In addition to having a more advanced splitting
heuristic, the R*-tree also tries to avoid splitting a node by reinserting some of the
node members, which is similar to the way a B-tree balances overflowing nodes. This
was shown to also reduce overlap and thus increase tree performance.

Finally, the X-tree[16] can be seen as a R*-tree variant that can also decide to not
split a node, but construct a so-called super-node containing all the extra entries,
when it doesn't find a good split (in particular for high-dimensional data).

Effect of different splitting heuristics on a database with US postal
districts

Splitting an overflowing node
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Guttman's quadratic split.[2]

Pages in this tree overlap a lot.
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Guttman's linear split.[2]

Even worse structure, but also faster to
construct.
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Greene's split.[13] Pages overlap much less than
with Guttman's strategy.
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Ang-Tan linear split.[15]

This strategy produces sliced pages, which often
yield bad query performance.
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R* tree topological split.[14]

The pages overlap much less since the R*-tree
tries to minimize page overlap, and the
reinsertions further optimized the tree. The split
strategy prefers quadratic pages, which yields
better performance for common map
applications.
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Bulk loaded R* tree using Sort-Tile-Recursive
(STR).
The leaf pages do not overlap at all, and the
directory pages overlap only little. This is a very
efficient tree, but it requires the data to be
completely known beforehand.
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M-trees are similar to the R-tree, but use nested
spherical pages.
Splitting these pages is, however, much more
complicated and pages usually overlap much
more.

Deleting an entry from a page may require updating the bounding rectangles of
parent pages. However, when a page is underfull, it will not be balanced with its
neighbors. Instead, the page will be dissolved and all its children (which may be
subtrees, not only leaf objects) will be reinserted. If during this process the root node
has a single element, the tree height can decrease.

Nearest-X: Objects are sorted by their first coordinate ("X") and then split into
pages of the desired size.
Packed Hilbert R-tree: variation of Nearest-X, but sorting using the Hilbert value
of the center of a rectangle instead of using the X coordinate. There is no
guarantee the pages will not overlap.

Deletion

Bulk-loading
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Sort-Tile-Recursive (STR):[17] Another variation of Nearest-X, that estimates the
total number of leaves required as , the
required split factor in each dimension to achieve this as , then
repeatedly splits each dimensions successively into  equal sized partitions
using 1-dimensional sorting. The resulting pages, if they occupy more than one
page, are again bulk-loaded using the same algorithm. For point data, the leaf
nodes will not overlap, and "tile" the data space into approximately equal sized
pages.
Overlap Minimizing Top-down (OMT):[18] Improvement over STR using a top-
down approach which minimizes overlaps between slices and improves query
performance.
Priority R-tree

Segment tree
Interval tree – A degenerate R-tree for one dimension (usually time).
K-d tree
Bounding volume hierarchy
Spatial index
GiST
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