
R-tree
Type tree

Invented 1984

Invented by Antonin Guttman

Time complexity in big O notation
Operation Average Worst case
Search O(logMn) O(n)[1]

Insert O(n)

Space complexity

R-tree
R-trees are tree data structures used
for spatial access methods, i.e., for
indexing multi-dimensional
information such as geographical
coordinates, rectangles or polygons.
The R-tree was proposed by Antonin
Guttman in 1984[2] and has found
significant use in both theoretical and
applied contexts.[3] A common real-
world usage for an R-tree might be to
store spatial objects such as restaurant
locations or the polygons that typical
maps are made of: streets, buildings,
outlines of lakes, coastlines, etc. and then find answers quickly to queries such as
"Find all museums within 2 km of my current location", "retrieve all road segments
within 2 km of my location" (to display them in a navigation system) or "find the
nearest gas station" (although not taking roads into account). The R-tree can also
accelerate nearest neighbor search[4] for various distance metrics, including great-
circle distance.[5]

The key idea of the data structure is to group nearby objects and represent them
with their minimum bounding rectangle in the next higher level of the tree; the "R"
in R-tree is for rectangle. Since all objects lie within this bounding rectangle, a query
that does not intersect the bounding rectangle also cannot intersect any of the

R-tree idea

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 1/17

https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/w/index.php?title=Antonin_Guttman&action=edit&redlink=1
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Space_complexity
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Tree_data_structure
https://en.wikipedia.org/wiki/Spatial_index
https://en.wikipedia.org/wiki/Geographic_coordinate_system
https://en.wikipedia.org/wiki/Geographic_coordinate_system
https://en.wikipedia.org/wiki/Rectangle
https://en.wikipedia.org/wiki/Polygon
https://en.wikipedia.org/wiki/Navigation_system
https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://en.wikipedia.org/wiki/Great-circle_distance
https://en.wikipedia.org/wiki/Great-circle_distance
https://en.wikipedia.org/wiki/Minimum_bounding_rectangle

Simple example of an R-tree for 2D rectangles

contained objects. At
the leaf level, each
rectangle describes a
single object; at higher
levels the aggregation
includes an increasing
number of objects. This
can also be seen as an
increasingly coarse
approximation of the
data set.

Similar to the B-tree,
the R-tree is also a
balanced search tree
(so all leaf nodes are at
the same depth),
organizes the data in
pages, and is designed
for storage on disk (as
used in databases). Each page can contain a maximum number of entries, often
denoted as . It also guarantees a minimum fill (except for the root node), however
best performance has been experienced with a minimum fill of 30%–40% of the
maximum number of entries (B-trees guarantee 50% page fill, and B*-trees even
66%). The reason for this is the more complex balancing required for spatial data as
opposed to linear data stored in B-trees.

As with most trees, the searching algorithms (e.g., intersection, containment,
nearest neighbor search) are rather simple. The key idea is to use the bounding
boxes to decide whether or not to search inside a subtree. In this way, most of the
nodes in the tree are never read during a search. Like B-trees, R-trees are suitable
for large data sets and databases, where nodes can be paged to memory when
needed, and the whole tree cannot be kept in main memory. Even if data can be fit in
memory (or cached), the R-trees in most practical applications will usually provide
performance advantages over naive check of all objects when the number of objects
is more than few hundred or so. However, for in-memory applications, there are
similar alternatives that can provide slightly better performance or be simpler to
implement in practice. To maintain in-memory computing for R-tree in a computer

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 2/17

https://en.wikipedia.org/wiki/File:R-tree.svg
https://en.wikipedia.org/wiki/File:R-tree.svg
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/B*-tree
https://en.wikipedia.org/wiki/Intersection_(set_theory)
https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://en.wikipedia.org/wiki/Database

Visualization of an R*-tree for 3D points using ELKI (the cubes are
directory pages)

cluster where
computing nodes are
connected by a
network, researchers
have used RDMA
(Remote Direct
Memory Access) to
implement data-
intensive applications
under R-tree in a
distributed
environment.[6] This
approach is scalable for
increasingly large
applications and
achieves high
throughput and low
latency performance
for R-tree.

The key difficulty of R-
tree is to build an
efficient tree that on
one hand is balanced (so the leaf nodes are at the same height) on the other hand the
rectangles do not cover too much empty space and do not overlap too much (so that
during search, fewer subtrees need to be processed). For example, the original idea
for inserting elements to obtain an efficient tree is to always insert into the subtree
that requires least enlargement of its bounding box. Once that page is full, the data is
split into two sets that should cover the minimal area each. Most of the research and
improvements for R-trees aims at improving the way the tree is built and can be
grouped into two objectives: building an efficient tree from scratch (known as bulk-
loading) and performing changes on an existing tree (insertion and deletion).

R-trees do not guarantee good worst-case performance, but generally perform well
with real-world data.[7] While more of theoretical interest, the (bulk-loaded) Priority
R-tree variant of the R-tree is worst-case optimal,[8] but due to the increased
complexity, has not received much attention in practical applications so far.

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 3/17

https://en.wikipedia.org/wiki/File:RTree-Visualization-3D.svg
https://en.wikipedia.org/wiki/File:RTree-Visualization-3D.svg
https://en.wikipedia.org/wiki/ELKI
https://en.wikipedia.org/wiki/Remote_direct_memory_access
https://en.wikipedia.org/wiki/Remote_direct_memory_access
https://en.wikipedia.org/wiki/Worst-case_performance
https://en.wikipedia.org/wiki/Priority_R-tree
https://en.wikipedia.org/wiki/Priority_R-tree

When data is organized in an R-tree, the neighbors within a given distance r and the
k nearest neighbors (for any Lp-Norm) of all points can efficiently be computed
using a spatial join.[9][10] This is beneficial for many algorithms based on such
queries, for example the Local Outlier Factor. DeLi-Clu,[11] Density-Link-Clustering
is a cluster analysis algorithm that uses the R-tree structure for a similar kind of
spatial join to efficiently compute an OPTICS clustering.

Priority R-tree
R*-tree
R+ tree
Hilbert R-tree
X-tree

Data in R-trees is organized in pages that can have a variable number of entries (up
to some pre-defined maximum, and usually above a minimum fill). Each entry
within a non-leaf node stores two pieces of data: a way of identifying a child node,
and the bounding box of all entries within this child node. Leaf nodes store the data
required for each child, often a point or bounding box representing the child and an
external identifier for the child. For point data, the leaf entries can be just the points
themselves. For polygon data (that often requires the storage of large polygons) the
common setup is to store only the MBR (minimum bounding rectangle) of the
polygon along with a unique identifier in the tree.

In range searching, the input is a search rectangle (Query box). Searching is quite
similar to searching in a B+ tree. The search starts from the root node of the tree.
Every internal node contains a set of rectangles and pointers to the corresponding
child node and every leaf node contains the rectangles of spatial objects (the pointer
to some spatial object can be there). For every rectangle in a node, it has to be

Variants

Algorithm

Data layout

Search

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 4/17

https://en.wikipedia.org/wiki/K_nearest_neighbors
https://en.wikipedia.org/wiki/Lp_space
https://en.wikipedia.org/wiki/Local_Outlier_Factor
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/OPTICS_algorithm
https://en.wikipedia.org/wiki/Priority_R-tree
https://en.wikipedia.org/wiki/R*-tree
https://en.wikipedia.org/wiki/R%2B_tree
https://en.wikipedia.org/wiki/Hilbert_R-tree
https://en.wikipedia.org/wiki/X-tree
https://en.wikipedia.org/wiki/Leaf_node
https://en.wikipedia.org/wiki/Child_node
https://en.wikipedia.org/wiki/Bounding_box
https://en.wikipedia.org/wiki/Range_searching
https://en.wikipedia.org/wiki/B%2B_tree

decided if it overlaps the search rectangle or not. If yes, the corresponding child
node has to be searched also. Searching is done like this in a recursive manner until
all overlapping nodes have been traversed. When a leaf node is reached, the
contained bounding boxes (rectangles) are tested against the search rectangle and
their objects (if there are any) are put into the result set if they lie within the search
rectangle.

For priority search such as nearest neighbor search, the query consists of a point or
rectangle. The root node is inserted into the priority queue. Until the queue is empty
or the desired number of results have been returned the search continues by
processing the nearest entry in the queue. Tree nodes are expanded and their
children reinserted. Leaf entries are returned when encountered in the queue.[12]

This approach can be used with various distance metrics, including great-circle
distance for geographic data.[5]

To insert an object, the tree is traversed recursively from the root node. At each step,
all rectangles in the current directory node are examined, and a candidate is chosen
using a heuristic such as choosing the rectangle which requires least enlargement.
The search then descends into this page, until reaching a leaf node. If the leaf node is
full, it must be split before the insertion is made. Again, since an exhaustive search is
too expensive, a heuristic is employed to split the node into two. Adding the newly
created node to the previous level, this level can again overflow, and these overflows
can propagate up to the root node; when this node also overflows, a new root node is
created and the tree has increased in height.

The algorithm needs to decide in which subtree to insert. When a data object is fully
contained in a single rectangle, the choice is clear. When there are multiple options
or rectangles in need of enlargement, the choice can have a significant impact on the
performance of the tree.

The objects are inserted into the subtree that needs the least enlargement. A Mixture
heuristic is employed throughout. What happens next is it tries to minimize the
overlap (in case of ties, prefer least enlargement and then least area); at the higher

Insertion

Choosing the insertion subtree

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 5/17

https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://en.wikipedia.org/wiki/Great-circle_distance
https://en.wikipedia.org/wiki/Great-circle_distance

levels, it behaves similar to the R-tree, but on ties again preferring the subtree with
smaller area. The decreased overlap of rectangles in the R*-tree is one of the key
benefits over the traditional R-tree.

Since redistributing all objects of a node into two nodes has an exponential number
of options, a heuristic needs to be employed to find the best split. In the classic R-
tree, Guttman proposed two such heuristics, called QuadraticSplit and LinearSplit.
In quadratic split, the algorithm searches for the pair of rectangles that is the worst
combination to have in the same node, and puts them as initial objects into the two
new groups. It then searches for the entry which has the strongest preference for one
of the groups (in terms of area increase) and assigns the object to this group until all
objects are assigned (satisfying the minimum fill).

There are other splitting strategies such as Greene's Split,[13] the R*-tree splitting
heuristic[14] (which again tries to minimize overlap, but also prefers quadratic pages)
or the linear split algorithm proposed by Ang and Tan[15] (which however can
produce very irregular rectangles, which are less performant for many real world
range and window queries). In addition to having a more advanced splitting
heuristic, the R*-tree also tries to avoid splitting a node by reinserting some of the
node members, which is similar to the way a B-tree balances overflowing nodes. This
was shown to also reduce overlap and thus increase tree performance.

Finally, the X-tree[16] can be seen as a R*-tree variant that can also decide to not
split a node, but construct a so-called super-node containing all the extra entries,
when it doesn't find a good split (in particular for high-dimensional data).

Effect of different splitting heuristics on a database with US postal
districts

Splitting an overflowing node

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 6/17

https://en.wikipedia.org/wiki/R*-tree
https://en.wikipedia.org/wiki/R*-tree
https://en.wikipedia.org/wiki/R*-tree
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/X-tree

Guttman's quadratic split.[2]

Pages in this tree overlap a lot.

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 7/17

https://en.wikipedia.org/wiki/File:R-tree_with_Guttman%27s_quadratic_split.png
https://en.wikipedia.org/wiki/File:R-tree_with_Guttman%27s_quadratic_split.png

Guttman's linear split.[2]

Even worse structure, but also faster to
construct.

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 8/17

https://en.wikipedia.org/wiki/File:R-tree_built_with_Guttman%27s_linear_split.png
https://en.wikipedia.org/wiki/File:R-tree_built_with_Guttman%27s_linear_split.png

Greene's split.[13] Pages overlap much less than
with Guttman's strategy.

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 9/17

https://en.wikipedia.org/wiki/File:R-tree_built_with_Greenes_Split.png
https://en.wikipedia.org/wiki/File:R-tree_built_with_Greenes_Split.png

Ang-Tan linear split.[15]

This strategy produces sliced pages, which often
yield bad query performance.

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 10/17

https://en.wikipedia.org/wiki/File:R-tree_built_with_Ang-Tan_linear_split.png
https://en.wikipedia.org/wiki/File:R-tree_built_with_Ang-Tan_linear_split.png

R* tree topological split.[14]

The pages overlap much less since the R*-tree
tries to minimize page overlap, and the
reinsertions further optimized the tree. The split
strategy prefers quadratic pages, which yields
better performance for common map
applications.

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 11/17

https://en.wikipedia.org/wiki/File:R*-tree_built_using_topological_split.png
https://en.wikipedia.org/wiki/File:R*-tree_built_using_topological_split.png
https://en.wikipedia.org/wiki/R*_tree

Bulk loaded R* tree using Sort-Tile-Recursive
(STR).
The leaf pages do not overlap at all, and the
directory pages overlap only little. This is a very
efficient tree, but it requires the data to be
completely known beforehand.

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 12/17

https://en.wikipedia.org/wiki/File:R*-tree_bulk_loaded_with_sort-tile-recursive.png
https://en.wikipedia.org/wiki/File:R*-tree_bulk_loaded_with_sort-tile-recursive.png
https://en.wikipedia.org/wiki/R*_tree

M-trees are similar to the R-tree, but use nested
spherical pages.
Splitting these pages is, however, much more
complicated and pages usually overlap much
more.

Deleting an entry from a page may require updating the bounding rectangles of
parent pages. However, when a page is underfull, it will not be balanced with its
neighbors. Instead, the page will be dissolved and all its children (which may be
subtrees, not only leaf objects) will be reinserted. If during this process the root node
has a single element, the tree height can decrease.

Nearest-X: Objects are sorted by their first coordinate ("X") and then split into
pages of the desired size.
Packed Hilbert R-tree: variation of Nearest-X, but sorting using the Hilbert value
of the center of a rectangle instead of using the X coordinate. There is no
guarantee the pages will not overlap.

Deletion

Bulk-loading

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 13/17

https://en.wikipedia.org/wiki/File:M-tree_built_with_MMRad_split.png
https://en.wikipedia.org/wiki/File:M-tree_built_with_MMRad_split.png
https://en.wikipedia.org/wiki/M-tree
https://en.wikipedia.org/wiki/Hilbert_R-tree

Sort-Tile-Recursive (STR):[17] Another variation of Nearest-X, that estimates the
total number of leaves required as , the
required split factor in each dimension to achieve this as , then
repeatedly splits each dimensions successively into equal sized partitions
using 1-dimensional sorting. The resulting pages, if they occupy more than one
page, are again bulk-loaded using the same algorithm. For point data, the leaf
nodes will not overlap, and "tile" the data space into approximately equal sized
pages.
Overlap Minimizing Top-down (OMT):[18] Improvement over STR using a top-
down approach which minimizes overlaps between slices and improves query
performance.
Priority R-tree

Segment tree
Interval tree – A degenerate R-tree for one dimension (usually time).
K-d tree
Bounding volume hierarchy
Spatial index
GiST

1. R Tree (https://www2.cs.sfu.ca/CourseCentral/454/jpei/slides/R-Tree.pdf)
cs.sfu.ca

2. Guttman, A. (1984). "R-Trees: A Dynamic Index Structure for Spatial Searching"
(http://www-db.deis.unibo.it/courses/SI-LS/papers/Gut84.pdf) (PDF).
Proceedings of the 1984 ACM SIGMOD international conference on
Management of data – SIGMOD '84. p. 47. doi:10.1145/602259.602266 (https://
doi.org/10.1145%2F602259.602266). ISBN 978-0897911283. S2CID 876601 (htt
ps://api.semanticscholar.org/CorpusID:876601).

3. Y. Manolopoulos; A. Nanopoulos; Y. Theodoridis (2006). R-Trees: Theory and
Applications (https://books.google.com/books?id=1mu099DN9UwC&pg=PR5).
Springer. ISBN 978-1-85233-977-7. Retrieved 8 October 2011.

4. Roussopoulos, N.; Kelley, S.; Vincent, F. D. R. (1995). "Nearest neighbor
queries". Proceedings of the 1995 ACM SIGMOD international conference on
Management of data – SIGMOD '95. p. 71. doi:10.1145/223784.223794 (https://
doi.org/10.1145%2F223784.223794). ISBN 0897917316.

See also

References

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 14/17

https://en.wikipedia.org/wiki/Priority_R-tree
https://en.wikipedia.org/wiki/Segment_tree
https://en.wikipedia.org/wiki/Interval_tree
https://en.wikipedia.org/wiki/K-d_tree
https://en.wikipedia.org/wiki/Bounding_volume_hierarchy
https://en.wikipedia.org/wiki/Spatial_index
https://en.wikipedia.org/wiki/GiST
https://www2.cs.sfu.ca/CourseCentral/454/jpei/slides/R-Tree.pdf
http://www-db.deis.unibo.it/courses/SI-LS/papers/Gut84.pdf
http://www-db.deis.unibo.it/courses/SI-LS/papers/Gut84.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F602259.602266
https://doi.org/10.1145%2F602259.602266
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0897911283
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:876601
https://api.semanticscholar.org/CorpusID:876601
https://books.google.com/books?id=1mu099DN9UwC&pg=PR5
https://books.google.com/books?id=1mu099DN9UwC&pg=PR5
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-85233-977-7
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F223784.223794
https://doi.org/10.1145%2F223784.223794
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0897917316

5. Schubert, E.; Zimek, A.; Kriegel, H. P. (2013). "Geodetic Distance Queries on R-
Trees for Indexing Geographic Data". Advances in Spatial and Temporal
Databases. Lecture Notes in Computer Science. Vol. 8098. p. 146.
doi:10.1007/978-3-642-40235-7_9 (https://doi.org/10.1007%2F978-3-642-40235
-7_9). ISBN 978-3-642-40234-0.

6. Mengbai Xiao, Hao Wang, Liang Geng, Rubao Lee, and Xiaodong Zhang
(2022). " An RDMA-enabled In-memory Computing Platform for R-tree on
Clusters". ACM Transactions on Spatial Algorithms and Systems. pp. 1–26.
doi:10.1145/3503513 (https://doi.org/10.1145%2F3503513).

7. Hwang, S.; Kwon, K.; Cha, S. K.; Lee, B. S. (2003). "Performance Evaluation of
Main-Memory R-tree Variants" (https://archive.org/details/advancesinspatia0000
sstd/page/10). Advances in Spatial and Temporal Databases. Lecture Notes in
Computer Science. Vol. 2750. pp. 10 (https://archive.org/details/advancesinspati
a0000sstd/page/10). doi:10.1007/978-3-540-45072-6_2 (https://doi.org/10.100
7%2F978-3-540-45072-6_2). ISBN 978-3-540-40535-1.

8. Arge, L.; De Berg, M.; Haverkort, H. J.; Yi, K. (2004). "The Priority R-tree" (http://
www.win.tue.nl/~mdberg/Papers/prtree.pdf) (PDF). Proceedings of the 2004
ACM SIGMOD international conference on Management of data – SIGMOD '04
(http://doi.acm.org/10.1145/1007568.1007608). p. 347.
doi:10.1145/1007568.1007608 (https://doi.org/10.1145%2F1007568.1007608).
ISBN 978-1581138597. S2CID 6817500 (https://api.semanticscholar.org/CorpusI
D:6817500).

9. Brinkhoff, T.; Kriegel, H. P.; Seeger, B. (1993). "Efficient processing of spatial
joins using R-trees". ACM SIGMOD Record. 22 (2): 237.
CiteSeerX 10.1.1.72.4514 (https://citeseerx.ist.psu.edu/viewdoc/summary?doi=1
0.1.1.72.4514). doi:10.1145/170036.170075 (https://doi.org/10.1145%2F170036.
170075). S2CID 7810650 (https://api.semanticscholar.org/CorpusID:7810650).

10. Böhm, Christian; Krebs, Florian (2003-09-01). "Supporting KDD Applications by
the k-Nearest Neighbor Join". Database and Expert Systems Applications.
Lecture Notes in Computer Science. Vol. 2736. Springer, Berlin, Heidelberg.
pp. 504–516. CiteSeerX 10.1.1.71.454 (https://citeseerx.ist.psu.edu/viewdoc/su
mmary?doi=10.1.1.71.454). doi:10.1007/978-3-540-45227-0_50 (https://doi.org/1
0.1007%2F978-3-540-45227-0_50). ISBN 9783540408062.

11. Achtert, Elke; Böhm, Christian; Kröger, Peer (2006). "DeLi-Clu: Boosting
Robustness, Completeness, Usability, and Efficiency of Hierarchical Clustering
by a Closest Pair Ranking". In Ng, Wee Keong; Kitsuregawa, Masaru; Li,
Jianzhong; Chang, Kuiyu (eds.). Advances in Knowledge Discovery and Data
Mining, 10th Pacific-Asia Conference, PAKDD 2006, Singapore, April 9-12,
2006, Proceedings. Lecture Notes in Computer Science. Vol. 3918. Springer.
pp. 119–128. doi:10.1007/11731139_16 (https://doi.org/10.1007%2F11731139_1
6).

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 15/17

https://en.wikipedia.org/wiki/Hans-Peter_Kriegel
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F978-3-642-40235-7_9
https://doi.org/10.1007%2F978-3-642-40235-7_9
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-642-40234-0
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F3503513
https://archive.org/details/advancesinspatia0000sstd/page/10
https://archive.org/details/advancesinspatia0000sstd/page/10
https://archive.org/details/advancesinspatia0000sstd/page/10
https://archive.org/details/advancesinspatia0000sstd/page/10
https://archive.org/details/advancesinspatia0000sstd/page/10
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F978-3-540-45072-6_2
https://doi.org/10.1007%2F978-3-540-45072-6_2
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-40535-1
https://en.wikipedia.org/wiki/Lars_Arge
http://www.win.tue.nl/~mdberg/Papers/prtree.pdf
http://www.win.tue.nl/~mdberg/Papers/prtree.pdf
http://doi.acm.org/10.1145/1007568.1007608
http://doi.acm.org/10.1145/1007568.1007608
http://doi.acm.org/10.1145/1007568.1007608
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F1007568.1007608
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1581138597
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:6817500
https://api.semanticscholar.org/CorpusID:6817500
https://en.wikipedia.org/wiki/Hans-Peter_Kriegel
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.4514
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.4514
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F170036.170075
https://doi.org/10.1145%2F170036.170075
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:7810650
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.454
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.454
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F978-3-540-45227-0_50
https://doi.org/10.1007%2F978-3-540-45227-0_50
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9783540408062
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F11731139_16
https://doi.org/10.1007%2F11731139_16

12. Kuan, J.; Lewis, P. (1997). "Fast k nearest neighbour search for R-tree family".
Proceedings of ICICS, 1997 International Conference on Information,
Communications and Signal Processing. Theme: Trends in Information Systems
Engineering and Wireless Multimedia Communications (Cat. No.97TH8237).
p. 924. doi:10.1109/ICICS.1997.652114 (https://doi.org/10.1109%2FICICS.1997.
652114). ISBN 0-7803-3676-3.

13. Greene, D. (1989). "An implementation and performance analysis of spatial data
access methods". [1989] Proceedings. Fifth International Conference on Data
Engineering. pp. 606–615. doi:10.1109/ICDE.1989.47268 (https://doi.org/10.110
9%2FICDE.1989.47268). ISBN 978-0-8186-1915-1. S2CID 7957624 (https://api.
semanticscholar.org/CorpusID:7957624).

14. Beckmann, N.; Kriegel, H. P.; Schneider, R.; Seeger, B. (1990). "The R*-tree: an
efficient and robust access method for points and rectangles" (http://dbs.mathem
atik.uni-marburg.de/publications/myPapers/1990/BKSS90.pdf) (PDF).
Proceedings of the 1990 ACM SIGMOD international conference on
Management of data – SIGMOD '90. p. 322. CiteSeerX 10.1.1.129.3731 (https://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.3731).
doi:10.1145/93597.98741 (https://doi.org/10.1145%2F93597.98741). ISBN 978-
0897913652. S2CID 11567855 (https://api.semanticscholar.org/CorpusID:11567
855).

15. Ang, C. H.; Tan, T. C. (1997). "New linear node splitting algorithm for R-trees". In
Scholl, Michel; Voisard, Agnès (eds.). Proceedings of the 5th International
Symposium on Advances in Spatial Databases (SSD '97), Berlin, Germany, July
15–18, 1997. Lecture Notes in Computer Science. Vol. 1262. Springer. pp. 337–
349. doi:10.1007/3-540-63238-7_38 (https://doi.org/10.1007%2F3-540-63238-7_
38).

16. Berchtold, Stefan; Keim, Daniel A.; Kriegel, Hans-Peter (1996). "The X-Tree: An
Index Structure for High-Dimensional Data" (http://www.dbs.ifi.lmu.de/Publikation
en/Papers/x-tree.ps). Proceedings of the 22nd VLDB Conference. Mumbai,
India: 28–39.

17. Leutenegger, Scott T.; Edgington, Jeffrey M.; Lopez, Mario A. (February 1997).
"STR: A Simple and Efficient Algorithm for R-Tree Packing" (https://archive.org/d
etails/nasa_techdoc_19970016975).

18. Lee, Taewon; Lee, Sukho (June 2003). "OMT: Overlap Minimizing Top-down
Bulk Loading Algorithm for R-tree" (http://ftp.informatik.rwth-aachen.de/Publicatio
ns/CEUR-WS/Vol-74/files/FORUM_18.pdf) (PDF).

 Media related to R-tree at Wikimedia Commons

External links

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 16/17

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FICICS.1997.652114
https://doi.org/10.1109%2FICICS.1997.652114
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-7803-3676-3
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FICDE.1989.47268
https://doi.org/10.1109%2FICDE.1989.47268
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-8186-1915-1
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:7957624
https://api.semanticscholar.org/CorpusID:7957624
https://en.wikipedia.org/wiki/Hans-Peter_Kriegel
http://dbs.mathematik.uni-marburg.de/publications/myPapers/1990/BKSS90.pdf
http://dbs.mathematik.uni-marburg.de/publications/myPapers/1990/BKSS90.pdf
http://dbs.mathematik.uni-marburg.de/publications/myPapers/1990/BKSS90.pdf
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.3731
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.3731
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F93597.98741
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0897913652
https://en.wikipedia.org/wiki/Special:BookSources/978-0897913652
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:11567855
https://api.semanticscholar.org/CorpusID:11567855
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F3-540-63238-7_38
https://doi.org/10.1007%2F3-540-63238-7_38
https://en.wikipedia.org/wiki/Hans-Peter_Kriegel
http://www.dbs.ifi.lmu.de/Publikationen/Papers/x-tree.ps
http://www.dbs.ifi.lmu.de/Publikationen/Papers/x-tree.ps
http://www.dbs.ifi.lmu.de/Publikationen/Papers/x-tree.ps
https://archive.org/details/nasa_techdoc_19970016975
https://archive.org/details/nasa_techdoc_19970016975
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-74/files/FORUM_18.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-74/files/FORUM_18.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-74/files/FORUM_18.pdf
https://en.wikipedia.org/wiki/File:Commons-logo.svg
https://en.wikipedia.org/wiki/File:Commons-logo.svg
https://commons.wikimedia.org/wiki/Category:R-tree

Retrieved from "https://en.wikipedia.org/w/index.php?title=R-tree&oldid=1192723243"

2/4/25, 11:27 AM R-tree - Wikipedia

https://en.wikipedia.org/wiki/R-tree 17/17

https://en.wikipedia.org/w/index.php?title=R-tree&oldid=1192723243

