Searching, Sorting

part 1

Week 3 Objectives

@ Searching: binary search

@ Comparison-based search: running time bound
@ Sorting: bubble, selection, insertion, merge

@ Sorting Heapsort

® Comparison-based sorting time bound

Brute force/linear search

@® Linear search: look through all values of the array
until the desired value/event/condition found

@® Running Time: linear in the number of elements, call
it O(n)

@ Advantage: in most situations, array does not have to
be sorted

Binary Search

® Array must be sorted
@® Search array A from index b to index e for value V
@® Look for value V in the middle index m = (b+e)/2

— That is compare V with A[m]; if equal return index m
— If V<A[m] search the first half of the array
— If V>Alm] search the second half of the array

4 (-1{0 |0 | | 1 |3 (19(29]47

A[m]=1 <V=3 => search moves to the right half

Binary Search Efficiency

® every iteration/recursion
— ends the procedure if value is found
— if not, reduces the problem size (search space) by half

@® worst case : value is not found until problem size=1
how many reductions have been done?
n/2/2/2/..../2=1 How many 2-s do I need ?
if kK 2-s, then n= 2%, so k is about log(n)
worst running time is O(log n)

Search: tree of comparisons

compare

/

compare

N

\

compare

[

compare

compare

canpare

\Tcompare

/

N

campare

campare

¥

N

compare

compare

¥

N\

compare

compare

tree of comparisons : essentially what the algorithm does

Search: tree of comparisons

/

compare

compare| |compare \Tcompare
compare || compare compare

¥ N\

compare

@® tree of comparisons : essentially what the
algorithm does

— each program execution follows a certain

Search: tree of comparisons

/

compare

compare| |compare \Tcompare
compare || compare compare

¥ N

compare

@® tree of comparisons : essentially what the
algorithm does

— each program execution follows a certain
— red nodes are terminal / output

— the algorithm has to have at least n output nodes.. why ?

Search: tree of comparisons

/

compare

compare| |compare \Tcompare
compare || compare compare

¥ N

compare

@® tree of comparisons : essentially what the
algorithm does

— each program execution follows a certain

— red nodes are terminal / output

— the algorithm has fo have n output nodes... why ?
— if tree is balanced, longest

Bubble Sort

@ Simple idea: as long as there is an

— inversion = a pair of indices i<j with A[i][>A[|]
— swap Alik->Alj]

— directly swap (A[i1], A[j]);
— code it yourself: aux = A[i]; A[i]=A[]];A[]]=aux;
® how long does it take?

— worst case : how many inversions have o be swapped?
- 0O(n?)

Insertion Sort

@ partial array is sorted
| | 5| 8 | 20|49

@ gef a new element

Insertion Sort

@ partial array is sorted
| | 5 | 8 |20 49

@ gef a new element

® find correct position with binary search

Insertion Sort

@ partial array is sorted
| | 5 | 8 |20 49

@ gef a new element

® find correct position with binary search
® move elements to make space for the new element
| | 5| 8 20 | 49

Insertion Sort

@ partial array is sorted
| | 5 | 8 |20 49

@ gef a new element

® find correct position with binary search
® move elements to make space for the new element
| | 5| 8 20 | 49

@ insert info the existing array at correct position

| | 5] 8 20 | 49

Insertion Sort - variant

@® partial array is sorted
| | 5 | 8 |20 49

Insertion Sort - variant

@® partial array is sorted
| | 5 | 8 |20 49

Insertion Sort - variant

@® partial array is sorted
| | 5 | 8 |20 49

® ?e’r a new element put it at the end of

he array

5| 8|20 49

Insertion Sort - variant

@® partial array is sorted

5

8

20

49

'?

et a new element

he array

put it at the end of

5

8

20

49

® Move in V=9 from the back until reaches

correct position

5

8

20

49

Insertion Sort - variant

@® partial array is sorted

5

8

20

49

'?

et a new element

he array

put it at the end of

5

8

20

49

® Move in V=9 from the back until reaches

correct position

5

8

20

49

5

8

49

Insertion Sort Running Time

@ For one element, there might be required to move
O(n) elements (worst case ®(n))

— O(n) insertion time

@® Repeat insertion for each element of the n elements
gives n*O(n) = O(n?) running time

Selection Sort

® sort array Al] into a new
array Cl[]

@ while (condition)

find min element x in A at
index i, ignore "used elements

yvricfe X in next available position
in

mark index i in A as "used" so it
doesn't get picked up again

® Insertion/Selection
Running Time = O(n?)

used A

|10

-5

Selection Sort

used A

® sort array Al] into a new 0
array C[]
@® while (condition) - |

find min element x in A at
index i, ignore "used elements -3

yvrgre X in next available position
in

mark index i in A as "used" so it
doesn't get picked up again

@® Running Time = O(n?)

Selection Sort

used A

® sort array Al] into a new 0
array C[] e
@® while (condition) - |

find min element x in A at
index i, ignore "used elements -3

yvrgre X in next available position
in

mark index i in A as "used" so it
doesn't get picked up again

@® Running Time = O(n?)

Selection Sort

used A

® sort array Al] into a new 0
array C[]
@® while (condition) - |

find min element x in A at
index i, ignore "used elements -3

yvrgre X in next available position
in

mark index i in A as "used" so it
doesn't get picked up again

@® Running Time = O(n?)

Selection Sort

used A

® sort array Al] into a new 0
array C[]
@® while (condition) - |

find min element x in A at
index i, ignore "used elements -3

yvrgre X in next available position
in

mark index i in A as "used" so it
doesn't get picked up again

@® Running Time = O(n?)

Selection Sort

used A

® sort array Al] into a new 0
array C[]
@® while (condition) - |

find min element x in A at
index i, ignore "used elements -3

yvrgre X in next available position
in

mark index i in A as "used" so it
doesn't get picked up again

@® Running Time = O(n?)

Selection Sort

used A

® sort array A[] into a new 10
array C[]
@® while (condition) - |

find min| element x in A at
index i, ignore "used” elements -3

yvric’re X in next available position
in

mark index i in A as "used' so it
doesn't get picked up again

@® Running Time = O(n?)

Merge two sorted arrays

® two sorted arrays
— All={1,5, 10,100, 200, 300}; B[] = {2, 5, 6, 10};

@ merge them into a new array C
P index i for array A[], j for B[], k for C[]
P init i=j=k=0;
P while ()

if AA[i] <= B[j]) { C[k]=A[1], i++ } //advance 1
in

else {C[k]=B[]j], j++} // advance j in B

advance k
P end while

Merge two sorted arrays

@ complete pseudocode
P index i for array A[], j for B[], k for C[]
P init i=3=k=0;
P while ()
1f(1i>size(A) {C[k]=B[]], Jt+t+}

else if (j>size(B) {C[k]=A[i], i++}

else 1f (A[1] <= B[]J]) { C[k]=A[1], 1i++ }
else {C[k]=B[]], Jt++}
K-+

P end while

MergeSort

@ divide and conquer strategy

@® MergeSort array A
— divide array A info two halves A-left, A-right
— MergeSort A-left (recursive call)
— MergeSort A-right (recursive call)
— Merge (A-left, A-right) into a fully sorted array

® running time : O(nlog(n))

MergeSort running time

® T(n) = 2T(n/2) + O(n)
— 2 sub-problems of size n/2 each, and a linear time to combine
results
— Master Theorem case 2 (a=2, b=2, c=1)

— Running time T(n) = ©(n logn)

Heap DataStructure

16

1

@® binary tree

property : parent > children

Max Heap property

® Assume the Left and
Ri?h’r subtrees
satisfy the Max-
Heap property, but
’rh$ top node does
no

® Float down the node
by consecuﬁvelK
swapping it wit
brigher nodes below
it.

Building a heap

@® Representing the heap as array datastructure
— Parent(i) = i/2
— Left_child(i)=2i
— Right_child(i) = 2i+1

® A = input array has the last half elements leafs
® MAX-HEAPIFY the first half of A, reverse order

for i=size(A)/2 downto 1
P MAX-HEAPIFY (A,1i)

Heapsort

@® Build a Max-Heap from input array
® LOOP

— swap heap_root (max) with a leaf
— output (take out) the max element; reduce size
— MAX-HEAPIFY from the root to maintain the heap property

® END LOOP
@ the output is in order

HeapSort running time

® Max-Heapify procedure time is given by recurrence
- T(n)<T(2n/3) + O(1)

— master Theorem T(n)=O(logn)

@® Build Max-Heap : running n times the Max-Heapify
procedure gives the running time O(nlogn)

@® Extracting values: again run n times the Max-
Heapify procedure gives the running time O(nlogn)

@® Total O(nlogn)

Sorting : tree of comparisons

@® tree of comparisons : essentially what the
algorithm does

each program execution follows a certain

red nodes are terminal / output

the algorithm has to have n! output nodes... why ?
if tree is balanced, longest

QuickSort - pseudocode

® QuickSort(A,b,e)
— q = Partition(Abe)

— if(b<g-1) QuickSort(A,bg-1)
— if(q+l<e) QuickSort(A,q+le)

@ After Partition the pivot index contains the right value:

QuickSort Partition

@® TASK: rearrange A and find pivot q, such that
— dll elements before q are smaller than Alq]

— dll elements after q are bigger than A{q]
® Partition (A, b, e)

— x=Ale] //pivot value

— 1=b-1

= for j=b TO e-1
@ 1f A[j]<=x then
© I i++; swap A[i]l<->A[7]
swap Ali1+1l]<->A[e]

— g=1+1; return g

Partition Example

@ set pivot value x = Ale], // «-=

— i =index of last value < X

— i+l = index of first value > x

U

pIC [NIT (N DO (T Ni-.

® ru? J through array indices b to
e-

- ifA[jl<=x //see steps (4d), (e)
— swap (Alj], Ali+1]);

- i++; //advance i

@ move pivot in the right place
— swap (pivot=Ale] , Ali+1])

@ return pivot index

— return i+l

QuickSort time

@® Partition runs in linear time

- (IF pi)vo’r position is q, the QuickSort recurrence is T(n) =n +T(q) + T
n-q

@® Best case q is always in the middle
— T(n)=n+2T(n/2), overall O(n*logn)

@ Worst case: q Is always at extreme, 1 or n
- T(n) =n + T(1) + T(n-1), overall O(n?)

QuickSort Running Time

@® Depends on the Partition balance

® Worst case: Partition produces unbalanced split n =
(1, n-1) most of the time

— results in O(n®) running time

@® Average case: most of the fime split balance is not
worse than n = (cn, (1-c)n) for a fixed c

for example ¢=0.99 means balance not worse than (1/100*n,
99/ lOO*nSJ

results in O(n*logn) running time

can prove that on expectation (average), if pivot value is chosen
randomly, running time is ©(n*logn), see book.

Median Stats

® Task: find k-th element
— k=n is same as “find MAX", or “find highest”
— k=2 means “find second-smalles”

— k=l is same as “finding MIN"

@ naive approach, based on selection sort:

find first smallest (MIN)

then find second smallest, third smallest, etc; until the k-th smallest
element

Running Time: average case k=0(n), and each “finding” min takes O
(n) time, so total ©(n?)

Median Stats

® 'find k-th element”

@ befter approach, based on QuickSort

® Median(A,b,ek)
— q = Partition(A,b,e)

— if(q==k) return A[q]
- if(g>k) Median(A,b,g-1,k)
— else Median(A,q+1,e,g-K)

@ Not like Quiksort, Median recursion goes only on one
side, depending on the pivot

@® why the second Median call has Kpnewy=q-Keld) ?

Median Stats

® Running Time of Median

® the recursive calls makes T(n) =n + max(T(q), T(n-q))
— "max” : assuming the recursion has fo call the longer side

— just like QuickSort, avera(c);e case is when q is "balanced”, i.e. cn<g<
il-c)n for some constant O<c<l

— balanced case: T(n) = n + T(cn); Master Theorem gives linear time O

(n)

— expected (average) case can be proven linear time (see book);
worst case @(nz?

@ worst case can run in linear time with a rather
complicated choice of the pivot value before each
partition call (see book)

Linear-time Sorting: Counting Sort

@® Counting Sort (A[]) : count values,
® STEP 1: build array C that counts A values

- 1nit C[]=0 ;
— run 1ndex 1 through A
- value =_A[1]

l - C [Value] +4; //counts each value occurrence

@ STEP 2: assign values to counted positions
P 1init position=0;
for value=0:RANGE
for 1=1:Cl[value]
D) position = position+l;

p OUTPUT [position] =value;

Counting Sort

@® n elements with values in k-range of {vi,vz,..vk}

- for examBIe: 100,000 people sorted by age: n=100,000; k =
i1,2,3,..170} since 170 is maximum reasonable age In years.

@® Linear Time O(n+k)
Beats the bound? YES, linear O(n), not ©(n*logn), if k is a constant
Definitely appropriate when Kk is constant or increases very slowly

Not good when k can be large. Example: sort pictures by their size;

n=10000 (typical picture collection), size range k can be any number
from 200Bytes to 40MBytes.

@® Stable (equal input elements preserve original order)

