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Graphs

® nodes/vertices and edges between vertices

— set V for vertices, set E for edges

— we write graph G = (V,E)

@® example : cities on a map (nodes) and roads (edges)
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Adjacency matrix

® g; =l if there is an edge from vertex i to vertex |

@ if graph is undirected, edges go both ways, and the
adj. matrix Is symmetric

1 2 3 4.3

oo 110 1 0 0 1
"o 2% 9 % 1 1
3101 0 1 O

o o 410 1 1 0 1
> (1 1 vl %

® if the graph is directed, the adj. matrix is not
necessarily symmeitric
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Adjacency lists
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paths and cycles

@ path: a sequence of vertices (vi,v2,vs,...Vk) such that
all (vi,vis1) are edges in the graph
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@® edges can form a cycle = a path that ends in the
same vertex it started
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@® paths and cycles are defined for both directed and
undirected graphs
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paths and cycles
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paths and cycles

@ path: a sequence of vertices (vi,v2,vs,...Vk) such that
all (vi,vis1) are edges in the graph
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@® edges can form a cycle = a path that ends in the
same vertex it started

@® paths and cycles are defined for both directed and
undirected graphs



Traverse/search graphs : BFS

® BFS = breadth-first search. \Jave L@Ws@&

@® Start in a given vertex s, find all reachable vertices
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Traverse/search graphs : BFS

® BFS = breadth-first search.

@® Start in a given vertex s, find all reachable vertices
from s

— proceed in waves

— computes d[v] = number of edges from s to v. If v not reachable
from s, we have d[v] = co.
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Traverse/search graphs : BFS

® BFS = breadth-first search.

@® Start in a given vertex s, find all reachable vertices
from s

— proceed in waves

— computes d[v] = number of edges from s to v. If v not reachable
from s, we have d[v] = co.




BFS

@® use a queue to store processed vertices

— for each vertex in the queue, follow adj matrix to get vertices of
the next wave

» BFS(V,E, s)
» for each vertex v#s, set d[v]=®°

> init queue Q; enqueue(Q,s) //puts s in the queue
P while Q not empty

» u = dequeue (S) // takes the first elem available from the queue
P for each vertex v € Adj[u]

1f (d[v]==e hen

[» wave

> Friqueue (Q, v
end 1f

» end for

» end while

@® Running time O(V+E), since each edge and vertex is
considered once.



Traverse/search graphs : DFS

) 2 OF (A<ce
o L. ?@;@W

oifs a ,j vertices, or

® DFS = depth-first search
cpth-fist search,

— Qnce a vertex is discovered, proceed

“children”(depth) rather than fo |’rs ‘brothers” (breadth)
» DFS-wrapper (V, E) 3C,<JQSQ\ Qaﬁuv\
» foreach vertex ueV {color[u] = white} end for //color all nodes white
foreach vertex uev
[ > 1f (color[u]==white) then DFS-Visit (u)
end for
r  DEFS-Visit (u) //recursive function
» color[u] = gray; //gray means “exploring from this node”

>  time++; fdiscover time[u] §= time; //discover time

b for each v € Adj[u]
» 1if (color([v]==white) then DFS-Visit (v) //explore from u

> end for

> color [u] = black;‘finishtime[uh=time;,&4h$htMm


























































DFS edge classification

®|"free” edge [ from vertices gray to white

— a tree edge advances the graph exploration/traversal

® \ back” edge|: from vertices(gray to gra

— a back edge points to a cycle within ent exploration nodes

® l‘ ;orward: edgﬁ. :ffrom vertices a(gray) to b(black), if

— discovery_time[a] < discovery_ time[b]

— points to a different part of the tree, already explored from a

0 from vertices a(gray) to b(black), if b

discovered first
— discovery_timel[a] > discovery__time[b]

— points fo a different part of the tree, explored before discovering a
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Checkpoint

@® on the animated example, label each edge as

"tree" "back”, "cross’, or 'forward"

® do the same on the following example (DFS discovery
and finish times marked for each node)

1|16

2 7 8 12|15
<«
3 K 5 6{ 9 |10 13114




Checkpoint

® almost same example, with a small modification: one
edge was reverse




DFS observations

@® Running time O(V+E), same as BFS
@® vertex v is gray between times discover[v] and finish[v]

@® gray time intervals (discover(v], finish[v]) are inclusive of
each other

- (dlv], f[v]) can include (d[u], f[u]) : d[v] < d[u] < flu] <F[V]

dlv] d‘u] flul flyl time d\QC(V) DFS& )( & i ()
o (& -——VC Ry

AN R oy
- (d[v], flv]) can separate from (d[u], f[u]) : d[v] < fI¥] < d[u <f[u]

vl flvl dlul f[] time
6 (b ohs (V) d‘k(“)

&2 (u.)

— (d[v], f[v]) cannot intersect (d[u], F[u]) d( (u) < f[v] <F[u]
lHEOQgL%\/C w f}(%wm wn o
® graph G=(VE) is acyclic (does not have cycles) if DFS
oes not find any "back” edge




Undirected graphs cycles

® graph G=(VE) is acyclic (does not have cycles) if DFS
oes not find any "back” edge

® since G is undirected, no cycles implies |E|<|V|-1

@ running DFS, if we find more than |V|-1 edges, there
must be a cycle

@® Undirected graphs: find-cycles algorithm takes O(V)



Directed graphs cycles

® graph G=(VE) is acyclic (does not have cycles) if DFS
oes not find any "back” edge

® for directed graphs even without cycles they can
have more edges, [E| > |[V|-1

® algorithm to determine cycles: run DFS, look for back
edges - O(V+E) time

@® DAG = directed acyclic graph



B[XY&Q direded &C.Q(Aé
Topologylcal sort

® DAG admits topological sort: all vertices “sorted” on a line, such that all edges point
from left to right-no cycles - 2 graphs below are the same-

® 1o do this: algorithm: run DFS, time O(V+E). Output vertices in reverse order given by

finishing time D(‘ M 'A‘él“‘“‘ CT’&(L‘

- = -
c TECORO

17(13) 11(16) 1205) 13 910> 18) 60 2 3@)
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@® how can we use DFS to defermine if there is a path
fromu tov?

@ prove that by sorting vertices in the reverse order
of finishing times, we obtained a topological sort

— assuming no cycles

— in other words, all edges point in the same direction
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S ke h = DAGe
S’rro%(g';lw conhdcted components

® SCC = a set of vertices ScV, such that for any two (uVv)eS, graph.G

contains a path u-v and a path v~u @
Seca)5eeg

arRed 4 strongly

@® trivial for undirected graphs

— all connected vertices are in fact strongly connected

@® tricky for directed graphs

® graph below has the DFS discover/finish times and
connected components; “tree” edges highlighted

® between two SCC, A and B, there cannot exists paths both ways
(Asu~veB and Bav-u'eh)

— paths both ways would make A and B a single SCC
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Strongly connected components

@ run Ist DFS on G to get finishing times f[u]

® run 2nd DFS on G-reversed (all edges reversed -see
picture), each DFS-visit in reverse order of f[u]

— finishing times marked in red for the DFS-visit root vertices

® output each tree (vertices reached) obtained by 2nd
DFS as an SCC




Strongly connected components
® why 2nd DFS produces precisely the SCC -s?

® SCC-graph of G: collapse all SCC info one SCC-vertex, keep
edges between the SCC-vertices

® - SCC graph is a DAG;

— contradiction argument: a cycle on the SCC-graph would immediately collapse
the cycles SCC-s into one SCC

@ reversed edges (shown in red); reversed-SCC-graph also a DAG

@® second DFS runs on reversed-edges (red); once it starts at a
high-finish-time (like 16) it can only go through vertices in the
same SCC (like abe)

16 --
—-
-
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Spanning Trees

@ context : undirected graphs

® a set of edges A that “span” or "touch” all vertices,
and forms no cycles

— necessary this set of edges A has size = |VI-1

@® spanning tree: the tree formed by the set of
spanning edges together with vertex set T = (V,F)
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Spanning Trees

@ context : undirected graphs

® a set of edges A that “span” or "touch” all vertices,
and forms no cycles

— necessary this set of edges A has size = |VI-1

@® spanning tree: the tree formed by the set of
spanning edges together with vertex set T = (V,F)

e A spanning tree
G‘Q‘ = 8
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Spanning Trees

@ context : undirected graphs

® a set of edges A that “span” or "touch” all vertices,
and forms no cycles

— necessary this set of edges A has size = |VI-1

@® spanning tree: the tree formed by the set of
spanning edges together with vertex set T = (V,F)

A spanning tree
Another spanning tree




Minimum Spanning Tree (MST)

@ context : undirected graph, edges have weights

— \edge (u,v)eE \has weight w(u,v)

® MST is a spanning tree of minimum total weight (of
its edges)

— must span all vertices
— exactly |V|-1 edges

— | sum of edges weight be minimum among spanning frees
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Growing Minimum Spanning Trees

® 'safe edge” (u,v) for a given set of edges A: there is a
MST that uses A and (4,v)

— that MST may not be unique

® GENERIC-MST (G)

® A = set of tree edges, 1nitilally empty
¢ while A does not form a spanning tree
— find edge (u,v) that is safe for A
— add (u,v) to A

® ecnd while

® how to find a safe edge to a given set of edges A?
— Prim algorithm
— Kruskal algorithm



Cuts in the graph

® 'cut”’is a partition of vertices in two sets : V=S u V.S

® an edge (u,v) crosses the cut (SV-S) if u and v are on
different partitions (one in S the other in V-S)

@ cut (S, V-S) respects set of edges A if A has no cross edge

@® "min weight cross edge” is a cross edge for the cut, having
minimum weight across all cross edges

@® Cuf Theorem : if A is a set of edges part of some MST, and
(SV-S)a cut respecting A, then a min-weight cross edge is
"safe” for A (can be added to A towards an MST)

\ya‘\ . —\f %(Qd:gﬁes duct s

A={ab, ic, cf, hg, fg}
bs . cut : S={a,b,d,e} V-S={h,i,c,gf} respects A
safe crossing edge : cd, weight(cd)=7
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Prlm algorithm

@® grows a single tree A, S = set of vertices in the tree

— as opposed to a forest of smaller disconnected trees

® add a safe edge at a time

— connecting one more node to the current tree
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theorem, the min-weight edge across the cut is the
next edge added to A
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Prim algorithm

® add another(next) safe edge

— connecting one more node to the current tree
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Prim algorithm

® add another(next) safe edge

— connecting one more node to the current tree

@ define cut (SV-S), which respects A. Using the cut

theorem, the min-weight edge across the cut is the
next edge added to A

— edge hg in the picture is added fo A, vertex h added to the tfree







Prim MST algorithm

MST-PRIM(G, w, r)

@ Prim simple 1
2

— but implementation a bit tricky 3

4

@ Running Time depends on
implementation of Extract-
Min from the Queue

best theoretical implementation

S
6
7
8
9
uses Fibonacci Heaps 10
11
also the most complicated

only makes a practical difference
for very large graphs

foreachu € G.V
U.key = 00
u.m = NIL
r.key = 0
0=0G.Y
while Q # 0
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]
ifve Qandw(u,v) < v.key
V. =Y
v.key = w(u,v)



Kruskal MST algorithm

® Grows a forest of trees Forrest = (VA)
— eventuadlly all connected into a MST

— initially each vertex is a tree with no edges, and A is empty
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Kruskal MST algorithm

® Grows a forest of trees Forrest = (VA)

— eventually all connected into a MST

— inifially each vertex is a tree with no edges, and A is empty

® each edge added connects two trees (or components)

— find the minimum weight edge (u,v) across two components, say
connecting trees Tlsv and TZ2su (edges between nodes of the same

trees are no good because they form cycles) (blue in the picture)

— define cut (SV-S); S = vertices of Tl (in red). This cut respects set A

— edge (wv) is the minimum cross edge, thus a safe edge to add to A. Tl
and T2 are connected now into one tree




Kruskal algorithm

MST-KRUSKAL(G, w)

A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G.E into nondecreasing order by weight w
for each edge (u, v) € G.E, taken in nondecreasing order by weight
if FIND-SET(u) # FIND-SET(v)
A= AU{(u,v)}
UNION(u, v)
return A

O 0 ~J O\ DN 5B W N =

@ Kruskal is simple

@ implementation and running time depend on FIND-
SET and UNION operations on the disjoint-set forest.

— chapter 21 in the book, optional material for this course

@® running time O(E logV)



MST algorithm comparison

@ if you know graph density (edges to vertices)

Prim Prim w/ Prim w/
Kruskal with array binomial Fibonacci in practice
implement. heap heap
sparse sraph Kruskal, or
parse 8raph | 5 vinev) | OV | O(ViogV) | O(ViogV) |Prim+binom
E=0O(V) heap
dense graph , , , , Prim with
E=0(V?) O(V-logV) O(V?) O(V-logV) O(V?) array
avg density Prim with
2 2 y) . .
E=0(ViogV) O(Viog?V) O(V?) O(Vlog2V) | O(ViogV) | Fib heap, if

graph is large




