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2 MARKOV CHAINS

Let us begin with a simple example. We consider a “random walker” in a very small town
consisting of four streets, and four street-corners v;, vy, v3 and vy arranged as in Figure 1.
At time 0, the random walker stands in corner v;. At time 1, he flips a fair coin and moves
immediately to vy or v, according to whether the coin comes up heads or tails. At time
2, he flips the coin again to decide which of the two adjacent corners to move to, with
the decision rule that if the coin comes up heads, then he moves one step clockwise in
Figure 1, while if it comes up tails, he moves one step counterclockwise. This procedure is
then iterated at times 3, 4, .. ..

® L J
v )

[ @
\ A

Figure 1: A random walker in a very small town.

For each n, let X,, denote the index of the street-corner at which the walker stands at time
n. Hence, (Xy, X1,...) is a random process taking values in {1,2,3,4}. Since the walker
starts at time 0 in vy, we have

P(Xo=1)=1. (6)
Next, he will move to vy or v, with probability % each, so that
1
P(X; =2) = (7
and 1
P(X;=4)= . (8)

To compute the distribution of X,, for n > 2 requires a little more thought; you will be
asked to do this in Problem 2.1 below. To this end, it is useful to consider conditional
probabilities. Suppose that at time n, the walker stands at, say, vs. Then we get the
conditional probabilities

1
P(Xp1=v1 | Xp=10p) = 9

and 1
P(Xn+1 = V3 |Xn = ’Ug) = 5,
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because of the coin-flipping mechanism for deciding where to go next. In fact, we get the
same conditional probabilities if we condition further on the full history of the process up
to time n, i.e.,

. . ) 1
P(Xn—l—l = | XO = Zo,Xl =11,.. -;Xn—l = Zn—laXn = UQ) = 5

and .

P(Xn_|_1 = V3 | XO = io,Xl = il, .. -;Xn—l = in—l;Xn = UQ) = 5
for any choice of ig,...,i, 1. (This is because the coin-flip at time n + 1 is independent
of all previous coin-flips, and hence also independent of Xy, ..., X,,.) This phenomenon is

called the memoryless property, also known as the Markov property: the conditional
distribution of X, given (Xj, ..., X,) depends only on X,,. Or in other words: to make
the best possible prediction of what happens “tomorrow” (time n + 1), we only need
to consider what happens “today” (time n), as the “past” (times 0,...,n — 1) gives no
additional useful information?.

Another interesting feature of this random process is that the conditional distribution of
X,+1 given that X, = vy (say) is the same for all n. (This is because the mechanism that
the walker uses to decide where to go next is the same at all times.) This property is
known as time homogeneity, or simply homogeneity.

These observations call for a general definition:

Definition 2.1 Let P be a (k x k)-matriz with elements {P,; : i, =1,...,k}. A random
process (Xo, X1, ...) with finite state space S = {s1, ..., sg} is said to be a (homogeneous)
Markov chain with transition matrix P, if for all n, all i,5 € {1,...,k} and all
i0y---yin—1 € {1,...k} we have

P(Xn+1 =8y |XO = SioaXl = Siyy--- 7X’n—1 = Sin_1:Xn = Si)
= P(Xn+1 =3§j | Xn = Sz)
- P

g

The elements of the transition matrix P are called transition probabilities. The transition
probability P ; is the conditional probability of being in state s; “tomorrow” given that we
are in state s; “today”. The term “homogeneous” is often dropped, and taken for granted
when talking about “Markov chains”.

2Please note that this is just a property of this particular mathematical model. It is not intended as a
general advice that we should “never worry about the past”. Of course, we have every reason, in daily life
as well as in politics, to try to learn as much as we can from history in order to make better decisions for
the future!
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For instance, the random walk example above is a Markov chain, with state space {1,...,4}
and transition matrix

Lo
P = 2 1 2 1 (9)
vzl
2 030
Every transition matrix satisfies
P,; >0 forall i, €{1,...,k}, (10)
and
k
Y Py=1forall ie{l,... k}. (11)
j=1

Property (10) is just the fact that conditional probabilities are always nonnegative, and
property (11) is that they sum to 1, i.e.,

P(Xn_H:81|Xn=Si)+P(Xn+1:SQ|Xn:Si)+"'+P(Xn+1:8k|Xn:8i):1.

We next consider another important characteristic (besides the transition matrix) of a
Markov chain (Xj, Xi,...), namely the initial distribution, which tells us how the

Markov chain starts. The initial distribution is represented as a row vector u(®) given
by

0 0 0
pO = (W u, )

= (P(X() = 81),P(X0 = 82), .. .,P(X() = Sk)) .

Since p(® represents a probability distribution, we have

Zk: u? =1.
=1

In the random walk example above, we have

19 = (1,0,0,0) (12)
because of (6).
Similarly, we let the row vectors u(), 4, ... denote the distributions of the Markov chain
at times 1,2, ..., so that
u® = (™)

= (P(Xn=s51),P(Xp = 59),...,P(Xp = 51)).

13



For the random walk example, equations (7) and (8) tell us that

pM = (0,3,0,3).

)29

It turns out that once we know the initial distribution x(® and the transition matrix P, we
can compute all the distributions p™, 4, ... of the Markov chain. The following result
tells us that this is simply a matter of matrix multiplication. We write P" for the n'®
power of the matrix P.

Theorem 2.1 For a Markov chain (Xo, X1, ...) with state space {s1,...,sg}, initial dis-
tribution p® and transition matriz P, we have for any n that the distribution p™ at time
n satisfies

ﬂ(”) — ,u(O)P" ) (13)

Proof: Consider first the case n = 1. We get, for j = 1,...,k, that

k
/1,51) = P(X1 = Sj) = ZP(XO = Si,Xl = Sj)
=1
k
= ) P(Xo=s5)P(X; =5;| X =)
i=1
k
= > WPy = (1OP),
=1

where (4 P); denotes the j* element of the row vector u(® P. Hence pu(t) = pOP.
H j

To prove (13) for the general case, we use induction. Fix m, and suppose that (13) holds
forn =m. Forn =m + 1, we get

k
p™ = P(Xpar =55) = Y P(Xp = 55, Xinp1 = 5,)

=1

k
= ) P(Xp=5)P(Xpp1 = 5| Xpp = 5)
=1

k
= > w"Py; = (umP),
i=1
so that p(™*1) = (M P But p(™ = ;O P™ by the induction hypothesis, so that
,u('rrH—l) — ,LL(m)P — N(O)PmP — N(O)PT)’H-I

14



and the proof is complete. |

Let us consider some more examples:

Example 2.1: The Gothenburg weather. It is sometimes claimed that the best way
to predict tomorrow’s weather® is simply to guess that it will be the same tomorrow as it
is today. If we assume that this claim is correct*, then it is natural to model the weather
as a Markov chain. For simplicity, we assume that there are only two kinds of weather:
rain and sunshine. If the above predictor is correct 75% of the time (regardless of whether
today’s weather is rain or sunshine), then the weather forms a Markov chain with state space
S = {51, 82} (with s; =“rain” and s, =“sunshine”) and transition matrix

0.75  0.25
P= [ 0.25 0.75] '

Example 2.2: The Los Angeles weather. Note that in Example 2.1, there is a perfect
symmetry between “rain” and “sunshine”, in the sense that the probability that today’s
weather will persist tomorrow, is the same regardless of today’s weather. This may be
reasonably realistic in Gothenburg, but not in Los Angeles where sunshine is much more
common than rain. A more reasonable transition matrix for the Los Angeles weather might
therefore be (still with s; =“rain” and s =“sunshine”)

P=[6i 03] 0

A useful way to picture a Markov chain is its so-called transition graph. The transition
graph consists of nodes representing the states of the Markov chain, and arrows between
the nodes, representing transition probabilities. This is explained easiest by just showing
the transition graphs of the examples considered so far.

05
Ol 0
&—/
05
025 05
05 05 05 05 o75<jm 075 oscm 09
025 0.1
05
OFE0
K—/
05
Figure 2: Transition graphs for the random walker in Figure 1, and for Examples 2.1 and 2.2.

In all examples above, as well as in Definition 2.1, the “rule” for obtaining X,,; from X,
did not change with time. In some situations, it is more realistic, or for other reasons more

3Better than watching the weather forecast on TV.
T doubt it.
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desirable’, to let this rule change with time. This brings us to the topic of inhomogeneous
Markov chains, and the following definition, which generalizes Definition 2.1.

Definition 2.2 Let PM, P@ . be a sequence (k x k)-matrices, each of which satisfies
(10) and (11). A random process (Xo, X1,...) with finite state space S = {s1,...,sk} is
said to be an inhomogeneous Markov chain with transition matrices P4, P2
if for allm, alli,j € {1,...,k} and all iy,...,i,—1 € {1,...k} we have

P(Xn+1 =3§j |XO = SioaXl = Siyy--- 7X’n—1 = Sin_1:Xn = Si)
= P(Xn+1 =8 ‘ Xn = Sz')
plntl)
(2 .

Example 2.3: A refined model for the Gothenburg weather. There are of course
many ways in which the crude model in Example 2.1 can be made more realistic. One way
is to take into account seasonal changes: it does not seem reasonable to disregard whether
the calendar says “January” or “July” when predicting tomorrow’s weather. To this end, we
extend the state space to {s1, s2,53}, where s; =“rain” and s, =“sunshine” as before, and
s3 =“snow”. Let

0.75 025 0 05 03 02
Poyummer = | 025 0.75 0 and Pyinter = | 0.156 0.7 0.15 | |
05 05 0 02 03 05

and assume that the weather evolves according to Psymmer in May—September, and accord-
ing t0 Pyinter in October—April. This is an inhomogeneous Markov chain model for the
Gothenburg weather. Note that in May—September, the model behaves exactly as the one in
Example 2.1, except for some possible residual snowy weather on May 1.

The following result, which is a generalization of Theorem 2.1, tells us how to compute the
distributions g™, 4, ... at times 1,2, ... of an inhomogeneous Markov chain with initial
distribution (¥ and transition matrices P, P®) . .

Theorem 2.2 Suppose that (Xo, X1,...) is an inhomogeneous Markov chain with state
space {s1,..., sk}, initial distribution 1 and transition matrices PY, PP ... For any
n, we then have that

,u(") — M(O)p(l)p@) ... pn)

Proof: Follows by a similar calculation as in the proof of Theorem 2.1. O

5Such as in the simulated annealing algorithms of Chapter 12.
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Problems

2.1 (5) Consider the Markov chain corresponding to the random walker in Figure 1, with transition
matrix P and initial distribution u(®) given by (9) and (12).

(a) Compute the square P2 of the transition matrix P. How can we interpret P? ? (See Theorem
2.1, or glance ahead at Problem 2.5.)
(b) Prove by induction that

n 0,
o {4
29

2.2 (2) Suppose that we modify the random walk example in Figure 1 as follows. At each integer time,
the random walker tosses two coins. The first coin is to decide whether to stay or go. If it comes up
heads, he stays where he is, whereas if it comes up tails, he lets the second coin decide whether he
should move one step clockwise, or one step counterclockwise. Write down the transition matrix,
and draw the transition graph, for this new Markov chain.

2.3 (5) Consider Example 2.1 (the Gothenburg weather), and suppose that the Markov chain starts on
a rainy day, so that u(® = (1,0).

(a) Prove by induction that

for every n.

(b) What happens with x(™ in the limit as n tends to infinity?
2.4 (8)

(a) Consider Example 2.2 (the Los Angeles weather), and suppose that the Markov chain starts

with initial distribution (g, 2). Show that ™ = 49 for any n, so that in other words the

distribution remains the same at all times®.

(b) Can you find an initial distribution for the Markov chain in Example 2.1 for which we get
similar behavior as in (a)? Compare this result to the one in Problem 2.3 (b).

2.5 (6) Let (Xo,X1,...) be a Markov chain with state space {s1,...,s;} and transition matrix P.
Show, by arguing as in the proof of Theorem 2.1, that for any m,n > 0 we have

P(Xmin = 8| Xm = 8) = (P™)i -

6Such a Markov chain is said to be in equilibrium, and its distribution is said to be stationary. This
is a very important topic, which will be treated carefully in Chapter 5.
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4 TRREDUCIBLE AND APERIODIC
MARKOV CHAINS

For several of the most interesting results in Markov theory, we need to put certain as-
sumptions on the Markov chains we are considering. It is an important task, in Markov
theory just like in all other branches of mathematics, to find conditions that on one hand
are strong enough to have useful consequences, but on the other hand are weak enough
to hold (and be easy to check) for many interesting examples. In this chapter, we will
discuss two such conditions on Markov chains: irreducibility and aperiodicity. These
conditions are of central importance in Markov theory, and in particular they play a key
role in the study of stationary distributions, which is the topic of Chapter 5. We shall, for
simplicity, discuss these notions in the setting of homogeneous Markov chains, although
they do have natural extensions to the more general setting of inhomogeneous Markov
chains.

We begin with irreducibility, which, loosely speaking, is the property that “all states of
the Markov chain can be reached from all others”. To make this more precise, consider
a Markov chain (X, X1,...) with state space S = {s1,..., S} and transition matrix P.
We say that a state s; communicates with another state s;, writing s; — s;, if the chain
has positive probability® of ever reaching s; when we start from s;. In other words, s;
communicates with s; if there exists an n such that

P(Xpin = ;| X =5;) > 0.

By Problem 2.5, this probability is independent of m (due to the homogeneity of the
Markov chain), and equals (P"); ;.
If s; = s; and s; — s;, then we say that the states s; and s; intercommunicate, and
write s; <+ s;. This takes us directly to the definition of irreducibility.

Definition 4.1 A Markov chain (Xo, X1, ...) with state space S = {s1, ..., s} and transi-
tion matriz P is said to be irreducible if for all s;, s; € S we have that s; <+ s;. Otherwise
the chain is said to be reducible.

Another way of phrasing the definition would be to say that the chain is irreducible if for
any s;,s; € S we can find an n such that (P");; > 0.

An easy way to verify that a Markov chain is irreducible, is to look at its transition graph,
and check that from each state there is a sequence of arrows leading to any other state. A

8Here and henceforth, by “positive probability”, we always mean strictly positive probability.
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quick glance at Figure 2 thus reveals that the Markov chains in Examples 2.1 and 2.2, as
well as the random walk example in Figure 1, are all irreducible. Let us also have a look
at an example which is not irreducible:

SOEEIOE

()2 @D

Figure 3: Transition graph for the Markov chain in Example 4.1.

Example 4.1: A reducible Markov chain. Consider a Markov chain (Xg, X1,...) with
state space S = {1,2,3,4} and transition matrix

05 05 0 O
03 07 0 O
0 0 02 08
0 0 08 02

P =

By taking a look at its transition graph (see Figure 3), we immediately see that if the chain
starts in state 1 or state 2, then it is restricted to states 1 and 2 forever. Similarly, if it starts
in state 3 or state 4, then it can never leave the subset {3,4} of the state space. Hence, the
chain is reducible.

Note that if the chain starts in state 1 or state 2, then it behaves exactly as if it were a
Markov chain with state space {1,2} and transition matrix

[ 0.5 0.5 ]
| 03 07"

If it starts in state 3 or state 4, then it behaves like a Markov chain with state space {3,4}

and transition matrix i )
0.2 08

| 0.8 02 -

This illustrates a characteristic feature of reducible Markov chains, which also explains the
term “reducible”: If a Markov chain is reducible, then the analysis of its long-term behavior
can be reduced to the analysis of the long-term behavior of one or more Markov chains with
smaller state space.

We move on to consider the concept of aperiodicity. For a finite or infinite set {a1, as, ...}
of positive integers, we write gcd{ay, as, ...} for the greatest common divisor of a;, as, . . ..
The period d(s;) of a state s; € S is defined as

d(Sz) = gcd{n Z 1: (Pn)m > O} .

25



In words, the period of s; is the greatest common divisor of the set of times that the
chain can return (i.e., has positive probability of returning) to s;, given that we start with
Xy = s;. If d(s;) = 1, then we say that the state s; is aperiodic.

Definition 4.2 A Markov chain is said to be aperiodic if all its states are aperiodic.
Otherwise the chain is said to be periodic.

Consider for instance Example 2.1 (the Gothenburg weather). It is easy to check that
regardless whether the weather today is rain or sunshine, we have for any n that the
probability of having the same weather n days later, is strictly positive. Or, expressed
more compactly: (P");; > 0 for all n and all states s;.° This obviously implies that
the Markov chain in Example 2.1 is aperiodic. Of course, the same reasoning applies to
Example 2.2 (the Los Angeles weather).

On the other hand, let us consider the random walk example in Figure 1, where the random
walker stands in corner v; at time 0. Clearly, he has to take an even number of steps in
order to get back to v;. This means that (P™);; > 0 only for n = 2,4,6,.... Hence,

ged{n >1: (P");; >0} = ged{2,4,6,...} =2,
and the chain is therefore periodic.

One reason for the usefulness of aperiodicity is the following result.

Theorem 4.1 Suppose that we have an aperiodic Markov chain (Xo, X1, ...) with state
space S = {s1,...,s,} and transition matriz P. Then there erists an N < oo such that

(Pn)m >0

forallie{1,...,k} and alln > N.

To prove this result, we shall borrow the following lemma from number theory.

Lemma 4.1 Let A = {a1,a0,...} be a set of positive integers which is

(i) non-lattice, meaning that gcd{ay,as,...} =1, and

(i) closed under addition, meaning that if a € A and o' € A, then a + d' € A.

By a variant of Problem 2.3 (a), we in fact have that (P™);; = (1 +27").
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Then there exists an integer N < oo such that n € A for alln > N.

Proof: See, e.g., the appendix of Brémaud [B]. a

Proof of Theorem 4.1: For s; € S, let A; = {n >1: (P");; > 0}, so that in other
words A; is the set of possible return times to state s; starting from s;. We assumed that
the Markov chain is aperiodic, and therefore the state s; is aperiodic, so that A; is non-
lattice. Furthermore, A; is closed under addition, for the following reason: If a,a’ € A;,
then P(X, = s;| Xo = ;) > 0 and P(X,1o = 8;| Xy = 8;) > 0. This implies that
P(Xa+a’ = 8 ‘ Xo = Si) > P(Xa = Si; Xa+a’ = Si‘ Xo = Si)
= P(Xa = S; | X() = Si)P(Xa+al = S; | Xa = Si)
> 0

so that a + da' € A;.

In summary, A; satisfies assumptions (i) and (ii) of Lemma 4.1, which therefore implies
that there exists an integer V; < oo such that (P");; > 0 for all n > N;.

Theorem 4.1 now follows with N = max{Ny,..., Ny} O

By combining aperiodicity and irreducibility, we get the following important result, which
will be used in the next chapter to prove the so-called Markov chain convergence theorem
(Theorem 5.2).

Corollary 4.1 Let (Xo, X1,...) be an irreducible and aperiodic Markov chain with state
space S = {s1,...,8,} and transition matriz P. Then there exists an M < oo such that
(P™);; >0 foralli,je{1,...,k} and alln > M.

Proof: By the assumed aperiodicity and Theorem 4.1, there exists an integer N < oo
such that (P");; > 0 forall ¢ € {1,...,k} and all n > N. Fix two states s;,s; € S. By the
assumed irreducibility, we can find some n; ; such that (P");; > 0. Let M, ; = N + n; ;.
For any m > M, ;, we have
P(Xm = Sj |X0 = Si) 2 P(Xm—m,j = S, Xm = Sj |X0 = Si)
= P(Xm—nm' = S; ‘ XO = SZ)P(Xm = Sj ‘ X’m—”i,j = 8,‘) (21)
> 0

(the first factor in (21) is positive because m — n;; > N, and the second is positive by the
choice of n; j). Hence, we have shown that (P™); ; > 0 for all m > M, ;. The corollary now

follows with
M = max{Ml,l, Ml,g caay Ml,ka M2,1, ceey Mk,k} .
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Problems

4.1 (3) Show that if a Markov chain is irreducible and has a state s; such that P;; > 0, then it is also
aperiodic.

4.2 (4) Random chess moves.

(a) Consider a chessboard with a lonely white king making random moves, meaning that at
each move, he picks one of the possible squares to move to, uniformly at random. Is the
corresponding Markov chain irreducible and/or aperiodic?

(b) Same question, but with the king replaced by a bishop.

(¢) Same question, but instead with a knight.

4.3 (6) Oriented random walk on a torus. Let a and b be positive integers, and consider the
Markov chain with state space

{(z,y) : z €{0,...,a—1},y € {0,...,b—1}},

and the following transition mechanism: If the chain is in state (z,y) at time n, then at time n + 1
it moves to ((z + 1)moda,y) or (z, (y + 1) mod b) with probability ; each.

(a) Show that this Markov chain is irreducible.
(b) Show that it is aperiodic if and only if gcd(a, b) = 1.

28



5 STATIONARY DISTRIBUTIONS

In this chapter, we consider one of the central issues in Markov theory: asymptotics for
the long-term behavior of Markov chains. What can we say about a Markov chain that
has been running for a long time? Can we find interesting limit theorems?

If (Xo, X1,...) is any nontrivial Markov chain, then the value of X, will keep fluctuating
infinitely many times as n — oo, and therefore we cannot hope to get results about X,
converging to a limit. However, we may hope that the distribution of X,, settles down to
a limit. This is indeed the case if the Markov chain is irreducible and aperiodic, which
is what the main result of this chapter, the so called Markov chain convergence theorem
(Theorem 5.2), says.

Let us for a moment go back to the Markov chain in Example 2.2 (the Los Angeles weather),
with state space {si, sp} and transition matrix given by (14). We saw in Problem 2.4 (a)
that if we let the initial distribution (%) be given by u(® = (%, %), then this distribution
is preserved for all times, i.e., u™ = p© for all n. By some experimentation, we can
easily convince ourselves that no other choice of initial distribution ;(?) for this chain has
the same property (try it!). Apparently, the distribution (%, 2) plays a special role for this
Markov chain, and we call it a stationary distribution!®. The general definition is as

follows.

Definition 5.1 Let (Xy, X1,...) be a Markov chain with state space {s1,..., sy} and tran-
sition matriz P. A row vector m = (my,...,m) is said to be a stationary distribution
for the Markov chain, if it satisfies

(i) m >0 fori=1,...,k, and Zlem =1, and

(ii) wP = m, meaning that Zle mP;=m; forj=1,... k.
Property (i) simply means that 7 should describe a probability distribution on {sy,..., s}
Property (ii) implies that if the initial distribution u(®) equals 7, then the distribution p("
of the chain at time 1 satisfies

p =pOP =7P =1,

and by iterating we see that u{™ = 7 for every n.

10 Another term which is used by many authors for the same thing, is invariant distribution. Yet
another term is equilibrium distribution
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Since the definition of a stationary distribution really only depends on the transition matrix
P, we also sometimes say that a distribution 7 satisfying the assumptions (i) and (ii) in
Definition 5.1, is stationary for the matrix P (rather than for the Markov chain).

The rest of this chapter will deal with three issues: the existence of stationary distribu-
tions, the uniqueness of stationary distributions, and the convergence to stationarity
starting from any initial distribution. We shall work under the conditions introduced in the
previous chapter (irreducibility and aperiodicity), although for some of the results these
conditions can be relaxed somewhat!'. We begin with the existence issue.

Theorem 5.1 (Existence of stationary distributions) For any irreducible and aperi-
odic Markov chain, there exists at least one stationary distribution.

To prove this existence theorem, we first need to prove a lemma concerning hitting times
for Markov chains. If a Markov chain (X, X3,...) with state space {si,..., st} and tran-
sition matrix P starts in state s;, then we can define the hitting time

T;; =min{n >1: X, = s,}

with the convention that 7; ; = oo if the Markov chain never visits s;. We also define the
mean hitting time
7i; = E[Tig].

This means that 7; ; is the expected time taken until we come to state s;, starting from
state s;. For the case ¢ = j, we call 7;; the mean return time for state s;. We emphasize
that when delaing with the hitting time 7; ;, there is always the implicit assumption that
XO = S;.

Lemma 5.1 For any irreducible aperiodic Markov chain with state space S = {s1,..., Sk}
and transition matriz P, we have for any two states s;, s; € S that if the chain starts in
state s;, then

P(T,; <o0)=1. (22)

Moreover, the mean hitting time 7; ; is finite'?, i.e.,

E[T, ;] < . (23)

1By careful modification of our proofs, it is possible to show that Theorem 5.1 holds for arbitrary
Markov chains, and that Theorem 5.3 holds without the aperiodicity assumption. That irreducibility and
aperiodicity are needed for Theorem 5.2, and irreducibility is needed for Theorem 5.3, will be established
by means of counterexamples in Problems 5.2 and 5.3.

12Tf you think that this should follow immediately from (22), then take a look at Example 1.1 to see
that things are not always quite that simple.
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Proof: By Corollary 4.1, we can find an M < oo such that (PM);; > 0 for all 4,5 €
{1,...,k}. Fix such an M, set & = min{(P™);;: i,j € {1,...,k}}, and note that o > 0.
Fix two states s; and s; as in the lemma, and suppose that the chain starts in s;. Clearly,

Furthermore, given everything that has happened up to time M, we have conditional
probability at least o of hitting state s; at time 2M, so that

P(’Ti,j > 2M) = P(,Ti,j > M)P(T’Z’J > 2M|T’1’J > M)
P(ﬂ,j > M)P(X2M 7é S |7—;',j > M)
(1—a).

IAINA

Iterating this argument, we get for any [ that

P(T;;>1IM) = P(Li; > M)P(T;; > 2M |Ti; > M) ---P(Li; > IM|T;; > (1 - 1)M)
< (1_a)l,

which tends to 0 as [ — oco. Hence P(T;; = 00) = 0, so (22) is established.

To prove (23), we use the formula (1) for expectation, and get

E[T;;] = Z (T.; >n) = Y P(Ti; >n) (24)
n=1 n=0
0o ([+1)M-1
= > > P>
=0 n=IM
oo (+1)M-1 fe's)

IN
ing
[
:'ﬂ
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Proof of Theorem 5.1: Write, as usual, (Xp, Xi,...) for the Markov chain, S =

{s1,-.., sk} for the state space, and P for the transition matrix. Suppose that the chain
starts in state s;, and define, for i =1,...,k,
o
pi = ZP(Xn =s;, 11,1 > n)
n=0

so that in other words, p; is the expected number of visits to state ¢ up to time 77, — 1.
Since the mean return time E[T} ;] = 7 is finite, and p; < 71,1, we get that p; is finite as
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well. Our candidate for a stationary distribution is

P P2
7r:(7r1,...,7rk): <—,—,..
T11 T11

Pk)
e
T11

We need to verify that this choice of 7 satisfies conditions (i) and (ii) of Definition 5.1.

We first show that the relation Zle m; P; ; = m; in condition (ii) holds for j # 1 (the case

j = 1 will be treated separately). We get (hold on!)

oo
_pro_ 1 3 _
T = o = _— P(Xn—Sj,Tl,l >n)

)

1 oo
= —ZP(XH = Sj,T1,1 > ’I’L)
T1,1

= —ZP —8j,T1,1>’I’L—1)

71,1

_ EZZP 1 =54, Xn =55, Tip >n—1)

n=1 =1

= T—ZZP =Ty >n—1DP(X,=s;| X, =s;) (27)
1,1

n=1 i=1

= —ZZP”P 1=5,T11>n—1)

T
11n 1 =1

= _ZP”ZP =511 >n—1)

1,1

= —ZP’JZP —si,T1,1>m)

71,1

_ Zz‘:1pipij _
- Tl o,
L1 i=1

(28)

where in lines (25), (26) and (27) we used the assumption that j # 1.

Next, we verify condition (ii) also for the case j =

immediate from the definition of p;. We get

pP1 = 1 = P(Tl’l < OO) = ZP(TI,I :’I’L)

= ZZP(Xn—l = SiaTl,l =

n=1 =1
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Note first that p; = 1; this is



o k
= Z ZP(anl = Si,Tl,l >n— 1)P(Xn = S1 |Xn,1 = Si)

n=1 =1

oo k
— ZZPi,lP(an =s;,T11 >n—1)

n=1 =1

k 00
= ZPi,l ZP(XH—I = Si,T1,1 >n— 1)
i=1 n=1
k 00
— ZPi,l Z P(Xm = SiaTl,l > m)
=1 m=0
k
= Z pili1 .
=1

Hence
pz 2,1
7_ T — 7rz 2,1 -
e i=1

By combining this with (28), we have established that condition (ii) holds for our choice
of .

It remains to show that condition (i) holds as well. That m; > 0 for i =1,..., k is obvious.
To see that Zle m; = 1 holds as well, note that

T1,1 = E[Tl,l] = ZP(TI,I > TL) (29)
o k
= ZZP(Xn = SiaTl,l > 7'1,)
n=0 =1
k oo
= ZZP(Xn = 8,’,T1,1 > n)
=1 n=0

k
= Zpi
i=1

(where equation (29) uses (24)) so that

k
Zﬂ'i —sz—l
=1

T1,1

and condition (i) is verified. O

We shall go on to consider the asymptotic behavior of the distribution ™ of a Markov
chain with arbitrary initial distribution ;(%). To state the main result (Theorem 5.2), we
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need to define what it means for a sequence of probability distributions vV, v® ... to
converge to another probability distribution v, and to this end it is useful to have a metric
on probability distributions. There are various such metrics; one which is useful here is
the so called total variation distance.

Definition 5.2 If v = (V. 1/,(91)) and v® = VY V,SQ)) are probability distribu-

tions on S = {s1,..., s}, then we define the total variation distance between v") and
v® as
I )
v v =5 > = (30)
If v v@ and v are probability distributions on S, then we say that v converges

. e » TV .
to v in total variation as n — oo, writing v™ — v, if

lim dpy(v™,v) = 0.

n—oQ

The constant 3 in (30) is designed to make the total variation distance drv take values
between 0 and 1. If dpy (¥, v@) = 0, then v = v@. In the other extreme case
dry(v®,v?) = 1, we have that v and v? are “disjoint” in the sense that S can be
partitioned into two disjoint subsets S’ and S” such that v puts all of its probability
mass in ', and ¥® puts all of its in S”. The total variation distance also has the natural
interpretation

ey (1), 1) = max [v(4) ~ 2(4) (31)

an identity that you will be asked to prove in Problem 5.1 below. In words, the total

variation distance between () and v is the maximal difference between the probabilities
that the two distributions assign to any one event.

We are now ready to state the main result about convergence to stationarity.

Theorem 5.2 (The Markov chain convergence theorem) Let (X, X1,...) be an ir-
reducible aperiodic Markov chain with state space S = {s1,..., s}, transition matriz P,
and arbitrary initial distribution pY. Then, for any distribution 7 which is stationary for
the transition matriz P, we have

() TV, 32
7

What the theorem says is that if we run a Markov chain for a sufficiently long time n, then,
regardless of what the initial distribution was, the distribution at time n will be close to
the stationary distribution 7. This is often referred to as the Markov chain approaching
equilibrium as n — cc.
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For the proof, we will use a so-called coupling argument; coupling is one of the most useful
and elegant techniques in contemporary probability. Before doing the proof, however, the
reader is urged to glance ahead at Theorem 5.3 and its proof, to see how easily Theorem
5.2 implies that there cannot be more than one stationary distribution.

Proof of Theorem 5.2: When studying the behavior of u(™, we may assume that
(Xo, X1,...) has been obtained by the simulation method outlined in Chapter 3, i.e.,

Xo =0 (V)
Xl = ¢(X07 Ul)

Xy = ¢(X1,Us)

where 1,0 is a valid initiation function for 19, ¢ is a valid update function for P, and
(Uy, Uy, ...) is an i.i.d. sequence of uniform [0, 1] random variables.

Next, we introduce a second Markov chain'® (X{, X7, ...) by letting 1, be a valid initiation
function for the distribution 7, letting (Uj, U], . ..) be another i.i.d. sequence (independent
of (Uy, Uy, ...)) of uniform [0, 1] random variables, and setting

Xo = ¢x(Uo)
X1 = ¢(Xp, U1)
X3 = ¢(X1,Us)

Since 7 is a stationary distribution, we have that X, has distribution 7 for any n. Also,
the chains (Xp, X1,...) and X{, X],...) are independent of each other, by the assumption
that the sequences (Uy, Uy, ...) and (Ug, U], ...) are independent of each other.

A key step in the proof is now to show that, with probability 1, the two chains will “meet”,
meaning that there exists an n such that X,, = X, . To show this, define the “first meeting
time”

T =min{n: X, = X, }

with the convention that 7" = oo if the chains never meet. Since the Markov chain
(Xo, X1,...) is irreducible and aperiodic, we can find, using Corollary 4.1, an M < oo
such that

(PM);; >0 foralli,je{1,...,k}.

Set
a=min{(P");;: i€ {1,...,k}},

13This is what characterizes the coupling method: to construct two or more processes on the same
probability space, in order to draw conclusions about their respective distributions.
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and note that o > 0. We get that

P(T < M)
> P(Xy = Xy)
> P(Xpy =s1,X) =51)

P(XM = Sl)P(X;V[ = 81)

iP(Xo =s8;, Xy = 51)) (i P(Xy = si, X)y = 31))

=1

> aZP(XO = sz)> (aZP(X('] = s,)) = o’

so that

P(T>M)<1-a’.

Similarly, given everything that has happened up to time M, we have conditional proba-
bility at least a? of having Xoy = X3,; = s1, so that

P(T>2M) < P(T>MP(T>2M|T > M)

< 1-a)P(T>2M|T > M)

< (1-0”)P(Xou # Xop | T > M)

= (1= )1 = P(Xou = X}y | T > M)
< (1-a%)?.

By iterating this argument, we get for any / that
P(T > IM) < (1—a?)!
which tends to 0 as | — oco. Hence,
7}1_)1{.10 P(T'>n)=0 (33)

so that in other words, we have shown that the two chains will meet with probability 1.

The next step of the proof is to construct a third Markov chain (X{/, X7,...), by setting

X(I)I = X() (34)
and, for each n,
o OXIUn) XD £ X,
fa = Lo U e XEL X
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In other words, the chain (X{, X7, ...) evolves exactly like the chain (Xy, X7, ...) until the
time 7" when it first meets the chain (X§, X1, ...). It then switches to evolving exactly like
the chain (X, X7,...). It is important to realize that (X, X7, ...) really is a Markov chain
with transition matrix P; this may require a pause for thought, but the basic reason why
it is true is that at each update, the update function is exposed to a “fresh” new uniform
[0, 1] variable, i.e., one which is independent of all previous random variables.

Because of (34), we have that X/ has distribution u(®). Hence, for any n, X has distribu-
tion u™. Now, for any i € {1,..., k} we get,

p—m = P(X!=s)-P(X,=s)

P(X:z, = Si’X;z 7& Si)
P(X, # X;)
P(T > n)

IANINA

which tends to 0 as n — oo, due to (33). Using the same argument (with the roles of X/
and X, interchanged), we see that

m— ™ < P(T > n)
as well, again tending to 0 as n — co. Hence,
lim | ,uz(-n) — | =
n—oo

This implies that

lim dry (™, 7) = lim (% Zle |,u,(~") - 7Tz|> (35)
n—o0 n—oc
=0

since each term in the right hand side of (35) tends to 0. Hence, (32) is established. O

Theorem 5.3 (Uniqueness of the stationary distribution) Any irreducible and ape-
riodic Markov chain has exactly one stationary distribution.

Proof: Let (Xo, Xi,...) be an irreducible and aperiodic Markov chain with transition
matrix P. By Theorem 5.1, there exists at least one stationary distribution for P, so we
only need to show that there is at most one stationary distribution. Let 7 and n’ be two
(a priori possibly different) stationary distributions for P; our task is to show that 7 = 7’

Suppose that the Markov chain starts with initial distribution (¥) = 7. Then pu(™ = 7'
for all n, by the assumption that 7’ is stationary. On the other hand, Theorem 5.2 tells us

that p™ AN m, meaning that

lim dTv(/,L(n), 7T) =0.
n—00
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Since p™ = 7', this is the same as

lim dpy (7', m) =0.
n—oo

But drv (7', 7) does not depend on n, and hence equals 0. This implies that 7 = 7', so the
proof is complete. O

To summarize Theorems 5.2 and 5.3: If a Markov chain is irreducible and aperiodic, then

it has a unique stationary distribution 7, and the distribution p(™ of the chain at time n
approaches 7 as n — oo, regardless of the initial distribution (%),
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Problems

5.1

5.2

5.3

5.4

5.5

(7) Prove the formula (31) for total variation distance. Hint: consider the event
A={seS:vW(s) >vP@(s)}.

(4) Theorems 5.2 and 5.3 fail for reducible Markov chains. Consider the reducible Markov
chain in Example 4.1.

(a) Show that both = = (0.375,0.625,0,0) and 7' = (0,0, 0.5,0.5) are stationary distributions for
this Markov chain.

(b) Use (a) to show that the conclusions of Theorem 5.2 and 5.3 fail for this Markov chain.
(6) Theorem 5.2 fails for periodic Markov chains. Consider the Markov chain (Xg, X,...)
describing a knight making random moves on a chessboard, as in Problem 4.2 (c). Show that (™

does not converge in total variation, if the chain is started in a fixed state (such as the square a1 of
the chessboard).

(7) If there are two different stationary distributions, then there are infinitely many.

Suppose that (Xg, X1,...) is a reducible Markov chain with two different stationary distributions =
!

and 7'. Show that, for any p € (0,1), we get yet another stationary distribution as pm + (1 — p)«'.

(6) Show that the stationary distribution obtained in the proof of Theorem 5.1, can be written as

1 1 1
T=—,—...,— | .
1,1 72,2 Tk,k

39



