
Chapter 4

Some Counting Problems;
Multinomial Coefficients, The
Inclusion-Exclusion Principle,
Sylvester’s Formula, The Sieve
Formula

4.1 Counting Permutations and Functions

In this short section, we consider some simple counting
problems.

Let us begin with permutations. Recall that a
permutation of a set, A, is any bijection between A and
itself.
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If A is a finite set with n elements, we mentioned earlier
(without proof) that A has n! permutations, where the
factorial function, n �→ n! (n ∈ N), is given recursively
by:

0! = 1

(n + 1)! = (n + 1)n!.

The reader should check that the existence of the func-
tion, n �→ n!, can be justified using the Recursion Theo-
rem (Theorem 2.5.1).

Proposition 4.1.1 The number of permutations of a
set of n elements is n!.

Let us also count the number of functions between two
finite sets.

Proposition 4.1.2 If A and B are finite sets with
|A| = m and |B| = n, then the set of function, BA,
from A to B has nm elements.
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As a corollary, we determine the cardinality of a finite
power set.

Corollary 4.1.3 For any finite set, A, if |A| = n,
then |2A| = 2n.

Computing the value of the factorial function for a few
inputs, say n = 1, 2 . . . , 10, shows that it grows very fast.
For example,

10! = 3, 628, 800.

Is it possible to quantify how fast factorial grows com-
pared to other functions, say nn or en?

Remarkably, the answer is yes. A beautiful formula due
to James Stirling (1692-1770) tells us that

n! ∼
√

2πn
�n

e

�n
,

which means that

lim
n→∞

n!√
2πn

�
n
e

�n = 1.
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Figure 4.1: Jacques Binet, 1786-1856

Here, of course,

e = 1 +
1

1!
+

1

2!
+

1

3!
+ · · · +

1

n!
+ · · ·

the base of the natural logarithm.

It is even possible to estimate the error. It turns out that

n! =
√

2πn
�n

e

�n
eλn,

where
1

12n + 1
< λn <

1

12n
,

a formula due to Jacques Binet (1786-1856).

Let us introduce some notation used for comparing the
rate of growth of functions.
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We begin with the “Big oh” notation .

Given any two functions, f : N → R and g : N → R, we
say that f is O(g) (or f (n) is O(g(n))) iff there is some
N > 0 and a constant c > 0 such that

|f (n)| ≤ c|g(n)|, for all n ≥ N.

In other words, for n large enough, |f (n)| is bounded by
c|g(n)|. We sometimes write n >> 0 to indicate that n
is “large.”

For example λn is O( 1
12n). By abuse of notation, we often

write f (n) = O(g(n)) even though this does not make
sense.

The “Big omega” notation means the following: f is
Ω(g) (or f (n) is Ω(g(n))) iff there is some N > 0 and a
constant c > 0 such that

|f (n)| ≥ c|g(n)|, for all n ≥ N.



406 CHAPTER 4. SOME COUNTING PROBLEMS; MULTINOMIAL COEFFICIENTS

The reader should check that f (n) is O(g(n)) iff g(n) is
Ω(f (n)).

We can combine O and Ω to get the “Big theta” nota-
tion: f is Θ(g) (or f (n) is Θ(g(n))) iff there is some
N > 0 and some constants c1 > 0 and c2 > 0 such that

c1|g(n)| ≤ |f (n)| ≤ c2|g(n)|, for all n ≥ N.

Finally, the “Little oh” notation expresses the fact that
a function, f , has much slower growth than a function g.

We say that f is o(g) (or f (n) is o(g(n))) iff

lim
n→∞

f (n)

g(n)
= 0.

For example,
√

n is o(n).
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4.2 Counting Subsets of Size k; Binomial and Multi-
nomial Coefficients

Let us now count the number of subsets of cardinality k
of a set of cardinality n, with 0 ≤ k ≤ n.

Denote this number by
�n

k

�
(say “n choose k”). Actually,

in the proposition below, it will be more convenient to
assume that k ∈ Z.

Proposition 4.2.1 For all n ∈ N and all k ∈ Z, if�n
k

�
denotes the number of subsets of cardinality k of

a set of cardinality n, then
�

0

0

�
= 1

�
n

k

�
= 0 if k /∈ {0, 1, . . . , n}

�
n

k

�
=

�
n− 1

k

�
+

�
n− 1

k − 1

�
(n ≥ 1, 0 ≤ k ≤ n).

The numbers
�n

k

�
are also called binomial coefficients ,

because they arise in the expansion of the binomial ex-
pression (a + b)n, as we will see shortly.
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The binomial coefficients can be computed inductively
using the formula

�
n

k

�
=

�
n− 1

k

�
+

�
n− 1

k − 1

�

(sometimes known as Pascal’s recurrence formula) by
forming what is usually called Pascal’s triangle , which
is based on the recurrence for

�n
k

�
:

n
�n

0

� �n
1

� �n
2

� �n
3

� �n
4

� �n
5

� �n
6

� �n
7

� �n
8

� �n
9

� � n
10

�
. . .

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1
10 1 10 45 120 210 252 210 120 45 10 1
... ... ... ... ... ... ... ... ... ... ... ... ...
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Figure 4.2: Blaise Pascal, 1623-1662

We can also give the following explicit formula for
�n

k

�
in

terms of the factorial function:

Proposition 4.2.2 For all n, k ∈ N, with 0 ≤ k ≤ n,
we have �

n

k

�
=

n!

k!(n− k)!
.

Then, it is very easy to see that�
n

k

�
=

�
n

n− k

�
.

Remarks:

(1) The binomial coefficients were already known in the
twelfth century by the Indian Scholar Bhaskra. Pas-
cal’s triangle was taught back in 1265 by the Persian
philosopher, Nasir-Ad-Din.



410 CHAPTER 4. SOME COUNTING PROBLEMS; MULTINOMIAL COEFFICIENTS

(2) The formula given in Proposition 4.2.2 suggests gen-
eralizing the definition of the binomial coefficients to
upper indices taking real values.

Indeed, for all r ∈ R and all integers, k ∈ Z, we can
set
�

r

k

�
=

�
rk

k!
=

r(r − 1) · · · (r − k + 1)

k(k − 1) · · · 2 · 1
if k ≥ 0

0 if k < 0.

Note that the expression in the numerator, rk, stands
for the product of the k terms

k terms� �� �
r(r − 1) · · · (r − k + 1) .

By convention, the value of this expression is 1 when
k = 0, so that

�r
0

�
= 1.
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The expression
�r
k

�
can be viewed as a polynomial of

degree k in r. The generalized binomial coefficients
allow for a useful extension of the binomial formula
(see next) to real exponents.

However, beware that the symmetry identity fails when
r is not a natural number and that the formula in
Proposition 4.2.2 (in terms of the factorial function)
only makes sense for natural numbers.

We now prove the “binomial formula” (also called “bino-
mial theorem”).
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Proposition 4.2.3 (Binomial Formula) For all
n ∈ N and for all reals, a, b ∈ R, (or more generally,
any two commuting variables a, b, i.e., satisfying
ab = ba), we have the formula:

(a + b)n = an +

�
n

1

�
an−1b +

�
n

2

�
an−2b2 + · · ·

+

�
n

k

�
an−kbk + · · · +

�
n

n− 1

�
abn−1 + bn.

The above can be written concisely as

(a + b)n =
n�

k=0

�
n

k

�
an−kbk.

Remark: The binomial formula can be generalized to
the case where the exponent, r, is a real number (even
negative). This result is usually known as the binomial
theorem or Newton’s generalized binomial theorem.



4.2. COUNTING SUBSETS OF SIZE K; MULTINOMIAL COEFFICIENTS 413

Formally, the binomial theorem states that

(a + b)r =
∞�

k=0

�
r

k

�
ar−kbk, r ∈ N or |b/a| < 1.

Observe that when r is not a natural number, the right-
hand side is an infinite sum and the condition |b/a| < 1
insures that the series converges.

For example, when a = 1 and r = 1/2, if we rename b as
x, we get

(1 + x)
1
2 =

∞�

k=0

�1
2

k

�
xk

= 1 +
∞�

k=1

1

k!

1

2

�
1

2
− 1

�
· · ·

�
1

2
− k + 1

�
xk

= 1 +
∞�

k=1

(−1)k−1 1 · 3 · 5 · · · (2k − 3)

2 · 4 · 6 · · · 2k xk

= 1 +
∞�

k=1

(−1)k−1(2k)!

22k(2k − 1)(k!)2
xk,

= 1 +
∞�

k=1

(−1)k−1

22k(2k − 1)

�
2k

k

�
xk

= 1 +
∞�

k=1

(−1)k−1

22k

1

k

�
2k − 2

k − 1

�
xk,
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which converges if |x| < 1.

The first few terms of this series are

(1 + x)
1
2 = 1 +

1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 + · · ·

For r = −1, we get the familiar geometric series

1

1 + x
= 1− x + x2 − x3 + · · · + (−1)kxk + · · · ,

which converges if |x| < 1.

Remark: The numbers,

Cn =
1

n + 1

�
2n

n

�
,

are the Catalan numbers . They are the solution of many
counting problems in combinatorics.

Proposition 4.2.4 The number of injections between
a set, A, with m elements and a set, B, with n ele-
ments, where m ≤ n, is given by

n!
(n−m)! = n(n− 1) · · · (n−m + 1).
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Counting the number of surjections between a set with
n elements and a set with p elements, where n ≥ p, is
harder.

We state the following formula without giving a proof
right now. Finding a proof of this formula is an interesting
exercise.

We will give a quick proof using the Inclusion-Exclusion
Principle in Section 4.4.

Proposition 4.2.5 The number of surjections, Sn p,
between a set, A, with n elements and a set, B, with
p elements, where n ≥ p, is given by

Sn p = pn −
�

p

1

�
(p− 1)n +

�
p

2

�
(p− 2)n + · · ·

+ (−1)p−1

�
p

p− 1

�
.
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Remarks:

1. It can be shown that Sn p satisfies the following pecu-
liar version of Pascal’s recurrence formula:

Sn p = p(Sn−1 p + Sn−1 p−1), p ≥ 2,

and, of course, Sn 1 = 1 and Sn p = 0 if p > n.

Using this recurrence formula and the fact that
Sn n = n!, simple expressions can be obtained for
Sn+1 n and Sn+2 n.

2. The numbers, Sn p, are intimately related to the so-
called Stirling numbers of the second kind , denoted�n

p

�
, S(n, p), or S(p)

n , which count the number of par-
titions of a set of n elements into p nonempty pairwise
disjoint blocks (see Section 5.5). In fact,

Sn p = p!

�
n

p

�
.
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The Stirling numbers,
�n

p

�
, satisfy a recurrence equa-

tion which is another variant of Pascal’s recurrence
formula:�

n

1

�
= 1

�
n

n

�
= 1

�
n

p

�
=

�
n− 1

p− 1

�
+ p

�
n− 1

p

�
(1 ≤ p < n).

The total numbers of partitions of a set with n ≥ 1
elements is given by the Bell number ,

bn =
n�

p=1

�
n

p

�
.

There is a recurrence formula for the Bell numbers
but it is complicated and not very useful because the
formula for bn+1 involves all the previous Bell num-
bers.

A good reference for all these special numbers is Graham,
Knuth and Patashnik [8], Chapter 6.
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Figure 4.3: Eric Temple Bell, 1883-1960 (left) and Donald Knuth, 1938- (right)

The binomial coefficients can be generalized as follows.
For all n, m, k1, . . . , km ∈ N, with k1 + · · ·+km = n and
m ≥ 2, we have the multinomial coefficient ,

�
n

k1 · · · km

�
,

which counts the number of ways of splitting a set of n
elements into an ordered sequence of m disjoint subsets,
the ith subset having ki ≥ 0 elements.

Such sequences of disjoint subsets whose union is {1, . . . , n}
itself are sometimes called ordered partitions .

Beware that some of the subsets in an ordered partition
may be empty, so we feel that the terminology “partition”
is confusing since as will see in Section 5.5, the subsets
that form a partition are never empty.
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Note that when m = 2, the number of ways of splitting
a set of n elements into two disjoint subsets where the
first subset has k1 elements and the second subset has
k2 = n − k1 elements is precisely the number of subsets
of size k1 of a set of n elements, that is

�
n

k1 k2

�
=

�
n

k1

�
.

Observe that the order of the m subsets matters.

For example, for n = 5, m = 4, k1 = 2 and
k2 = k3 = k4 = 1, the sequences of subsets
({1, 2}, {3}, {4}, {5}), ({1, 2}, {3}, {5}, {4}),
({1, 2}, {5}, {3}, {4}), ({1, 2}, {4}, {3}, {5}),
({1, 2}, {4}, {5}, {3}), ({1, 2}, {5}, {4}, {3})
are all different and they correspond to the same parti-
tion, {{1, 2}, {3}, {4}, {5}}.
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Proposition 4.2.6 For all n, m, k1, . . . , km ∈ N, with
k1 + · · · + km = n and m ≥ 2, we have

�
n

k1 · · · km

�
=

n!

k1! · · · km!
.

As in the binomial case, it is convenient to set
�

n

k1 · · · km

�
= 0

if ki < 0 or ki > n, for any i, with 1 ≤ i ≤ m. Then,
Proposition 4.2.1 is generalized as follows:

Proposition 4.2.7 For all n, m, k1, . . . , km ∈ N, with
k1 + · · · + km = n, n ≥ 1 and m ≥ 2, we have

�
n

k1 · · · km

�
=

m�

i=1

�
n− 1

k1 · · · (ki − 1) · · · km

�
.
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Remark: Proposition 4.2.7 shows that Pascal’s triangle
generalizes to “higher dimensions”, that is, to m ≥ 3.

Indeed, it is possible to give a geometric interpretation
of Proposition 4.2.7 in which the multinomial coefficients
corresponding to those k1, . . . , km with k1 + · · ·+km = n
lie on the hyperplane of equation x1 + · · · + xm = n in
Rm, and all the multinomial coefficients for which n ≤ N ,
for any fixed N , lie in a generalized tetrahedron called a
simplex .

When m = 3, the multinomial coefficients for which
n ≤ N lie in a tetrahedron whose faces are the planes
of equations, x = 0; y = 0; z = 0; and x + y + z = N .

We have also the following generalization of Proposition
4.2.3:
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Proposition 4.2.8 (Multinomial Formula) For all
n, m ∈ N with m ≥ 2, for all pairwise commuting
variables a1, . . . , am, we have

(a1 + · · · + am)n =
�

k1,...,km≥0
k1+···+km=n

�
n

k1 · · · km

�
ak1

1 · · · akm
m .

How many terms occur on the right-hand side of the
multinomial formula?

After a moment of reflexion, we see that this is the number
of finite multisets of size n whose elements are drawn from
a set of m elements, which is also equal to the number of
m-tuples, k1, . . . , km, with ki ∈ N and

k1 + · · · + km = n.

Proposition 4.2.9 The number of finite multisets of
size n ≥ 0 whose elements come from a set of size
m ≥ 1 is �

m + n− 1

n

�
.
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4.3 Some Properties of the Binomial Coefficients

The binomial coefficients satisfy many remarkable identi-
ties.

If one looks at the Pascal triangle, it is easy to figure out
what are the sums of the elements in any given row

It is also easy to figure out what are the sums of n−m+1
consecutive elements in any given column (starting from
the top and with 0 ≤ m ≤ n).

What about the sums of elements on the diagonals? Again,
it is easy to determine what these sums are.

Here are the answers, beginning with sums of the elements
in a column.

(a) Sum of the first n − m + 1 elements in column m
(0 ≤ m ≤ n).
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For example, if we consider the sum of the first 5 (non-
zero) elements in column m = 3 (so, n = 7), we find
that

1 + 4 + 10 + 20 + 35 = 70,

where 70 is the entry on the next row and the next col-
umn.

n
�n

0

� �n
1

� �n
2

� �n
3

� �n
4

� �n
5

� �n
6

� �n
7

� �n
8

�
. . .

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
... ... ... ... ... ... ... ... ... ... ...

Thus, we conjecture that�
m

m

�
+

�
m + 1

m

�
+ · · ·+

�
n− 1

m

�
+

�
n

m

�
=

�
n + 1

m + 1

�
,

which is easily proved by induction.
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The above formula can be written concisely as

n�

k=m

�
k

m

�
=

�
n + 1

m + 1

�
,

or even as

n�

k=0

�
k

m

�
=

�
n + 1

m + 1

�
,

since
� k
m

�
= 0 when k < m.

It is often called the upper summation formula since it
involves a sum over an index, k, appearing in the upper
position of the binomial coefficient,

� k
m

�
.

(b) Sum of the elements in row n.

For example, if we consider the sum of the elements in
row n = 6, we find that

1 + 6 + 15 + 20 + 15 + 6 + 1 = 64 = 26.
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n
�n

0

� �n
1

� �n
2

� �n
3

� �n
4

� �n
5

� �n
6

� �n
7

� �n
8

�
. . .

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
... ... ... ... ... ... ... ... ... ... ...

Thus, we conjecture that
�

n

0

�
+

�
n

1

�
+ · · · +

�
n

n− 1

�
+

�
n

n

�
= 2n.

This is easily proved by induction of by setting a = b = 1
in the binomial formula for (a + b)n.
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Unlike the columns for which there is a formula for the
partial sums, there is no closed form formula for the par-
tial sums of the rows.

However, there is a closed form formula for partial al-
ternating sums of rows. Indeed, it is easily shown by
induction that

m�

k=0

(−1)k
�

n

k

�
= (−1)m

�
n− 1

m

�
,

if 0 ≤ m ≤ n. For example

1− 7 + 21− 35 = −20.

Also, for m = n, we get
n�

k=0

(−1)k
�

n

k

�
= 0.

(c) Sum of the first n + 1 elements on the descending
diagonal starting from row m.
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For example, if we consider the sum of the first 5 elements
starting from row m = 3 (so, n = 4), we find that

1 + 4 + 10 + 20 + 35 = 70,

the elements on the next row below the last element, 35.

n
�n

0

� �n
1

� �n
2

� �n
3

� �n
4

� �n
5

� �n
6

� �n
7

� �n
8

�
. . .

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
... ... ... ... ... ... ... ... ... ... ...

Thus, we conjecture that
�

m

0

�
+

�
m + 1

1

�
+ · · · +

�
m + n

n

�
=

�
m + n + 1

n

�
,

which is easily shown by induction.
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The above formula can be written concisely as
n�

k=0

�
m + k

k

�
=

�
m + n + 1

n

�
,

It is often called the parallel summation formula since
it involves a sum over an index, k, appearing both in the
upper and in the lower position of the binomial coefficient,�m+k

k

�
.

(d) Sum of the elements on the ascending diagonal start-
ing from row n.
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n Fn+1

�n
0

� �n
1

� �n
2

� �n
3

� �n
4

� �n
5

� �n
6

� �n
7

� �n
8

�
. . .

0 1 1
1 1 1 1
2 2 1 2 1
3 3 1 3 3 1
4 5 1 4 6 4 1
5 8 1 5 10 10 5 1
6 13 1 6 15 20 15 6 1
7 21 1 7 21 35 35 21 7 1
8 34 1 8 28 56 70 56 28 8 1
... ... ... ... ... ... ... ... ... ... ... ...

For example, the sum of the numbers on the diagonal
starting on row 6 (in cyan), row 7 (in blue) and row 8 (in
red) are:

1 + 6 + 5 + 1 = 13

4 + 10 + 6 + 1 = 21

1 + 10 + 15 + 7 + 1 = 34.
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We recognize the Fibonacci numbers , F7, F8 and F9,
what a nice surprise!

Recall that F0 = 0, F1 = 1 and

Fn+2 = Fn+1 + Fn.

Thus, we conjecture that

Fn+1 =

�
n

0

�
+

�
n− 1

1

�
+

�
n− 2

2

�
+ · · · +

�
0

n

�
.

The above formula can indeed be proved by induction,
but we have to distinguish the two case where n is even
or odd.

We now list a few more formulae which are often used in
the manipulations of binomial coefficients.

They are among the “top ten binomial coefficient iden-
tities” listed in Graham, Knuth and Patashnik [8], see
Chapter 5.
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(e) The equation
�

n

i

��
n− i

k − i

�
=

�
k

i

��
n

k

�
,

holds for all n, i, k, with 0 ≤ i ≤ k ≤ n.

This is because, we find that after a few calculations,
�

n

i

��
n− i

k − i

�
=

n!

i!(k − i)!(n− k)!
=

�
k

i

��
n

k

�
.

Observe that the expression in the middle is really the
trinomial coefficient�

n

i k − i n− k

�
.

For this reason, the equation (e) is often called trinomial
revision.
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For i = 1, we get

n

�
n− 1

k − 1

�
= k

�
n

k

�
.

So, if k �= 0, we get the equation
�

n

k

�
=

n

k

�
n− 1

k − 1

�
, k �= 0.

This equation is often called the absorption identity .

(f) The equation
�

m + p

n

�
=

m�

k=0

�
m

k

��
p

n− k

�

holds for m, n, p ≥ 0 such that m + p ≥ n.

This equation is usually known as Vandermonde convo-
lution.
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An interesting special case of Vandermonde convolution
arises when m = p = n. In this case, we get the equation

�
2n

n

�
=

n�

k=0

�
n

k

��
n

n− k

�
.

However,
�n

k

�
=

� n
n−k

�
, so we get

n�

k=0

�
n

k

�2

=

�
2n

n

�
,

that is, the sum of the squares of the entries on row n of
the Pascal triangle is the middle element on row 2n.

A summary of the top nine binomial coefficient identities
is given in Figure 4.4.
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�
n

k

�
=

n!

k!(n− k)!
, 0 ≤ k ≤ n factorial expansion

�
n

k

�
=

�
n

n− k

�
, 0 ≤ k ≤ n symmetry

�
n

k

�
=

n

k

�
n− 1

k − 1

�
, k �= 0 absorption

�
n

k

�
=

�
n− 1

k

�
+

�
n− 1

k − 1

�
, 0 ≤ k ≤ n addition/induction

�
n

i

��
n− i

k − i

�
=

�
k

i

��
n

k

�
, 0 ≤ i ≤ k ≤ n trinomial revision

(a + b)n =
n�

k=0

�
n

k

�
an−kbk, n ≥ 0 binomial formula

n�

k=0

�
m + k

k

�
=

�
m + n + 1

n

�
, m, n ≥ 0 parallel summation

n�

k=0

�
k

m

�
=

�
n + 1

m + 1

�
, 0 ≤ m ≤ n upper summation

�
m + p

n

�
=

m�

k=0

�
m

k

��
p

n− k

�
m + p ≥ n

m, n, p ≥ 0
Vandermonde convolution

Figure 4.4: Summary of Binomial Coefficient Identities
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Remark: Going back to the generalized binomial coef-
ficients,

�r
k

�
, where r is a real number, possibly negative,

the following formula is easily shown:
�

r

k

�
= (−1)k

�
k − r − 1

k

�
,

where r ∈ R and k ∈ Z.

If r < 0 and k ≥ 1 then k − r − 1 > 0, so the formula
shows how a binomial coefficient with negative upper in-
dex can be expessed as a binomial coefficient with positive
index.

For this reason, this formula is known as negating the
upper index .
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Next, we would like to better understand the growth pat-
tern of the binomial coefficients.

Looking at the Pascal triangle, it is clear that when
n = 2m is even, the central element,

�2m
m

�
, is the largest

element on row 2m and when n = 2m + 1 is odd, the
two central elements,

�2m+1
m

�
=

�2m+1
m+1

�
, are the largest

elements on row 2m + 1.

Furthermore,
�n

k

�
is strictly increasing until it reaches its

maximal value and then it is strictly decreasing (with two
equal maximum values when n is odd).

The above facts are easy to prove by considering the ratio
�

n

k

� ��
n

k + 1

�
=

k + 1

n− k
,

where 0 ≤ k ≤ n− 1.
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It would be nice to have an estimate of how large is the
maximum value of the largest binomial coefficient,

� n
�n/2�

�
.

Since the sum of the elements on row n is 2n and since
there are n + 1 elements on row n, some rough bounds
are

2n

n + 1
≤

�
n

�n/2�

�
< 2n

for all n ≥ 1.

Thus, we see that the middle element on row n grows
very fast (exponentially).

We can get a sharper estimate using Stirling’s formula
(see Section 4.1). We give such an estimate when n = 2m
is even, the case where n is odd being similar.

We have �
2m

m

�
∼ 22m

√
πm

.
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The next question is to figure out how quickly
�n

k

�
drops

from its maximum value,
� n
�n/2�

�
.

Let us consider the case where n = 2m is even, the case
when n is odd being similar and left as an exercise.

We would like to estimate the ratio�
2m

m− t

� ��
2m

m

�
,

where 0 ≤ t ≤ m.

Actually, it will be more convenient to deal with the in-
verse ratio,

r(t) =

�
2m

m

� ��
2m

m− t

�
=

(m− t)!(m + t)!

(m!)2
.
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Observe that

r(t) =
(m + t)(m + t− 1) · · · (m + 1)

m(m− 1) · · · (m− t + 1)
.

The above expression is not easy to handle but if we
take its (natural) logarithm, we can use basic inequali-
ties about logarithms to get some bounds.

We will make use of the following proposition:

Proposition 4.3.1 We have the inequalities

1− 1

x
≤ ln x ≤ x− 1,

for all x ∈ R with x > 0.

We are now ready to prove the following inequalities:
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Proposition 4.3.2 For every m ≥ 0 and every t,
with 0 ≤ t ≤ m, we have the inequalities

e−t2/(m−t+1) ≤
�

2m

m− t

� ��
2m

m

�
≤ e−t2/(m+t).

This implies that
�

2m

m− t

� ��
2m

m

�
∼ e−

t2

m,

for m large and 0 ≤ t ≤ m.

What is remarkable about Proposition 4.3.2 is that it
shows that

� 2m
m−t

�
varies according to the Gaussian curve

(also known as bell curve), t �→ e−
t2

m , which is the prob-
ability density function of the normal distribution (or
Gaussian distribution).

If we make the change of variable, k = m− t, we see that
if 0 ≤ k ≤ 2m, then

�
2m

k

�
∼ e−

(m−k)2

m

�
2m

m

�
.
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If we plot this curve, we observe that it reaches its max-
imum for k = m and that it decays very quickly as k
varies away from m.

It is an interesting exercise to plot a bar chart of the
binomial coefficients and the above curve together, say for
m = 50. One will find that the bell curve is an excellent
fit.

Given some number, c > 1, it sometimes desirable to find
for which values of t does the inequality

�
2m

m

� ��
2m

m− t

�
> c

hold. This question can be answered using Proposition
4.3.2.
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Proposition 4.3.3 For every constant, c > 1, and
every natural number, m ≥ 0, if√

m ln c + ln c ≤ t ≤ m, then
�

2m

m

� ��
2m

m− t

�
> c

and if 0 ≤ t ≤
√

m ln c− ln c ≤ m, then
�

2m

m

� ��
2m

m− t

�
≤ c.

As an example, if m = 1000 and c = 100, we will have
�

1000

500

� ��
1000

500− (500− k)

�
> 100

or equivalently
�

1000

k

� ��
1000

500

�
<

1

100

when 500− k ≥
√

500 ln 100 + ln 100, that is, when

k ≤ 447.4.
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It is also possible to give an upper on the partial sum
�

2m

0

�
+

�
2m

1

�
+ · · · +

�
2m

k − 1

�
,

with 0 ≤ k ≤ m, in terms of the ratio, c =
�2m

k

� ��2m
m

�
.

The following proposition is taken from Lovász, Pelikán
and Vesztergombi [10] (Lemma 3.8.2, Chapter 3):

Proposition 4.3.4 For any natural numbers m and
k with 0 ≤ k ≤ m, if we let c =

�2m
k

� ��2m
m

�
, then we

have �
2m

0

�
+

�
2m

1

�
+ · · · +

�
2m

k − 1

�
< c 22m−1.

This proposition implies an important result in (discrete)
probability theory as explained in [10] (see Chapter 5).
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Observe that 22m is the sum of all the entries on row 2m.

As an application, if k ≤ 447, the sum of the first 447
numbers on row 1000 of the Pascal triangle makes up less
than 0.5% of the total sum and similarly for the last 447
entries.

Thus, the middle 107 entries account for 99% of the total
sum.
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4.4 The Inclusion-Exclusion Principle, Sylvester’s For-
mula, The Sieve Formula

We close this chapter with the proof of a poweful formula
for determining the cardinality of the union of a finite
number of (finite) sets in terms of the cardinalities of the
various intersections of these sets.

This identity variously attributed Nicholas Bernoulli, de
Moivre, Sylvester and Poincaré has many applications to
counting problems and to probability theory.

Figure 4.5: Abraham de Moivre, 1667-1754 (left) and Henri Poincaré, 1854-1912 (right)

We begin with the “baby case” of two finite sets.
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Proposition 4.4.1 Given any two finite sets, A, and
B, we have

|A ∪B| = |A| + |B|− |A ∩B|.

We would like to generalize the formula of Proposition
4.4.1 to any finite collection of finite sets, A1, . . . , An.

A moment of reflexion shows that when n = 3, we have

|A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|
+ |A ∩B ∩ C|.

One of the obstacles in generalizing the above formula to
n sets is purely notational: We need a way of denoting
arbitrary intersections of sets belonging to a family of
sets indexed by {1, . . . , n}.
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We can do this by using indices ranging over subsets of
{1, . . . , n}, as opposed to indices ranging over integers.

So, for example, for any nonempty subset, I ⊆ {1, . . . , n},
the expression

�
i∈I Ai denotes the intersection of all the

subsets whose index, i, belongs to I .

Theorem 4.4.2 (Inclusion-Exclusion Principle) For
any finite sequence, A1, . . . , An, of
n ≥ 2 subsets of a finite set, X, we have

�����

n�

k=1

Ak

����� =
�

I⊆{1,...,n}
I �=∅

(−1)(|I|−1)

�����
�

i∈I

Ai

����� .

As an application of the Inclusion-Exclusion Principle, let
us prove the formula for counting the number of surjec-
tions from {1, . . . , n} to {1, . . . , p}, with p ≤ n, given in
Proposition 4.2.5.
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Recall that the total number of functions from {1, . . . , n}
to {1, . . . , p} is pn.

The trick is to count the number of functions that are
not surjective.

Any such function has the property that its image misses
one element from {1, . . . , p}.

So, if we let

Ai = {f : {1, . . . , n}→ {1, . . . , p} | i /∈ Im (f )},
we need to count |A1 ∪ · · · ∪ Ap|.

But, we can easily do this using the Inclusion-Exclusion
Principle.

We find that �����
�

i∈I

Ai

����� = (p− k)n.



450 CHAPTER 4. SOME COUNTING PROBLEMS; MULTINOMIAL COEFFICIENTS

From this, the Inclusion-Exclusion Principle yields

|A1 ∪ · · · ∪ Ap| =
p−1�

k=1

(−1)k−1

�
p

k

�
(p− k)n,

and so, the number of surjections, Sn p, is

Sn p = pn − |A1 ∪ · · · ∪ Ap|

= pn −
p−1�

k=1

(−1)k−1

�
p

k

�
(p− k)n

=
p−1�

k=0

(−1)k
�

p

k

�
(p− k)n

= pn −
�

p

1

�
(p− 1)n +

�
p

2

�
(p− 2)n + · · ·

+ (−1)p−1

�
p

p− 1

�
,

which is indeed the formula of Proposition 4.2.5.
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Another amusing application of the Inclusion-Exclusion
Principle is the formula giving the number, pn, of per-
mutations of {1, . . . , n} that leave no element fixed (i.e.,
f (i) �= i, for all i ∈ {1, . . . , n}). Such permutations are
often called derangements .

We get

pn = n!

�
1− 1

1!
+

1

2!
+ · · · +

(−1)k

k!
+ · · · +

(−1)n

n!

�

= n!−
�

n

1

�
(n− 1)! +

�
n

2

�
(n− 2)! + · · · + (−1)n.

Remark: We know (using the series expansion for ex in
which we set x = −1) that

1

e
= 1− 1

1!
+

1

2!
+ · · · +

(−1)k

k!
+ · · · .

Consequently, the factor of n! in the above formula for pn

is the sum of the first n + 1 terms of 1
e and so,

lim
n→∞

pn

n!
=

1

e
.
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It turns out that the series for 1
e converges very rapidly,

so pn ≈ 1
en!.

The ratio pn/n! has an interesting interpretation in terms
of probabilities .

Assume n persons go to a restaurant (or to the theatre,
etc.) and that they all check their coats. Unfortunately,
the cleck loses all the coat tags.

Then, pn/n! is the probability that nobody will get her
or his own coat back!

As we just explained, this probability is roughly 1
e ≈

1
3, a

surprisingly large number .

The Inclusion-Exclusion Principle can be easily general-
ized in a useful way as follows:



4.4. THE INCLUSION-EXCLUSION PRINCIPLE 453

Given a finite set, X , let m be any given function,
m : X → R+, and for any nonempty subset, A ⊆ X , set

m(A) =
�

a∈A

m(a),

with the convention that m(∅) = 0 (Recall that
R+ = {x ∈ R | x ≥ 0}).

For any x ∈ X , the number m(x) is called the weight
(or measure) of x and the quantity m(A) is often called
the measure of the set A.

For example, if m(x) = 1 for all x ∈ A, then m(A) = |A|,
the cardinality of A, which is the special case that we have
been considering.

For any two subsets, A, B ⊆ X , it is obvious that

m(A ∪B) = m(A) + m(B)

m(X − A) = m(X)−m(A)

m(A ∪B) = m(A ∩B)

m(A ∩B) = m(A ∪B),

where A = X − A.
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Figure 4.6: James Joseph Sylvester, 1814-1897

Then, we have the following version of Theorem 4.4.2:

Theorem 4.4.3 (Inclusion-Exclusion Principle, Ver-
sion 2 ) Given any measure function, m : X → R+, for
any finite sequence, A1, . . . , An, of n ≥ 2 subsets of a
finite set, X, we have

m

�
n�

k=1

Ak

�
=

�

I⊆{1,...,n}
I �=∅

(−1)(|I|−1) m

�
�

i∈I

Ai

�
.

A useful corollary of Theorem 4.4.3 often known as
Sylvester’s formula is:
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Theorem 4.4.4 (Sylvester’s Formula) Given any mea-
sure, m : X → R+, for any finite sequence, A1, . . . , An,
of n ≥ 2 subsets of a finite set, X, the measure of the
set of elements of X that do not belong to any of the
sets Ai is given by

m

�
n�

k=1

Ak

�
= m(X) +

�

I⊆{1,...,n}
I �=∅

(−1)|I| m

�
�

i∈I

Ai

�
.

Note that if we use the convention that when the index
set, I , is empty then

�

i∈∅
Ai = X,

then the term m(X) can be included in the above sum
by removing the condition that I �= ∅ and this version of
Sylvester’s formula is written:

m

�
n�

k=1

Ak

�
=

�

I⊆{1,...,n}
(−1)|I| m

�
�

i∈I

Ai

�
.



456 CHAPTER 4. SOME COUNTING PROBLEMS; MULTINOMIAL COEFFICIENTS

Sometimes, it is also convenient to regroup terms involv-
ing subsets, I , having the same cardinality and another
way to state Sylvester’s formula is as follows:

m

�
n�

k=1

Ak

�
=

n�

k=0

(−1)k
�

I⊆{1,...,n}
|I|=k

m

�
�

i∈I

Ai

�
.

(Sylvester’s Formula)

Finally, Sylvester’s formula can be generalized to a for-
mula usually known as the “Sieve Formula”:
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Theorem 4.4.5 (Sieve Formula) Given any measure,
m : X → R+, for any finite sequence, A1, . . . , An, of
n ≥ 2 subsets of a finite set, X, the measure of the
set of elements of X that belong to exactly p of the
sets Ai (0 ≤ p ≤ n) is given by

Tp
n =

n�

k=p

(−1)k−p

�
k

p

� �

I⊆{1,...,n}
|I|=k

m

�
�

i∈I

Ai

�
.

Observe that Sylvester’s Formula is the special case of the
Sieve Formula for which p = 0.

The Inclusion-Exclusion Principle (and its relatives) plays
an important role in combinatorics and probability the-
ory as the reader will verify by consulting any text on
combinatorics.
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A classical reference on combinatorics is Berge [1]; a more
recent is Cameron [2].

More advanced references are van Lint and Wilson [16],
and Stanley [14].

Another great (but deceptively tough) reference covering
discrete mathematics and including a lot of combinatorics
is Graham, Knuth and Patashnik [8].

Conway and Guy [3] is another beautiful book that presents
many fascinating and intriguing geometric and combina-
torial properties of numbers in a very untertaining man-
ner.

For readers interested in geometry with a combinatriol
flavor, Matousek [11] is a delightful (but more advanced)
reference.

We are now ready to study special kinds of relations:
Partial orders and equivalence relations.


