1 Series and sequences

1. Recognize the following sequence and write it in concise form. Compute a close-form sum-
mation of the first n terms.
5,7,9,11,13,15,17, ...

Solution: Arithmetic progression 2x + 3 for x = 1,2,3,4,5...
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2. Recognize the following sequence and write it in concise form. Compute a close-form sum-
mation of the first n terms.

3,9,19,33,51,73,99, ...
Solution: Quadratic progression 222 + 1 for z = 1,2,3,4,5...
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3. Recognize the following sequence and write it in concise form. Compute a close-form sum-
mation of the first n terms.
48,96, 192, 384, 768, 1536, ...

Solution: Geometric progression 24 x 2% for x = 1,2,3,4,5...
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24%2F) =24 "2k =24() 2F — 1) = 24(F——~ — 1) = 24(2""! — 2) = 48(2" — 1
;( *27) ; (’;0 )= 24— ) = 24( ) = 48( )

4. (More challenging) Prove that 2% + 3% + 4% + % < 1 for any natural number n.
Solution:
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6. Sp=>(2k—1)2 =n(4n®—-1)/3
k=1
Solution: Basecasen=1:81=(2-12=1=1(4%12-1)/3
Induction step: give S, formula, we want to prove that S,1 = (n+1)(4(n +1)2 —1)/3

Spi1 = Sp+2n+1)—1)? =n(4n?—-1)/3+2n+1)* =n(2n—1)(2n+1)/3+3(2n+1)?/3 =

= é(2n+1)(n(2n—1)+3(2n—|—1)) = %(2n+1)(2n2—n+6n+3) = %(2n+1)(2n2+2n+3n+3) =
- §<2n+ D@n(n+1) +3(n+1)) = %(m 1)(2n + 1)(2n + 3) = é(m 1)(4n2 + 8n + 3) =

- é(m 1)(dn? +4n+4—1) = %(m 1) (d(n+ 1)? — 1)



n

7.8, = ;(—1)i xi% = (—1)"in(n+1)

Solution: Base case n =1:(—1)1%2 = (‘UM

Induction step: assuming S,, true, we want to prove S,y = (—1)”+1%(n +1)(n+2)

Spy1=Sn + (1) n+1)2 = (71)”%n(n + 1)+ (=) (n+1)?2 =

= (1" D= 20+ 1)) = (<)L 0+ 1)(=n—2) = (~1)" 0+ 1(n +2)

8. Prove that n! > 3" > 2" > n? > nlogy(n) > n > logy(n) for n > 7

Solution: Base casen =7 :
7'=5040 > 37" =2187>27 =128 > 72 =49 > 7 logy(7) = 19.65 > 7 > log,y(7) = 2.81

Induction step: using inequalities for n, we want to prove that
(n+1)!>3" >2nH > (n+1)2 > (n+1)logy(n+1) > n+1 > logy(n + 1)
We start from the left side:
(n+1)!'=nln+1)>3"(n+1)>3"+3=3""1=3"%3>2"%3>2"%2=2""
Ml =9y 2> ntx2=n*4n >0+ m=n*+2n+5m>n*+2n+1=(n+1)*



We have proved so far the first three inequalities. Here is the proof for the last one:
2l > 2 = n 4+ 1 > logy(n?) > logy(7n) = logy(n + 6n) > logy(n + 1)

Finally the inequalities fourth and fifth:
n+1>logy(n+1)= (n+1)2 > (n+1)logy(n+1) > (n+1)logy(7) > n+1

3 Induction proofs

PB 1 Show that 5 divides 8" — 3™ for any natural number n.

Solution: Base casen =0:8"—3%=1—1=0is a multiple of 5
Induction Step : Assuming 8" — 3" = 5k we want to prove that 5|(8"+1 — 3n+1)
gl — 3ntl = 8% 8" — 33" = 5% 8" 4 3(8" — 3") = 5% 8" 4 5k = 5(8" + k) thus multiple of 5

Solution without inductgon:
8n+1 _ 3n+1 _ (8 _ 3) Z 8k: * 371,7]{?

k=0
which is a multiple of 5 due to the first factor.



PB 2 Binary trees height Prove that depth (height) of a binary tree with n nodes is at
least |logy(n)] (depth is the max number of edges on a path from root to a leaf).

Solution: Base case n = 1,depth =0 > log(1) =0
Base case n = 2,depth =1 > log(2) =1

Strong Induction Step: Will assume the property is true for any & < n, and will prove it for
n. In particular the k-s for which we are going to need it are the number of nodes in the Left and
Right subtrees.

Lets say the root of the binary tree has a left subtree with p nodes and a right subtree with ¢
nodes. Then n =1+ p + ¢. Lets assume (without loss of generality) that p > q.
p < n so by induction hypothesis we know depthy, > |logy(p)]

depth = 1 + max(depthr,depthr) > 1+ depthy >
1+ |logy(p)] = 1+ [loga(%)] = 1+ |logy(2p) — 1] = |logy(2p)]
Ifniseventhenp>qg=n—p—1=2p >n = |logy(2p)] > |logs(n)]

If n is odd then [logy(n —1)| = |logy(n)]|
andp>qg=n—p—1=2p=n—1= [logy(2p)| = [logy(n —1)] = [logy(n)]

N nodes
N= L+P+q/
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PB 10 %%
v 2n dots are placed around the outside of the cir-
cle; n of them are colored red and the remaining
n are colored blue. Going around the circle anti-
clockwise, you keep a count of how many red and
blue dots you have passed. If at all times the number
of red dots you have passed is at least the number
of blue dots, you consider it a successful trip around
the circle. Prove that no matter how the dots are
placed on the circle, it is possible to have a success-
ful trip around the circle if you start at the right
point.
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