
Two's Complement Multiplication
Here are a couple of ways of doing two's complement multiplication by hand. Direct implementations of these
algorithms into the circuitry would result in very slow multiplication! Actual implementations are far more
complex, and use algorithms that generate more than one bit of product each clock cycle. ECE 352 should cover
these faster algorithms and implementations.

Remember that the result can require 2 times as many bits as the original operands. We can assume that both
operands contain the same number of bits.

"No Thinking Method" for Two's Complement Multiplication

In 2's complement, to always get the right answer without thinking about the problem, sign extend both integers to
twice as many bits. Then take the correct number of result bits from the least significant portion of the result.

A 4-bit, 2's complement example:

 1111 1111 -1
 x 1111 1001 x -7

 ---------------- ------
 11111111 7
 00000000
 00000000

 11111111
 11111111
 11111111
 11111111
 + 11111111

 1 00000000111
 -------- (correct answer underlined)

Another 4-bit, 2's complement example, showing both the incorrect result (when sign extension is not done), and
the correct result (with sign extension):

 WRONG ! Sign extended:
0011 (3) 0000 0011 (3)

 x 1011 (-5) x 1111 1011 (-5)
 ------ -----------

0011 00000011
 0011 00000011
 0000 00000000
 + 0011 00000011
 --------- 00000011
 0100001 00000011
 not -15 in any 00000011
 representation! + 00000011

 1011110001

 take the least significant 8 bits 11110001 = -15

"Slightly Less Work Method" for Two's Complement Multiplication

 multiplicand
 x multiplier

 product

If we do not sign extend the operands (multiplier and multiplicand), before doing the multiplication, then the wrong
answer sometimes results. To make this work, sign extend the partial products to the correct number of bits.

To result in the least amount of work, classify which do work, and which do not.

 + - + - (muliplicands)
 x + x + x - x - (mulipiers)
 ---- ---- ---- ----
 OK sign | |

 extend | take |
 partial | additive |
 products | inverses |

 - +
 x + x +
 ---- ----
 sign OK

 extend
 partial
 products

Example:

 without with correct
 sign extension sign extension

 11100 (-4) 11100
 x 00011 (3) x 00011
 ------------ ---------
 11100 1111111100
 11100 1111111100
 ------------ ---------------
 1010100 (-36) 1111110100 (-12)
 WRONG! RIGHT!

Another example:

 without adjustment with correct adjustment

 11101 (-3) 11101 (-3)
 x 11101 (-3) x 11101 (-3)
 ------------- -------------
 11101 (get additive inverse of both)
 11101
 11101 00011 (+3)
 +11101 x 00011 (+3)
 ----------- -------------
 1101001001 (wrong!) 00011

 + 00011

 001001 (+9) (right!)

Copyright © Karen Miller, 2006

