Laziness By Need

Stephen Chang
Northeastern University
3/19/2013
ESOP 2013, Rome, Italy

“the most powerful tool for modularization
... the key to successful programming”

[Hughes90|

Laziness 1s great.

“pragmatically important because 1t enables
the producer-consumer programming style”

[HIM76]
v

w
L

- EEp Valid?) e

-
W

“lazy programs can o
exhibit astonishing monumentally difficult
to reason about time”

poor space behavior” [Harper11]
[HHPJWOQT]

Or is 1t?

“in a lazy language, 1t’s much more difficult

to predict the order of evaluation”
[PJ11]

I want the good
without the bad.

Solution: strict + lazy
(when needed)

via static analysis

“languages should support

both strict and lazy”
[PJ2011]

Combining lazy and strict

has been done?

“T'he question 1s:
What’s the default?
How easy 1s 1t to get the other?
How do you mix them together?”

Previous Approaches

ld, pH

* | enient evaluation

95]

191, NAH+

[Nikh

Adds strictness to lazy languages.

B

BHA86, CPJ85]
* Cheap Eagerness [Faxen00]

How do real-world lazy
programmers add
strictness?

seq

“both before and after
optimization, most
thunks are evaluated”
[Faxen00]

“most thunks are

unnecessary’
[EPJ03]

What about adding laziness to
strict languages”’

“most 1d90 programs “in our corpus of R
require neither programs ... the
functional nor average evaluation

conditional rate of promises is
non-strictness” 90%”

[SG95] [MHOV12]

lenient

: . laz
strict evaluation °%Y
+ laz
. y |
laziness N stnctne.ss
T analysis
by need optimistic 4
evaluation
strict lazy
languages languages
A \ 4 v A 4

more laziness ——>
(placements not exact)

A

o 3

Strict languages already have laziness

wcalii]
® VA

JS

So what’s the problem?

* Lazy data structures are not enough.
* Lazy annotations are hard to get right.

* Laziness is a global property!

AN

1

sameiringe treel tree2

/
“**15.000,000

Same Fringe

Two binary trees have the same fringe if they have
exactly the same leaves, reading from left to right.

AN

4
"** 15,000,001

(flatten treel) == (flatten tree2)

Same Fringe

A (Tree X) is either a:
- Leat X
- Node (Tree X) (Tree X)

flatten t = flat t []

flat (Leaf x) acc = x::acc
flat (Node t1 t2) acc = flat t1 (flat t2 acc)

Same Fringe (eager)

let treel

N

1

sameiringe treel tree2

/
15,000,000

Oml3.363s

let tree2 =

N

2

/

" 15.000,001

=> false

Same Fringe (with streams)

A (Stream X) is either a:
- Nil
- Leons X $(Stream X)

Same Fringe (with streams)

flatten £t = flat t Nil

flat (Node t1 t2) acc = flat t1 (flat t2 acc)

Same Fringe (with streams)

streameq $Nil $Nil = true

streameq $(Lcons x1 xsl1l) $(Lcons x2 xs2)=
X1==x2 && streameq XSl Xs2

streameq _ = false

Same Fringe (with streams)

samefringe treel tree2 =
streameq $(flatten treel) $(flatten tree2)

sameiringe treel tree2 |=> false
oml/.277s

(with lazy trees)
Om36.905s

Same Fringe (naively lazy)

flatten €t = flat t Nil

flat (Leaf x) acces—mwoms—x—$acc
flat (Node t1 t2) acc = t1((flat tza

Same Fringe (properly lazy)

flatten €t = flat t Nil

flat (Leaf x) acc = Lcons x $acc
flat (Node t1 t2) acc = flat t1 $(flat t2 acc)

Same Fringe (properly lazy)

sameliringe treel tree2 |=> false

Omo.002s

Takeaway

* Using lazy data structures is not
enough.

* Additional annotations are needed but
can be tricky.

* |f only there was a tool that could help
with the process . . .

Tabs

File Edit View Language Racket Insert File Edit View Larguage Racket Incert Tabs Help

nqueens-racket.rkt> (define..)v nqueens-racket.rkt> (dffine .)v Fix Laziness[@.‘l Runl> Stop M
| —
#lang racket #lang racket "
(define (append lstl 1st2) (define (append 1st1 1st2)
(if (null? (force lst1)) (if (null? (force 1lstl))
ToLe 1st2
(lcons (ffirst (force 1lstl)) (appe (lcons (first (force 1sti1)) (append (rest (force 1st1)) lst2))))
(define (foldr f base lst) (define (foldr f base lst)
(if (null? (force 1lst)) (if (null? (force lst))
base base
l (f (first (force 1lst)) (foldr T b (f (first (force lst)) (delay (foldr f base (rest (force 1lst)))))))
cons X y
(define (nqueens n) (define (nqueens n) (:)
— (let ([qu (let ([qu O
f— (A (1 gss) (A (1 gss)
(foldr (foldr (:)
(A (gs acc) (A (gs acc)
(append (map (A (k)§ (lcon (append (map (A (k) (lcons (cons i k) gs)) (:)
C O n S X y (DULL s (build-1list n add1)) O
acc)) acc))
null gss))] null gss))] O
[ok? [ok?
(A (1st) (A (1st) (:)
(if (null? lst) (if (null? (force 1st)) O
true true
(andmap (A (q) (safe? (f] (andmap (A (q) (safe? (first (force lst)) q))
(rest (force 1st (rest (force 1st)))))1)
(let ([all-possible-solns (let ([all-possible-solns
(foldl qu (cons null null) ((foldl qu (cons null null) (build-list n add1))]
[valid? [valid?
(A (1st) (andmap ok? (tails (A (1st) (andmap ok? (tails 1st)))])
(first (filter valid? all-possibl] (first (filter valid? all-possible-solns)))))
(show-queens (time (nqueens 8))) (show-queens (time (nqueens 8)))
Language: racket [custom]. Language: racket [custom].
cpu time: 30250 real time: 30372 gc tim cpu time:|5776 real time: 5797 gc time: 1904
>
Determine language from source custom ¥ Determine language from source custom~ 2:0 202.68MB|:| & e

30s 5S

Same Fringe (naively lazy)

flatten t = flat t Nil \
flat (Leaf x) acc = Lcons x $acc
flat (Node tl1 t2) acc = flat tl@tza

control flow analysis

+

laziness flow analysis

control

peEl

\—/

flow analysis

r — P(v)
+

laziness flow analysis
D e P(¢)
Se Pl
F e P

Ny Cy)

arguments that reach a lazy construct

arguments that reach a strict context

expressions to force

Transformation

* Delay all 6665,€¢§

 Force all f:f@f

Abstract value

(arg ¢)

tracks flow of functions arguments.

Analysis specified with rules:

e e

(E,Djsjf) — € iﬁlclj,..jcn

Read: Sets p,D, S, F approximate expression e
if and only if constraints cq,...,c, hold.

o)

).Lo € p(ly) :
(V)\(CL‘l ‘o

p(€1) C plz1) A ...

lapp]

o)

).Lo € p(ly) :
(V)\(CL‘l ‘o

p(€1) C plz1) A ...

A

(arg 61) € p(x1) A ...

p(lo) C p(£)
A

lapp]

— (1cons €' e

£g
2

)¢ iff

[lcons]

D) et A (5, D) = €52|A|(1cons ¢4 £2) € p(¥)

(P,
A

k*v’:v € fu(e2)

|(V(arg) € pla):

EgEﬁ

)

strict contexts
contexts where a thunk should not appear

examples:
—arguments to primitives
—if test expression

—function position in an application

Sle’] iff ... A

(V(arg ¢1) € p(L) : £ € S)

(3delay € p(¢) = ¢ € F)

|strict]

We used our tool ...

... and found some bugs.

define enqueue(elem dq) =
let strictprt = (extract strict part of dq)
newstrictprt = (combine elem and strictprt)
lazyprt = force (extract lazy part of dq)
lazyprtl = (extracted from lazyprt)
lazyprt2 = (extracted from lazyprt)
in Deque newstrictprt (delay (combine lazyprtl and lazyprt2))

Conclusions

* Get the benefits of laziness by starting
strict and adding laziness by need.

* A flow-analysis-based tool can help in
adding laziness to strict programs.

Thanks.

