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Abstract
Continued advances in variant effect prediction are necessary to demonstrate the ability of machine learning methods to 
accurately determine the clinical impact of variants of unknown significance (VUS). Towards this goal, the ARSA Critical 
Assessment of Genome Interpretation (CAGI) challenge was designed to characterize progress by utilizing 219 experimen-
tally assayed missense VUS in the Arylsulfatase A (ARSA) gene to assess the performance of community-submitted predic-
tions of variant functional effects. The challenge involved 15 teams, and evaluated additional predictions from established 
and recently released models. Notably, a model developed by participants of a genetics and coding bootcamp, trained with 
standard machine-learning tools in Python, demonstrated superior performance among submissions. Furthermore, the study 
observed that state-of-the-art deep learning methods provided small but statistically significant improvement in predictive 
performance compared to less elaborate techniques. These findings underscore the utility of variant effect prediction, and 
the potential for models trained with modest resources to accurately classify VUS in genetic and clinical research.

Introduction

The characterization of variants of unknown significance 
(VUS) is critical for genetic diagnosis (Richards et al. 2015), 
newborn screening (Hong et al. 2021; Stark and Scott 2023), 
estimating disease burden (Clark et al. 2018; Borges et al. 
2020; Chen et al. 2023), and gaining insights into the molec-
ular mechanisms of human genetic disease (Rost et al. 2016; 
Shendure et al. 2019; Estrada et al. 2021). However, despite 
their biomedical relevance and need for clinical deployment, 
sensitive, cost-effective, experimental techniques for charac-
terizing VUS remain elusive. In silico predictors hold such 
promises for characterizing VUS, but have yet to share in the 

recent performance increases experienced by protein struc-
ture prediction (Kryshtafovych et al. 2021).

Towards the understanding and improvement of in silico 
predictors of variant functional effect, the Critical Assess-
ment for Genome Interpretation (CAGI) organization has 
continually facilitated the use of experimentally derived and 
real-world data to train and evaluate state-of-the-art predic-
tive tools (The Critical Assessment of Genome Interpreta-
tion Consortium 2024). As part of the sixth round of CAGI 
challenges (CAGI6), a blinded competition was conducted 
to assess the community’s performance at predicting the 
impact of missense variants in the Arylsulfatase A gene 
(ARSA) on its enzymatic activity.

Bi-allelic variants in ARSA can lead to Metachromatic 
Leukodystrophy (MLD), an autosomal-recessive lysosomal 
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storage disorder characterized by neuro-cognitive decline, 
and variable age of onset and severity (Van Rappard et al. 
2015). Without early intervention, patients with the most 
severe, Late-Infantile, form of the disease survive only into 
early childhood, whereas Adult onset patients may not be 
diagnosed until the fifth decade of life, and, in some cases, 
have been mistaken for having Alzheimer’s disease (Martin 
et al. 2013; Johannsen et al. 2001; Stoeck et al. 2016). Mul-
tiple studies have highlighted a strong genotype-phenotype 
relationship in MLD when considering well-characterized 
and common pathogenic ARSA mutations (Kappler et al. 
1991; Trinidad et al. 2023). For these reasons, understand-
ing the performance of in silico methods at assessing ARSA 
variant impact is particularly important. As more novel vari-
ants are identified, understanding their potential contribution 
to disease will be a high priority to the newborn screening 
community so that early and effective therapeutic responses 
to disease can be employed (Hong et al. 2021).

An evaluation dataset of ARSA variants was previously 
tested for their impact on enzymatic activity using a tandem 
mass spectrometry assay (Trinidad et al. 2023). Variants 
were curated from patients reported in the literature, col-
lected by the MLD Foundation, or reported in databases 
of population variants such as gnomAD (Karczewski et al. 
2020). For the ARSA Challenge, predictions of ARSA vari-
ant impact, represented as the resulting protein’s enzymatic 
activity relative to the wild-type ( % WT activity) were solic-
ited before the experimentally derived % WT activity values 
were published.

In this paper, we report the findings of the ARSA Chal-
lenge. We observed that top predictor performance was con-
sistent with previous, similarly designed challenges (Clark 
et al. 2019). Also, consistent with previous challenges, we 
observed that models employing disparate methodologies 
and training data were still highly correlated with each other, 
suggesting common underlying characteristics influencing 
predictor performance. Finally, we observed that simple 
machine-learning models performed on par with advanced 
deep-learning methods, suggesting that feature engineering 
and quality of the training data can compensate for the com-
plexity of the learning algorithm used in the model (Nguyen 
2024).

Results

Challenge design and participation

The ARSA CAGI challenge was structured similar to pre-
vious related challenges (Clark et al. 2018, 2019). First, a 
Curated set of 274 ARSA single-nucleotide-variants (SNVs), 
observed in the population or of known disease significance 
was provided prior to publication of experimentally assayed 

% WT activity values (Trinidad et al. 2023). As MLD is a 
disease typified by loss of ARSA activity, low % WT activity 
values correspond with pathogenicity.

Variants were released to the community through the 
CAGI organization website, requesting participants to 
provide predicted % WT enzymatic activity values asso-
ciated with each missense mutation in the ARSA protein 
(ENSP00000216124). Prediction submissions were accepted 
from July 15, 2022 to November 15, 2022. Additional pub-
licly available predictions from published models were also 
collected, but were evaluated separately from submitted pre-
dictions when an overall ranking of models was generated 
(Adzhubei et al. 2010; Ioannidis et al. 2016; Pejaver et al. 
2020; Cheng et al. 2023).

Fifteen teams participated in the challenge, submitting 
predictions from a total of 65 predictors (Tables 1, 2). Four 
teams, comprised mostly undergraduate participants (but 
also high school and graduate students), of a two-week 
genetics and coding bootcamp that was synchronized with 
the challenge timeline and academic calendars. Bootcamp 
participants hailed from 8 different countries: Argentina, 
Australia, China, France, Italy, Japan, Turkey, and the United 
States, including Puerto Rico.

Performance at predicting enzymatic activity 
and pathogenicity

To evaluate model performance, we calculated the relative 
ranking of each predictor according to Pearson’s correlation, 
Kendall’s tau, area under the receiver operating character-
istic curve (AUC), and truncated AUC (Section Evaluation 
metrics). Pearson’s correlation and Kendall’s tau are used 
for predicting the experimentally measured percent wild-
type activity ( %WT) as a continuous value. AUC and trun-
cated AUC are used for classifying variants as pathogenic or 
benign, where the variants were considered pathogenic if the 
%WT was ≤ 13%. We look at truncated AUC in addition to 
AUC because a region of low false positive rate (FPR) is of 
particular interest in clinical settings. A final, overall rank-
ing was achieved by then taking the average rank according 
to these four metrics (Figs. 1,  2). Since a team could have 
multiple predictors, we first performed ranking within each 
team and picked the best ranking predictor as its representa-
tive in the final overall ranking. Assessors were blinded to 
model names until models were ranked and the best ranking 
predictor for each team was chosen. A mapping between 
original identifiers and representative model names can be 
found in Table S5.

Out of all ARSA challenge participants, we observed 
that Bootcamp Team 3’s model performed the best 
(described in Section  Bootcamp participant models), 
achieving an average rank of 2 across the four evaluation 
metrics considered (Pearson’s Corr = 0.576, rank = 2; 
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Kendall’s Tau = 0.449, rank = 1; AUC = 0.845, rank = 1; 
Truncated AUC = 0.478, rank = 4) (Nguyen 2024). Qafi 
was the second best performing model with an average 

rank of 2.5 across the four evaluation metrics (Pearson’s 
Corr = 0.594, rank = 1; Kendall’s Tau = 0.446, rank = 2; 

Fig. 1   Model performance 
based on key metrics: Model 
performance based on Pearson’s 
correlation, Kendall’s tau, AUC, 
and Truncated AUC; along with 
bootstrap-based 90% confidence 
intervals. The best-performing 
model for each team is shown in 
blue. Baseline models and indi-
vidual feature (evolutionary and 
structure) based performance 
are shown in grey. Models are 
sorted on the y-axis based on 
their average ranking accord-
ing to the four metrics used. 
Only models with Pearson’s 
correlation greater than 0.25 
are shown in the figure (13 out 
of 15 submitted models, five 
out of five baseline models, 
and two out of seven funda-
mental features). For teams that 
submitted multiple models, 
we show the performance of 
their best model. Figure S1 in 
Supplementary Materials shows 
performance for all models (or 
the best models for teams that 
submitted more than one)

Fig. 2   a  ROC and b  Truncated ROC: The receiver operating char-
acteristic (ROC) and truncated ROC curves for the best-performing 
model for each team and baselines. AUC and Truncated AUC values 
are shown along with 1.96×  standard deviation from their bootstrap 

estimates. Results are shown for the top four submitted models and 
top two baseline models (based on their average ranking according to 
the four metrics used)
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AUC = 0.843, rank = 2; Truncated AUC = 0.470, rank = 
5) (Özkan et al. 2021).

Comparison with publicly available tools

We also evaluated the performance of five publicly avail-
able predictors: PolyPhen-2 (Adzhubei et al. 2010), VEST4 
(Carter et al. 2013), REVEL (Ioannidis et al. 2016), Mut-
Pred2 (Pejaver et al. 2020), and AlphaMissense (Cheng et al. 
2023); grey bars in Figs. 1, 2). Ranking was performed sepa-
rately for this group of models.

Out of these models, AlphaMissense showed the high-
est performance in evaluation (Pearson’s Corr = 0.614, 
rank = 1; Kendall’s Tau = 0.468, rank = 1; AUC = 0.859, 
rank = 1; Truncated AUC = 0.530, rank = 1. Furthermore, 
AlphaMissense was the only publicly available model to per-
form better than the top-performing challenge participant 
(Bootcamp Team 3). Though the difference in performance 
was statistically significant on all four metrics, the effect size 
was relatively small. Statistical significance was determined 
using a one-sided binomial test with number of wins on 1000 
bootstrap samples as the test statistic. AlphaMissense won 
875, 763, 760 and 755 times on Pearson’s Corr., Kendall’s 
Tau, AUC and Truncated AUC, giving p-values less than 
10−139, 10−65, 10−63 and 10−61 , respectively. The p-value was 
computed as the probability that the Binomial(0.5, 1000) 
variable is greater than or equal to the number of wins.

Though we did not use the area under the precision-recall 
curve as a metric for ranking models, we found the curves 
informative. Figure 3 shows that Bootcamp Team 3 has 
higher precision than AlphaMissense at for low-recall pre-
dictions. This trend shifts as recall increases, though curves 
converge for predictions with greater than 80% recall. These 

results imply that AlphaMissense does not predict some easy 
to predict pathogenic variants as confidently as the top par-
ticipant methods.

Comparison with fundamental features

In addition to comparing participant performance with pub-
licly available state-of-the-art predictors, we also selected 
individual features based on evolutionary conservation 
(PhastCons2), biochemical properties (Grantham scores), 
and protein structure characteristics (solvent accessibility, 
and backbone kappa, alpha, phi, and psi values using the 
PDB structure 1AUK) for evaluation (Siepel et al. 2005; 
Grantham 1974; Kabsch and Sander 1983).

PhastCons2 (Pearson’s Corr = 0.327; Kendall’s Tau = 
0.306; AUC = 0.727; Truncated AUC = 0.228) and sol-
vent accessibility (Pearson’s Corr = 0.279; Kendall’s Tau = 
0.260; AUC = 0.756; Truncated AUC = 0.308) were the best 
two performing features. Other features (Grantham scores 
and backbone’s dihedral angles) showed poor correlation 
(Pearson’s Corr ≤ 0.25 ) with the %WT activity values and 
were excluded from the figure. Figure S1 in Supplementary 
material shows performance for all fundamental features.

Correlation between predictors

We measured the correlation of predictions between mod-
els (Fig. 4). Consistent with previous challenges, models 
were all more correlated with each other than with % WT 
activity values (Clark et al. 2019). The top 3 performing 
methods in term of Pearson’s correlation (AlphaMissense, 
Qafi, and Bootcamp Team 3) achieved correlation with 
% WT activity of less than 0.60, but were more correlated 
with each other (Pearson’s correlations > 0.76 . This high 
correlation could be the result of shared methodologies 
or training features. For example, Qafi, Meta-EA and BC 
Team 3 all utilize REVEL as a feature, while the other top-
scoring predictors do not (Table 1). Qafi and Meta-EA also 
both employ PSSM/MSA-based features. Generally, Qafi 
had higher correlations with other models across the board 
(0.74–0.93), likely due to being an ensemble method that 
incorporated features of variant impact predictors, structural 
information, and PSSM/MSA data. Bootcamp team models 
all utilized the same training features, so high correlation 
between them is anticipated. SNP-MuSiC, a predominantly 
structure-based method, showed lower correlation across 
the board compared to other submitters, indicating a more 
unique methodology. With regards to training data, all of 
the top performing models except for Qafi and Meta-EA (a 
non-machine learning model) were trained on either ClinVar 
or Humsavar databases, likely also leading to stronger cor-
relation between them (Table 1).

Fig. 3   Precision and recall: the precision and recall curves for the top 
performing model for each team and baselines
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Difficult‑to‑predict variants

We considered the hardest-to-predict pathogenic and benign 
variants to search for trends (Section Categorization of diffi-
cult-to-predict mutations). For the current analysis we con-
sider 13% WT activity to be the threshold that distinguishes 
between pathogenic and benign variants, and considered 
all mutations, not just those in the evaluation dataset. We 
found that the top 10 difficult-for-all pathogenic variants 
had a median % WT activity of 1.28, making them closer to 
the pathogenic-benign threshold (13 % WT activity) on aver-
age compared to the other pathogenic variants, suggesting 
that predictors have more trouble with hypomorphic muta-
tions with residual activity (Fig. 5a) (Muller 1932). Out of 
all pathogenic variants, 67% have a lower % WT activity (a 
higher pathogenic effect). The top 10 difficult-for-all benign 
variants with a median 27.6 % WT activity are also closer to 
the pathogenic-benign threshold on average compared to the 
other benign variants. Out of all benign variants, 77% have 
a higher % WT activity (a higher benign effect).

Variants p.A214V and p.T410I, among the top 10 diffi-
cult-for-all pathogenic variants, are established pathogenic 
variants in ClinVar annotated as P and LP, respectively. The 
difficulty in predicting the pathogenicity of these variants is 
surprising since the variants might be present in the train-
ing set of the supervised predictors. The variants have a low 
% WT activity of 0.45 and 2.9, respectively. However, 54% 
and 79% of pathogenic variant have a lower % WT activity 
than p.A214V and p.T410I, respectively. This provides a 
probable explanation for the difficulty in their prediction, 
especially for p.T410I. Another explanation is that these 
mutations just happen to be false positives in terms of both 
their % WT activity values and their annotation in ClinVar. 

Indeed their frequency in patients is low: neither mutation 
was identified in curated patients in Trinidad et al. (2023), 
and they both have low allele frequencies in gnomAD.

Variants p.R372Q and p.T281I, among the top 10 dif-
ficult-for-all benign variants, have known clinical signifi-
cance in ClinVar, however, they are annotated as P/LP and 
LP respectively. Furthermore, although in the benign range, 
they have low % WT activity of 23.3 and 31.9, with 81% and 
74% of the benign variants having a higher % WT activity, 
respectively. The conflicting annotation in ClinVar and the 
low % WT activity provide a probable explanation for the 
difficulty in their prediction.

AlphaMissense and E-SNPs & GO attain the minimum 
FPR multiple times among the top 10 pathogenic variants 
with highest difference between average and minimum FPR 
(Gap list variants). Other predictors might gain insights from 
the two methods to improve their predictions on these vari-
ants. REVEL, PolyPhen-2, E-SNPs & GO and Bootcamp 
Team 3 attain the minimum FNR multiple times among the 
top 10 benign variants with the highest difference between 
average and minimum FNR. Other predictors might gain 
insights from the four methods to improve their predictions 
on these variants.

Methods

Evaluation set

An Evaluation set of 219 ARSA variants was obtained as 
a subset of the Curated set by removing variants with a 
definitive classification in the December, 2022, release 
of ClinVar (Landrum et al. 2018). This version of ClinVar 

Fig. 4   Pairwise correlation: pairwise correlation coefficients between 
models, with Pearson’s correlation coefficients shown on the left (a) 
and Kendall’s Tau shown on the right (b). The diagonal for each 
figure shows the correlation of that model with observed enzymatic 

activity values. Results are shown for the top six submitted models 
and top four baseline models (based on their average ranking accord-
ing to the four metrics used)
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represents the release of the database immediately fol-
lowing the challenge’s prediction submission deadline 
(Nov. 15, 2022). Only the ClinVar variants with clinical 
significance Pathogenic, Likely pathogenic, Pathogenic/
Likely pathogenic, Benign, Likely benign or Benign/Likely 
benign without annotation of Conflicting interpretations 
in the review status were removed from the Curated set.

All variants with activity levels less than or equal 
to 13% WT activity were considered to be pathogenic 
(Evaluation set: 73, Curated set: 111), as per previously 
defined threshold (Supplementary Table S1) (Trinidad 
et al. 2023). Those mutations with greater than 13% WT 
were considered benign (Evaluation set: 146, Curated set: 
163). No mutation had an overall allele frequency in gno-
mAD (version 2.0.1) greater than 1 % , though p.P220L 
had an allele frequency of 2.7% in the Finnish ancestry 
group within gnomAD.

Evaluation metrics

To evaluate the predictors, we used standard and clinically 
relevant performance metrics. Two general classes of metrics 
were considered: (1) those that treat measured % WT activity 
as a continuous value, and (2) binary classification metrics 
that treat each mutation as either pathogenic or benign.

Next, we introduce the notation used to define all per-
formance metrics used for evaluation. Let n be the total 
number of variants in the evaluation set. Let yi and ŷi 
denote the experimentally measured % WT activity and its 
prediction/score, respectively, for variant i in the evalu-
ation set. We transform the original predictions from a 
method, baseline or fundamental feature for a meaning-
ful evaluation, as discussed in Section Prediction nor-
malization and missing values. Let y

⋅
=

1

n

∑n

i=1
yi and 

Fig. 5   Difficult to classify variants: a The Average (purple line), 
Minimum False Positive Rate (FPR) (red line), along with their dif-
ference (blue line), is given for the difficult to predict pathogenic vari-
ants. FPR for each pathogenic variant-predictor pair was calculated 
as the proportion of all benign variants that are scored higher by the 
method compared to the variant. The % WT activity (rounded to 1 
decimal place) for each variant and the percent of all pathogenic vari-
ants attaining a lower % WT activity are shown in the parenthesis next 
to the variant identifier. The methods attaining the minimum FPR for 
that variant are also shown along the bottom horizontal axis. b Aver-
age (purple line) and Minimum False Negative Rate (FNR) (red line) 

and their difference (blue line) are given for difficult-to-predict benign 
variants. FNR for each benign variant-predictor pair was calculated as 
the proportion of all pathogenic variants that are scored lower by the 
method compared to the variant. The % WT activity (rounded to the 
closest integer) for each variant and the percent of all benign variants 
attaining a higher % WT activity are shown in the parenthesis next to 
the variant identifier. The methods attaining the minimum FNR are 
shown along the bottom x-axis. Difficult-to-predict mutations were 
defined as described in Section Categorization of difficult-to-predict 
mutations
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ŷ
⋅
=

1

n

∑n

i=1
ŷi be the average experimental and predicted 

% WT activity, respectively, over the Evaluation set. The 
ground truth pathogenicity label of each variant is deter-
mined by thresholding its experimentally measured %WT 
activity. Precisely, variant i is assigned label pathogenic 
(positive class) or benign (negative class) if yi ≤ 13 or 
yi > 13 , respectively. A method’s %WT activity predic-
tions are thresholded to predict the variants’ pathogenicity 
labels. Precisely, for a threshold t, variant i is classified as 
pathogenic or benign, if ŷi ≤ t or ŷi > t , respectively.

% WT activity evaluation metrics

For the regression task of predicting the percent wild-type 
activity ( %WT), we incorporated Pearson’s correlation 
(r) and Kendall’s Tau ( � ) as our main two metrics and 
R-Squared ( R2 ) as an additional metric; see Supplementary 

Table S2. The three metrics are defined, as per their stand-
ard definitions, below.

where sign(x) is −1, 0 or 1, when x < 0 , x = 0 or x > 0 , 
respectively. R2 , a value in the range [−∞, 1] , is used to 
measure the fraction of variance of % WT activity that is 
explained by the predictor. A predictor with 0 mean square 
error has a perfect R2 of 1. An R2 of 0 indicates that the pre-
dictor is only as good as the trivial predictor given by y

⋅
 and 

a negative R2 would indicate an even worse performance. 

R2 = 1 −

∑n

i=1

�
yi − ŷi

�2

∑n

i=1

�
yi − y

⋅

�2 ,

r =

∑n

i=1

�
yi − y

⋅

�
(ŷi − ŷ

⋅
)

�∑n

i=1
(ŷi − ŷ

⋅
)2
∑n

i=1
(ŷi − ŷ

⋅
)2
,

𝜏 =

∑n

i<j
sign

�
(yi − yj)(ŷi − ŷj)

�

n(n − 1)∕2
,

Table 1   A table of each predictor, its primary reference if available, categories of features used, and training data sources

Method name Reference PolyPhen, SIFT, 
Provean or other fea-
tures from dbNSFP

Structure 
based fea-
tures

PSSM, MSA 
based features

ML method Training database

Bootcamp Team 1 NA Yes No No AdaBoost ClinVar
Bootcamp Team 2 NA Yes No No ClinVar
Bootcamp Team 3 Nguyen (2024) Yes No No Random forest ClinVar
Bootcamp Team 4 NA Yes No No ClinVar
Ken Chen NA No No No Neural Network ClinVar
Meta-EA clinical Katsonis and 

Lichtarge (2014)
Yes No Yes None None

TCS Research India NA No No No Neural Network Humsavar, Clinvar, 
gnomAD v3.1.2, 
the Pompe disease 
mutation database, 
the Leiden Open 
Variation Database 
3.0

Shoni.cagi6 NA No No No Hybrid, GENN ClinVar
Random Forest 

Ensemble
NA Yes Yes Yes Random Forest 

Ensemble
ClinVar

Qafi Özkan et al. (2021) Yes Yes Yes Multiple Linear 
Regression and 
Ensemble

Deep mutational 
scanning data for 
30 proteins

Evolutionary Index Frazer et al. (2021) No No Yes Neural Network MAVEDB
E-SNPs & GO Manfredi et al. 

(2022)
No No No SVM ClinVar, humsavar

Zero-shot protein 
language

Sun and Shen (2023) No No No Transformer 
encoder/decoder

Pfam

SNPMuSiC Ancien et al. (2018) Yes Yes No Artificial Neural 
Network

ClinVar

Random Forest 
Labeling

NA Yes No No Random Forest ClinVar
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R2 is the most stringent metric considered in our evaluation 
which requires a predictor to be well calibrated. Thus we 
do not use it for ranking the methods. Pearson’s correlation, 
a value in the range [−1, 1] , is used to measure the statis-
tical association between % WT activity and the predictor 
assuming a linear relationship between them. Values closer 
to 1 would indicate a strong correlation, whereas that near 
or equal to 0 would indicate a weak or no correlation. A 
negative value would indicate an inverse association between 
% WT activity and the predictions. Kendall’s Tau, a value in 
the range [−1, 1] , is used to measure the association between 
% WT activity and its predictions, non-parametrically with-
out assuming a linear relationship, as the difference between 
the proportions of concordant (pairs of variants ranked cor-
rectly by the predictor) and discordant pairs of variants in 
the Evaluation set. Like Pearson’s correlation, values of 1,−1 
and 0 indicate strong positive, negative and no association, 
respectively.

Binary classification metrics

For the classification task of separating pathogenic and 
benign variants we incorporated the standard binary clas-
sification metrics of the Receiver Operating Characteristic 
(ROC) curve, precision-recall curve, area under the ROC 
curve (AUC) and recently derived clinically relevant metrics 
of area under the truncated ROC curve (tAUC).

The ROC curve is generated by plotting the True Positive 
Rate (TPR) against the False Positive Rate (FPR) for the 
entire range of classification thresholds. TPR and FPR are 
defined as the proportion of correctly classified pathogenic 
and incorrectly classified benign variants, respectively; i.e., 
for a given threshold t, below (above) which variants are 

Table 2   A table of each predictor and individuals who participated 
in the model’s development or submission to the ARSA CAGI Chal-
lenge

Team Members

Boot Camp Team 1 Kaiya Jones
Fang Ge
Ailin Glagovsky
Cameron Jones

Boot Camp Team 2 Giankaleb Moran
Boqi Wang
Kobra Rahimi
Sümeyra Zeynep Çalıcı

Boot Camp Team 3 Thanh Binh Nguyen
NA
Santiago Diaz Neto
NA

Boot Camp Team 4 Luis Cedillo
Silvia Berardelli
Buse Özden
NA

Neural Network Ken Chen
Meta-EAclinical Panagiotis Katsonis

Amanda Williams
Olivier Lichtarge

TCS Research India Sadhna Rana
Swatantra Pradhan
Rajgopal Srinivasan
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predicted to be pathogenic (benign), TPR (FPR) is defined as 
the proportion of pathogenic (benign) variants that have pre-
dicted % WT activity less than or equal to t, mathematically 
given by the equations below. The precision-recall curve is 
similarly generated by plotting the Precision (PPV) against 
the Recall (same as TPR) for the entire range of classifi-
cation thresholds. Precision is defined as the proportion of 
truly pathogenic variants among the predicted pathogenic 
variants. Precisely,

where TPt , FNt , FPt , and TNt are the sets of pathogenic 
variants predicted as pathogenic (true positive), pathogenic 
variants predicted as benign (false negative), benign variants 
predicted as pathogenic (false positive), and benign variants 
predicted as benign (true negative), respectively, when using 
t as the classification threshold as described above.

To construct the ROC curve for a predictor, TPR(t) is 
plotted against FPR(t) as t is varied taking values among 
its % WT activity predictions, starting from the smallest to 
the largest. Ties among the predictor scores require special 
consideration for correctly computing and plotting the ROC 
curve (Fawcett 2006). AUC is numerically computed as the 
area under the ROC curve, requiring special considerations 
for ties (Fawcett 2006). Mathematically, AUC is the proba-
bility that a random pathogenic variant has a predicted % WT 
activity smaller than that of a random benign variant. For a 
more accurate definition that accounts for ties in predictions, 
a term giving the probability of randomly picked pathogenic 
and benign variants having equal predictions is added after 
multiplying by 1/2 (Byrne 2016). Intuitively, AUC captures 
how well a predictor separates the pathogenic and benign 
variant distributions. AUC takes value in the range from 0 
to 1. A value above 0.5 is expected from any classifier that 
captures some signal for pathogenicity. A salient aspect of 
AUC is that it is insensitive to class imbalance or the propor-
tion of pathogenic and benign variants in the dataset (Hanley 
and McNeil 1982).

Though AUC is a useful measure for the overall clas-
sification performance, it has limitations when applied to 
a decision-making setting such as the one encountered in 
the clinic. Typically, clinically relevant score thresholds that 
determine the variants satisfying Supporting, Moderate or 
Strong (Richards et al. 2015) evidence lie in a region of low 
false positive rate (FPR). A measure well-suited to capture 
the clinical significance of a predictor ought to be sensitive 
to the variations in the classifier’s performance in the low 
FPR region (when predicting pathogenicity). However, the 

TPR(t) =
|TPt|

|TPt∪FNt|
,

FPR(t) =
|FPt|

|FPt∪TNt|
, and

PPV(t) =
|TPt|

|TPt∪FPt|
,

contribution of the low FPR region to AUC is relatively 
small. To mitigate this problem, we incorporate the recently 
derived Truncated AUC (tAUC), the area under the ROC 
curve truncated to the [0, 0.2] FPR interval (The Critical 
Assessment of Genome Interpretation Consortium 2024). 
The truncated AUC is normalized to span the entire [0, 1] 
range by dividing it by 0.2, the maximum possible area 
under the un-normalized truncated ROC.

Prediction normalization and missing values

We noticed that some teams submitted predictions for pos-
terior probability of pathogenicity instead of % WT activity. 
The baseline methods considered in this work also predict 
the posterior probability of pathogenicity. Directly apply-
ing the evaluation metrics on such predictions would give 
an incorrect assessment of their performance, since pos-
terior probability of pathogenicity and % WT activity are 
anti-correlated. Furthermore, even the teams that indeed 
submit predictions for % WT activity, use a different scale 
than the experimentally measured % WT activity values. The 
measured values range from the minimum of −0.016 to the 
maximum of 161.17, whereas teams were expected to submit 
predictions on a scale, where 0 means no activity, 1 means 
% WT activity and values > 1 mean higher than % WT activ-
ity, as per the submission format. For a meaningful interpre-
tation of computed R-Squared, it is necessary that the pre-
dictions are on the same scale as the % WT activity values.

To address this issue, we transform the predictions for 
% WT activity as ŷi = 100ri , where ri represents the original 
prediction for variant i. We transform the predictions for 
posterior probability of pathogenicity as ŷi = 100 (1 − ri) . 
Since we do not always know which methods predict % WT 
activity and which ones predict posterior probability of path-
ogenicity, we use AUC computed on the original predic-
tions as a heuristic to separate those cases. Precisely, if using 
the original predictions give an AUC < 0.5 , we interpret 
them to represent posterior probabilities of pathogenicity 
and use ŷi = 100 (1 − ri) , otherwise we use ŷi = 100ri . Note 
that using ŷi = 100ri would give exactly the same values 
for Pearson’s correlation, Kendall’s Tau and AUC as the 
original predictions. In case of ŷi = 100 (1 − ri) , the sign of 
Pearson’s correlation and Kendall’s Tau is flipped but their 
magnitude is the same and the transformed AUC is 1− AUC 
of the original predictions.

The fundamental features are not explicitly derived to 
predict the % WT activity or the posterior probability of 
pathogenicity. For a meaningful evaluation, we apply the 
following transform to the fundamental features. If AUC 
computed with an un-transformed feature is greater than 
equal to 0.5 we use ŷi = 100

ri−minj rj

maxj rj−minj rj
 (Min-max normali-

zation followed by multiplication by 100), otherwise we use 
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ŷi = 100
maxj rj−ri

maxj rj−minj rj
 (Min-max normalization on the negated 

predictions followed by multiplication by 100).
In the case where a submitted method, baseline or a 

feature had missing values, we performed imputation by 
the mean of the non-missing predictions. Prediction nor-
malization was performed after the imputation.

Uncertainty quantification

To quantify the uncertainty in performance estimation, we 
obtained 1000 bootstrap estimates of each metric. Each 
bootstrap sample was created by sampling n = 219 (size of 
the Evaluation set) variants from the Evaluation set with 
replacement. Each performance metric was estimated on 
each of the 1000 bootstrap samples. Confidence interval 
for each metric was obtained from the 5th and 95th per-
centile of its bootstrap estimates; see Fig. 1 and Table S2. 
A Gaussian approximation based 95% confidence interval 
was provided with the AUC and Truncated AUC values 
in Fig. 2 as 1.96× standard deviation derived from the 
bootstrap estimates.

Bootcamp participant models

A training dataset for Bootcamp models was generated 
using ClinVar variants annotated as pathogenic or likely 
pathogenic as positive training data points, and all others 
as negative data points. Features for each mutation were 
generated from predictor scores from the dbNSFP website 
(Liu et al. 2011). Predictor features consisted of predic-
tions from meta-predictors such as REVEL, essentially 
making the model a meta-meta predictor.

For Bootcamp Team 3, regression models were trained 
on eight methods, including: logistic regression, percep-
tron, support vector machine, K-nearest neighbors, deci-
sion tree, random forest, neural network, Gaussian Naive 
Bayes using default parameters in sklearn (Nguyen 2024). 
Five-fold cross-validation with shuffle was applied. The 
best-performing method from cross-validation was found 
to be the random forest. A search for the optimal param-
eters was then conducted, including estimator (100, 200, 
and 300), max features (5,10,15 and auto), max depth 
(None, 10, and 20), min samples split (2, 5, 8), and min 
samples leaf (1, 4, 7). The best parameters were found to 
be max features of 15, max depth of None, min samples 
split of 2, and min samples leaf of 1.

Categorization of difficult‑to‑predict mutations

We split difficult-to-predict mutations into pathogenic 
(Supplementary Table S3) and benign (Supplementary 
Table S4), where pathogenic and benign mutations are 
defined as described in Section Evaluation set. For each 
pathogenic variant (those with ≤ 13% WT activity) and 
each predictor, we calculated the false positive rate (FPR) 
for that variant/predictor combination as the proportions of 
benign variants that had lower %WT activity than the vari-
ant at hand. We then considered the minimum and average 
FPR for each variant across all predictors that attained 
an overall AUC > 0.8. The 10 variants with the highest 
minimum FPR were then taken as a list of difficult-for-all 
methods to classify pathogenic mutations (Difficult-for-
all list). The top 10 variants with the highest average FPR 
comprised the set of variants that are difficult to predict 
on average (Difficult-on-average list). The top 10 variants 
with the highest difference between average and minimum 
FPR give a list of pathogenic variants with the highest 
performance gap (Gap list).

Similarly, for each benign variant (those with > 13% 
WT activity) and each predictor, we calculated the false 
negative rate (FNR), or proportion of all pathogenic vari-
ants that had higher %WT activity than that particular var-
iant. We then calculated the minimum and average FNR 
for each variant across all model that attained an AUC > 
0.8. The top 10 variants with the highest minimum FNR 
were taken as a list of benign variants that were difficult 
for all methods to classify (Difficult-for-all list), and the 
top 10 variants with the highest average FNR comprised 
the set of variants that are difficult to predict on average 
(Difficult-on-average list). The top 10 variants with the 
highest difference between average and minimum FNR 
give a list of benign variants with the highest performance 
gap (Gap list).

The union of the variants in the three lists was taken 
to give a final list of difficult variants, separately for the 
pathogenic and benign categories.

Discussion

CAGI has served as a platform for using real-world and 
experimental data to further our understanding of the 
molecular causes of human disease (The Critical Assess-
ment of Genome Interpretation Consortium 2024). The 
CAGI6 ARSA challenge assessed in silico models at their 
ability to predict variant impact on ARSA’s enzymatic 
activity. We observed that top models exhibited similar 
performance at predicting ARSA variant impact on % WT 
activity compared to previous studies (Clark et al. 2019). 



Human Genetics	

Also, as previously observed, models exhibited high cor-
relations with each other despite differences in methodolo-
gies, suggesting shared training features and data as the 
underlying cause. Ten out of 18 submitted models utilized 
ClinVar or Humsavar for their training database, while 
four other models relied on deep mutational scanning data 
from an overlapping set of proteins. Many submissions 
were meta-predictors incorporating scores from similar 
models, such as REVEL, VEST3, PROVEAN, Mutation-
Taster, and PolyPhen-2. The best-performing model, Boot-
camp Team 3’s, was a meta-meta predictor.

Consistent with previous findings (Pejaver et al. 2017), 
we also observed that variant effect predictors designed to 
predict pathogenicity as a binary class, can be adapted to 
predicting % WT activity as a continuous variable, though 
all models seem to have greater difficulty at identifying 
hypomorphic mutations. Disagreements between in vitro 
assays and the severity of disease affected by a mutation in 
patients present an additional study limitation. An example 
of such a variant is p.P428L, which has repeatedly pro-
duced % WT activity values lower than expected based on 
its behavior in patients (Trinidad et al. 2023).

Perhaps the most notable result is the competitiveness 
between AlphaMissense and Bootcamp Team 3’s model. 
Though AlphaMissense presents an elegant solution to the 
problem of predicting missense variant functional effects, 
it requires a complex deep-learning architecture and sig-
nificant resources to train. In contrast, the top performing 
challenge participant, submitted by a team who took part 
in a 2-week coding and genetics bootcamp, was a minimal-
ist random forest meta-meta predictor trained on a per-
sonal laptop. It should also be noted that AlphaMissense 
was published after the % WT activity values were publicly 
released, though these data were not directly used to train 
their model. Despite the disparity in resources needed to 
train each model, AlphaMissense only performed margin-
ally better than Bootcamp Team 3’s model.

Determining the impact of missense variation on pro-
tein function and pathogenicity remains a complex chal-
lenge. Given the influence of VUS on the diagnostic odys-
sey, advances in the field have the potential to directly 
impact patients (Bauskis et al. 2022). As more VUS are 
encountered in newborn screening due to increasing avail-
ability of treatments for rare diseases, predictors of variant 
functional effect will be valuable tools for quickly inter-
preting their potential relevance to disease (Stark and Scott 
2023). This is especially true for MLD, which has just 
seen the approval of new therapeutic approaches, and for 
which early diagnosis is essential for effective interven-
tion (Adang et al. 2024). While the field of variant effect 
prediction has yet to see advances in performance seen in 
the field of protein structure prediction (Kryshtafovych 
et al. 2021), top models incorporate information from 

state-of-the-art structure prediction tools (Cheng et al. 
2023). In many aspects protein structure prediction may be 
an easier learning task than predicting a mutation’s patho-
genicity. It is possible to determine the position of a mol-
ecule in a crystallized protein structure at angstrom resolu-
tion, whereas the gold standard for determining the disease 
relevance of a rare missense variant requires observing it 
multiple times in patients (Richards et al. 2015).

While MLD is a monogenic disease, whose severity can 
be largely explained by the residual activity of two enzymes, 
ARSA and PSAP, many human diseases are polygenic, or 
have strong polygenic backgrounds that can influence the 
penetrance of mutations in genes associated with monogenic 
disease (Khan et al. 2023). Studies of genes such as ARSA, 
which have clear functional readouts, can help train better 
computational models. Conversely, continuing to add more 
nuanced annotations regarding disease mechanisms (gain of 
function, loss of function etc.) into databases such as Clin-
Var will in turn facilitate training more nuanced models of 
variant pathogenicity (Stein et al. 2023). This will conse-
quently have the potential to improve predictions for genes 
that are harder to study, advancing the field of clinical and 
medical genetics.
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