

PREDICTION PROBLEMS

CS6140

Predrag Radivojac KHOURY COLLEGE OF COMPUTER SCIENCES NORTHEASTERN UNIVERSITY

Fall 2024

TYPES OF PROBLEMS IN MACHINE LEARNING

Some buzzwords frequently mentioned:

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Semi-supervised learning
- 4. Completion under mising features
- 5. Learning to rank

- 6. Statistical relational learning
- 7. Active learning
- 8. Structured prediction
- 9. Reinforcement learning
- 10. Online learning

And more.

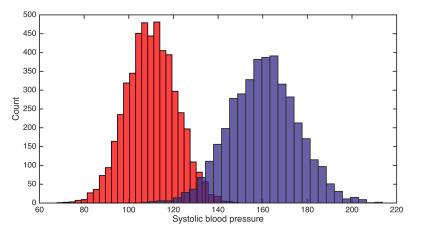
These are not mutually exclusive.

SUPERVISED LEARNING (CLASSIFICATION)

Given:

 \mathcal{D}_{red} : sample from people w/o heart disease \mathcal{D}_{blue} : sample from people w/ heart disease

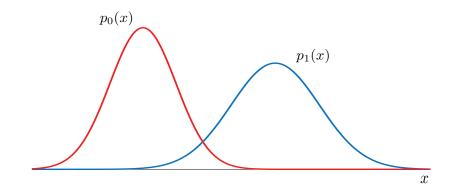
Goal: predict heart disease



 $x \in \mathbb{R}$ $y \in \{ \text{disease, no disease} \}$

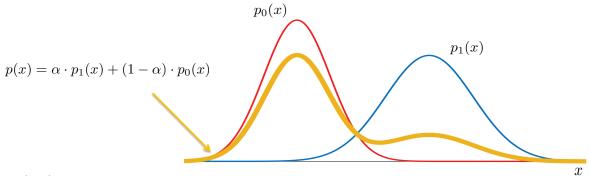
SUPERVISED LEARNING

 $\mathcal{D}_0 = \text{sample from } p_0(x)$ $\mathcal{D}_1 = \text{sample from } p_1(x)$



SEMI-SUPERVISED LEARNING

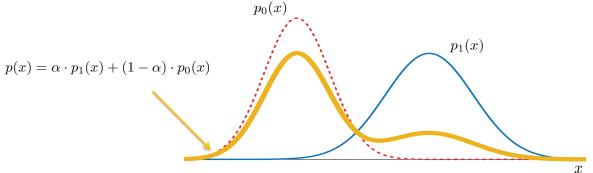
- $\mathcal{D}_0 = \text{sample from } p_0(x)$
- $\mathcal{D}_1 = \text{sample from } p_1(x)$
- $\mathcal{D} = \text{sample from } p(x)$



 $\alpha \in (0,1)$, here $\alpha = 0.25$

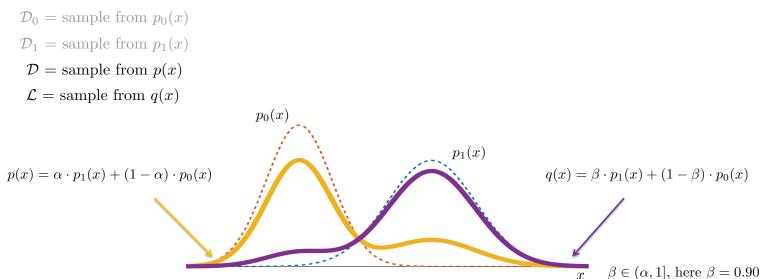
POSITIVE-UNLABELED LEARNING

- $\mathcal{D}_0 = \text{sample from } p_0(x)$
- $\mathcal{D}_1 = \text{sample from } p_1(x)$
- $\mathcal{D} = \text{sample from } p(x)$



 $\alpha \in (0, 1)$, here $\alpha = 0.25$

NOISY POSITIVE-UNLABELED LEARNING



 $\alpha \in (0, 1)$, here $\alpha = 0.25$

UNSUPERVISED LEARNING

 $\mathcal{D}_0 = ext{sample from } p_0(x)$ $\mathcal{D}_1 = ext{sample from } p_1(x)$ $\mathcal{D} = ext{sample from } p(x)$

 $p(x) = \alpha \cdot p_1(x) + (1 - \alpha) \cdot p_0(x)$

 $\alpha \in (0,1)$, here $\alpha = 0.25$

SUPERVISED LEARNING

Given: $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$

 $x_i \in \mathcal{X}$ is the *i*-th input example (data point, instance, object, pattern) $y_i \in \mathcal{Y}$ is the *i*-th target value $\mathcal{X} =$ input space, often \mathbb{R}^d $\mathcal{Y} =$ output space

Objective: learn a good mapping $f : \mathcal{X} \to \mathcal{Y}$

 \circ often learn an intermediate mapping $s: \mathcal{X} \to \mathbb{R}$

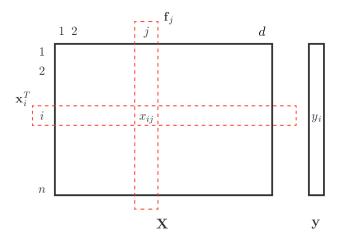
(classification)

When $\mathcal{X} = \mathbb{R}^d$, we have $\boldsymbol{x} = (x_1, x_2, \dots, x_d)$.

Each dimension of \boldsymbol{x} is called a feature or attribute. Each x_j is called a feature or attribute value.

VECTOR SPACE REPRESENTATION

We often have the following setup:



 $\mathbf{X} = n \times d$ data (design) matrix

 $\mathbf{y} = n \times 1$ target (response) vector

CLASSIFICATION

${\mathcal Y}$ is discrete

Consider a problem of predicting a disease state of an individual.

 $\mathcal{Y} = \{-1, +1\}$

	wt [kg]	ht [m]	$T [^{\circ}C]$	sbp [mmHg]	dbp [mmHg]	y
x_1	91	1.85	36.6	121	75	-1
x_2	75	1.80	37.4	128	85	+1
$oldsymbol{x}_3$	54	1.56	36.6	110	62	-1

X = descriptors of each individual Y = the disease state for each individual

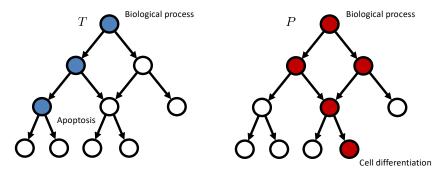
TYPES OF CLASSIFICATION

Binary: $\mathcal{Y} = \{\text{spam}, \text{ not spam}\}$

Multi-class: $\mathcal{Y} = \{A, B, AB, O\}$

Multi-label: consider categories {sports, medicine, travel, politics}

Structured-output:



REGRESSION

${\mathcal Y}$ is continuous

Consider a problem of predicting the price of a house.

$\mathcal{Y} =$	$[0,\infty)$
-----------------	--------------

	size [sqft]	age [yr]	dist [mi]	inc [\$]	dens $[ppl/mi^2]$	y
x_1	1250	5	2.85	$56,\!650$	12.5	2.35
x_2	3200	9	8.21	245,800	3.1	3.95
$oldsymbol{x}_3$	825	12	0.34	$61,\!050$	112.5	5.10

- X =descriptors of each house
- Y = the price a house is sold at in \$100k

OPTIMAL CLASSIFICATION

Suppose $p(\boldsymbol{x}, y)$ is known, $c : \mathcal{Y} \times \mathcal{Y} \to [0, \infty)$ is some cost function (matrix).

$$\begin{split} \mathbb{E}[C] &= \int_{\mathcal{X}} \sum_{y} c(\hat{y}, y) p(\boldsymbol{x}, y) d\boldsymbol{x} & \text{Expected cost} \\ &= \int_{\mathcal{X}} p(\boldsymbol{x}) \sum_{y} c(\hat{y}, y) p(y | \boldsymbol{x}) d\boldsymbol{x} & \text{Note: } \hat{y} = f(\boldsymbol{x}) \end{split}$$

A classifier that minimizes this is

$$f_{ ext{BR}}(oldsymbol{x}) = rgmin_{\hat{y} \in \mathcal{Y}} \left\{ \sum_{y} c(\hat{y}, y) p(y | oldsymbol{x})
ight\}$$

Bayes risk classifier

OPTIMAL CLASSIFICATION

Minimizing the probability of a classifier's error $P(f(\boldsymbol{x}) \neq y)$

$$c(\hat{y}, y) = \begin{cases} 0 & \text{when } y = \hat{y} \\ & \\ 1 & \text{when } y \neq \hat{y} \end{cases}$$
 Cost to minimize error

A classifier that minimizes the probability of error:

$$f_{\text{MAP}}(\boldsymbol{x}) = \underset{\boldsymbol{y} \in \mathcal{Y}}{\operatorname{arg\,max}} \left\{ p(\boldsymbol{y}|\boldsymbol{x}) \right\}.$$
 MAP classifier

Minimizing error is the same as accurately learning posterior distributions p(y|x)

MODELING

Well, it comes down to learning $p(y|\boldsymbol{x})$. Assume discrete \mathcal{Y} .

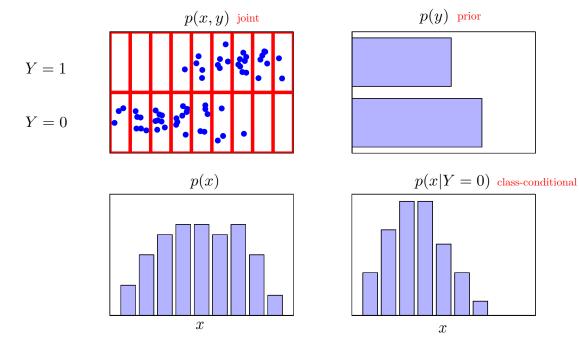
$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}, y)}{p(\mathbf{x})}$$
$$= \frac{p(\mathbf{x}|y)p(y)}{\sum_{y} p(\mathbf{x}, y)}$$
$$= \frac{p(\mathbf{x}|y)p(y)}{\sum_{y} p(\mathbf{x}|y)p(y)}$$

)

Learn $p(y|\mathbf{x}) \to \text{discriminative model}$ (often assumes data comes from $p(\mathbf{x})$). Learn $p(\mathbf{x}|y)$ and $p(y) \to \text{generative model}$.

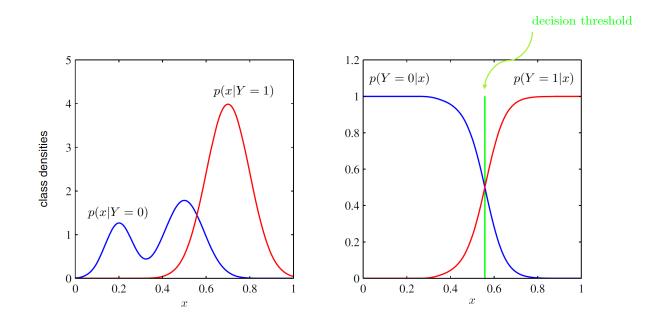
One does not need to explicitly learn in either of these ways.

MODELING



p(Y = 1|x) posterior

DECISION MAKING



DECISION MAKING

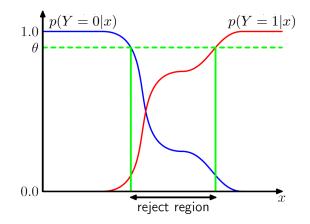
$$\mathbb{E}[C] = \int_{\mathcal{X}} \sum_{y} c(\hat{y}, y) p(\boldsymbol{x}, y) d\boldsymbol{x}$$

= $\int_{\mathcal{R}_{0}} p(\boldsymbol{x}, Y = 1) d\boldsymbol{x} + \int_{\mathcal{R}_{1}} p(\boldsymbol{x}, Y = 0) d\boldsymbol{x}$ Costs are 0 for correct $\mathcal{R}_{0}: \hat{y} = 0$
 $\mathcal{R}_{1}: \hat{y} = 1$
 $\hat{x}: \text{ our decision threshold}$
 $\hat{x}_{0}: \text{ optimal decision threshold}$

Costs are 0 for correct and 1 for incorrect classification.

x

CLASSIFICATION WITH REJECTION



OPTIMAL REGRESSION

Suppose $p(\boldsymbol{x}, y)$ is known, $c: \mathcal{Y} \times \mathcal{Y} \to [0, \infty)$ is some cost function.

$$\mathbb{E}[C] = \int_{\mathcal{X}} \int_{\mathcal{Y}} c(f(\boldsymbol{x}), y) p(\boldsymbol{x}, y) dy d\boldsymbol{x} \qquad \qquad \text{Expected cost}$$

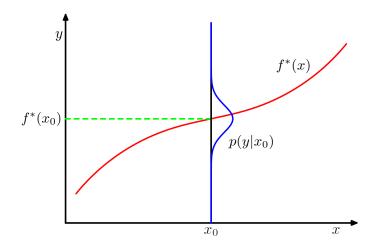
Take $c(f(\boldsymbol{x}), y) = (f(\boldsymbol{x}) - y)^2$. We can now derive

$$egin{aligned} f^*(oldsymbol{x}) &= \int_{\mathcal{Y}} y p(y|oldsymbol{x}) dy \ &= \mathbb{E}[Y|oldsymbol{x}] \end{aligned}$$

Optimal regression

OPTIMAL REGRESSION

 $\mathbb{E}[Y|x] =$ optimal regression model



Optimal Regression For L_2 Loss

When $c(f(\boldsymbol{x}), y) = (f(\boldsymbol{x}) - y)^2$, the error decomposes to

$$egin{aligned} \mathbb{E}[C] &= \int_{\mathcal{X}} \int_{\mathcal{Y}} (f(oldsymbol{x}) - y)^2 p(oldsymbol{x}, y) dy doldsymbol{x} \ &= \int_{\mathcal{X}} (f(oldsymbol{x}) - \mathbb{E}[Y|oldsymbol{x}])^2 p(oldsymbol{x}) doldsymbol{x} + \int_{\mathcal{X}} \int_{\mathcal{Y}} (\mathbb{E}[Y|oldsymbol{x}] - y)^2 p(oldsymbol{x}, y) dy doldsymbol{x} \end{aligned}$$

Reducible error

Irreducible error

See lecture notes for complete derivation.

BIAS-VARIANCE TRADEOFF

Consider the reducible error (RE) term

$$\int_{\mathcal{X}} (f(oldsymbol{x}) - \mathbb{E}[Y|oldsymbol{x}])^2 p(oldsymbol{x}) doldsymbol{x}$$

Consider further

- 1. the predictor depends on \mathcal{D} ; i.e., $f(\boldsymbol{x}) \to f(\boldsymbol{x}|\mathcal{D})$
- 2. \mathcal{D} is a realization of random variable D; i.e., $f(\boldsymbol{x}|D)$ is too
- 3. we can look at the expectation of $f(\boldsymbol{x}|\mathcal{D})$; i.e., $\mathbb{E}[f(\boldsymbol{x}|D)]$

BIAS-VARIANCE TRADEOFF

The expected Reducible Error (RE), wrt random variable D

Expected RE =
$$\mathbb{E}\left[\int_{\mathcal{X}} (f(\boldsymbol{x}|D) - \mathbb{E}[Y|\boldsymbol{x}])^2 p(\boldsymbol{x}) d\boldsymbol{x}\right]$$

= $\underbrace{\int_{\mathcal{X}} (\mathbb{E}[f(\boldsymbol{x}|D)] - \mathbb{E}[Y|\boldsymbol{x}])^2 p(\boldsymbol{x}) d\boldsymbol{x}}_{\text{bias}^2} + \underbrace{\int_{\mathcal{X}} \mathbb{E}\left[(f(\boldsymbol{x}|D) - \mathbb{E}[f(\boldsymbol{x}|D)])^2\right] p(\boldsymbol{x}) d\boldsymbol{x}}_{\text{variance}}$

Bias: how much the expected output deviates from the optimal

Variance: how much the output deviates from its expected value

NAIVE BAYES MODEL

Given: a set of observations $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n, x_i \in \mathcal{X}, y_i \in \mathcal{Y}$ **Objective:** learn the posterior $p(y|x, \mathcal{D})$

Naive Bayes Model:

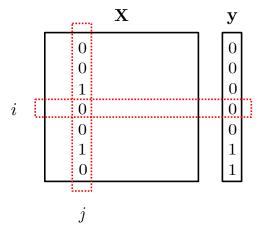
$$p(y|\boldsymbol{x}) = \frac{p(\boldsymbol{x}, y)}{p(\boldsymbol{x})}$$
$$= \frac{p(\boldsymbol{x}|y)p(y)}{\sum_{y} p(\boldsymbol{x}, y)}$$
$$= \frac{p(\boldsymbol{x}|y)p(y)}{\sum_{y} p(\boldsymbol{x}|y)p(y)}$$

Assume $\mathcal{X} = \mathbb{R}^d$. Assume discrete \mathcal{Y} .

$$p(x_1, x_2, ..., x_d | y) = \prod_{j=1}^d p(x_j | y) \quad \leftarrow \text{naive Bayes assumption}$$

NAIVE BAYES CLASSIFICATION

Assume: discrete \mathcal{X}_i , discrete \mathcal{Y} generalized Bernoulli distribution $\forall i \quad x_{i,j} = l \in \mathcal{X}_j$ $y_i = k \in \mathcal{Y}$ $P(X_j = l | Y = k) = \alpha_{j,l,k}$ $P(Y = k) = \alpha_k$



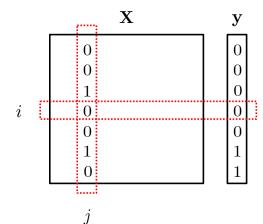
$$\alpha_{j,l,k} \stackrel{est}{=} \frac{\# \text{times } X_j = l \land Y = k}{\# \text{times } Y = k} = \frac{m_{j,l,k}}{n_k}$$

$$\alpha_k \stackrel{est}{=} \frac{\# \text{times } Y = k}{\text{data set size}} = \frac{n_k}{n}$$

NAIVE BAYES CLASSIFICATION

Assume: discrete \mathcal{X}_j , discrete \mathcal{Y} generalized Bernoulli distribution

$$p(x_1, x_2, ..., x_d | y) = \prod_{j=1}^d p(x_j | y)$$

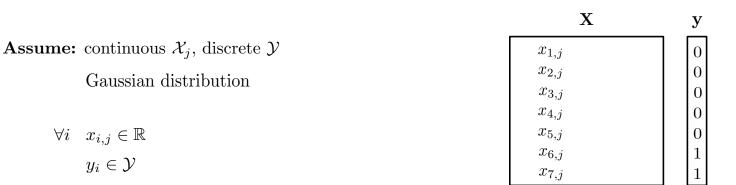


$$\alpha_{j,l,k} \stackrel{est}{=} \frac{m_{j,l,k} + \ell}{n_k + \ell |\mathcal{X}_j|}$$

$$\alpha_k \stackrel{est}{=} \frac{n_k + \ell}{n + \ell |\mathcal{Y}|}$$

- $\ell =$ user-specified constant
- $\ell=1$ gives Laplace smoothing
- $|\mathcal{X}_j|$ = the number of possible values of feature j

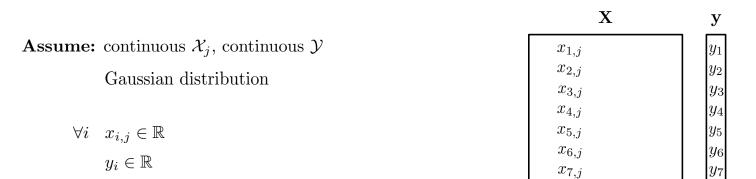
NAIVE BAYES CLASSIFICATION



 $\mu_{j,k} = \mathbb{E}[X_j | Y = k]$ $\sigma_{j,k}^2 = \mathbb{V}[X_j | Y = k]$ $P(Y = k) = \alpha_k$

How many parameters?

NAIVE BAYES REGRESSION



$$p(x_1, x_2, ..., x_d | y) = \prod_{j=1}^d p(x_j | y)$$

$$p(x_j|y) = \frac{p(x_j, y)}{p(y)}$$
 where $p(x_j, y)$ is 2D Gaussian

What if features are discrete?

EXAMPLE: NAIVE BAYES CLASSIFIER W/ REDUNDANT FEATURES

Let A, B, and C be binary features, such that B = C. Let $\mathcal{Y} = \{-, +\}$

Let $P(-) = P(+) = \frac{1}{2}$. Let $P(A) = P(B) = P(C) = \frac{1}{2}$. $\Rightarrow \frac{P(+|A| = P(A|+))}{P(+|B| = P(B|+)}$

Optimal decision

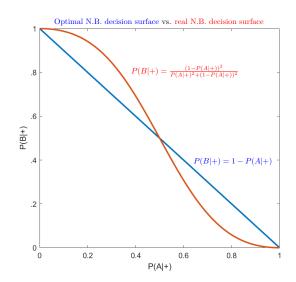
$$P(+|A, B, C) > P(-|A, B, C)$$

Naive Bayes optimal decision (C is ignored)

$$P(A|+)P(B|+) > P(A|-)P(B|-)$$

Naive Bayes decision

$$P(A|+)P(B|+)^2 > P(A|-)P(B|-)^2$$



OPTIMAL BAYES MODEL

Given: a set of observations $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n, x_i \in \mathcal{X}, y_i \in \mathcal{Y}$ **Objective:** learn the posterior $p(y|x, \mathcal{D})$

Optimal Bayes Model:

$$p(y|x, \mathcal{D}) = \sum_{f \in \mathcal{F}} p(y|x, \mathcal{D}, f) p(f|x, \mathcal{D})$$
 Finite \mathcal{F}
$$= \sum_{f \in \mathcal{F}} p(y|x, f) p(f|\mathcal{D})$$

Example: Let f_1 , f_2 and f_3 be binary classifiers. Let $p(f_i|\mathcal{D}) = \{0.4, 0.3, 0.3\}$ and $P(Y = 1|f_i) = \{1, 0, 0\}$. What is the MAP prediction? What is the optimal Bayes prediction?