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TYPES OF PROBLEMS IN MACHINE LEARNING

Some buzzwords frequently mentioned:

1. Supervised learning

2. Unsupervised learning

3. Semi-supervised learning

4. Completion under mising features

5. Learning to rank

6. Statistical relational learning

7. Active learning

8. Structured prediction

9. Reinforcement learning

10. Online learning

These are not mutually exclusive.

And more.



SUPERVISED LEARNING (CLASSIFICATION)

Given:

x ∈ R

Dred:

Dblue: sample from people w/ heart disease

sample from people w/o heart disease

y ∈ {disease, no disease}

Goal: predict heart disease



SUPERVISED LEARNING

D0 = sample from p0(x)

D1 = sample from p1(x)

p0(x)

p1(x)

x



SEMI-SUPERVISED LEARNING

D = sample from p(x)

D0 = sample from p0(x)

D1 = sample from p1(x)

p(x) = α · p1(x) + (1− α) · p0(x)

α ∈ (0, 1), here α = 0.25

p0(x)

p1(x)

x



POSITIVE-UNLABELED LEARNING

D = sample from p(x)

p0(x)

p1(x)

p(x) = α · p1(x) + (1− α) · p0(x)

α ∈ (0, 1), here α = 0.25

D1 = sample from p1(x)

D0 = sample from p0(x)

x



p0(x)

p1(x)

p(x) = α · p1(x) + (1− α) · p0(x)

α ∈ (0, 1), here α = 0.25

q(x) = β · p1(x) + (1− β) · p0(x)

β ∈ (α, 1], here β = 0.90

D = sample from p(x)

D0 = sample from p0(x)

D1 = sample from p1(x)

L = sample from q(x)

NOISY POSITIVE-UNLABELED LEARNING

x



UNSUPERVISED LEARNING

D = sample from p(x)

D0 = sample from p0(x)

D1 = sample from p1(x)

p0(x)

p1(x)

p(x) = α · p1(x) + (1− α) · p0(x)

α ∈ (0, 1), here α = 0.25
x



SUPERVISED LEARNING

Given: D = {(x1, y1), (x2, y2), . . . , (xn, yn)}

xi ∈ X is the i-th input example (data point, instance, object, pattern)
yi ∈ Y is the i-th target value
X = input space, often Rd

Y = output space

When X = Rd, we have x = (x1, x2, . . . , xd).

Objective: learn a good mapping f : X → Y

→ often learn an intermediate mapping s : X → R

Each dimension of x is called a feature or attribute.

Each xj is called a feature or attribute value.

(classification)



VECTOR SPACE REPRESENTATION

We often have the following setup:

X = n× d data (design) matrix y = n× 1 target (response) vector



CLASSIFICATION

Y is discrete

wt [kg] ht [m] T [◦C] sbp [mmHg] dbp [mmHg] y

x1 91 1.85 36.6 121 75 −1
x2 75 1.80 37.4 128 85 +1
x3 54 1.56 36.6 110 62 −1

Consider a problem of predicting a disease state of an individual.

X = descriptors of each individual
Y = the disease state for each individual

Y = {−1,+1}



TYPES OF CLASSIFICATION

Binary: Y = {spam, not spam}

Multi-class: Y = {A,B,AB,O}

Multi-label: consider categories {sports, medicine, travel, politics}

Structured-output:

Cell differentiation

Biological process

Apoptosis

Biological process



REGRESSION

Y is continuous

size [sqft] age [yr] dist [mi] inc [$] dens [ppl/mi2] y

x1 1250 5 2.85 56,650 12.5 2.35
x2 3200 9 8.21 245,800 3.1 3.95
x3 825 12 0.34 61,050 112.5 5.10

Consider a problem of predicting the price of a house.

X = descriptors of each house
Y = the price a house is sold at in $100k

Y = [0,∞)



OPTIMAL CLASSIFICATION

Suppose p(x, y) is known, c : Y × Y → [0,∞) is some cost function (matrix).

fBR(x) = argmin
ŷ∈Y

{

∑

y

c(ŷ, y)p(y|x)

}

E[C] =

∫
X

∑
y

c(ŷ, y)p(x, y)dx

=

∫
X

p(x)
∑
y

c(ŷ, y)p(y|x)dx

A classifier that minimizes this is

Expected cost

Bayes risk classifier

Note: ŷ = f(x)



OPTIMAL CLASSIFICATION

Minimizing the probability of a classifier’s error P (f(x) != y)

c(ŷ, y) =

⎧

⎪

⎨

⎪

⎩

0 when y = ŷ

1 when y != ŷ

Cost to minimize error

fMAP(x) = argmax
y∈Y

{p(y|x)} .

A classifier that minimizes the probability of error:

MAP classifier

Minimizing error is the same as accurately learning posterior distributions p(y|x)



Well, it comes down to learning p(y|x). Assume discrete Y.

p(y|x) =
p(x, y)

p(x)

=
p(x|y)p(y)
∑

y
p(x, y)

=
p(x|y)p(y)

∑
y
p(x|y)p(y)

Learn p(y|x) → discriminative model (often assumes data comes from p(x)).

Learn p(x|y) and p(y) → generative model.

One does not need to explicitly learn in either of these ways.

MODELING



p(x, y) p(y)

p(x|Y = 0)

x x

Y = 1

Y = 0

p(x)

Picture modified from Bishop’s textbook.

joint

posterior

prior

class-conditional

p(Y = 1|x)

MODELING



DECISION MAKING

Picture modified from Bishop’s textbook.

p(Y = 0|x) p(Y = 1|x)
p(x|Y = 1)

p(x|Y = 0)

decision threshold



Picture modified from Bishop’s textbook.

E[C] =

∫
X

∑
y

c(ŷ, y)p(x, y)dx

=

∫
R0

p(x, Y = 1)dx+

∫
R1

p(x, Y = 0)dx

p(x, Y = 0)

p(x, Y = 1)

R0: ŷ = 0

R1: ŷ = 1

x̂: our decision threshold

x0: optimal decision threshold

DECISION MAKING



CLASSIFICATION WITH REJECTION

Picture modified from Bishop’s textbook.

p(Y = 0|x) p(Y = 1|x)



OPTIMAL REGRESSION

Suppose p(x, y) is known, c : Y × Y → [0,∞) is some cost function.

E[C] =

∫
X

∫
Y

c(f(x), y)p(x, y)dydx Expected cost

f∗(x) =

∫
Y

yp(y|x)dy

= E[Y |x]

Take c(f(x), y) = (f(x)− y)2. We can now derive

Optimal regression



Picture modified from Bishop’s textbook.

E[Y |x] = optimal regression model

p(y|x0)

f∗(x0)

f∗(x)

OPTIMAL REGRESSION



OPTIMAL REGRESSION FOR L2 LOSS

When c(f(x), y) = (f(x)− y)2, the error decomposes to

E[C] =

∫
X

∫
Y

(f(x)− y)2p(x, y)dydx

=

∫
X

(f(x)− E[Y |x])2p(x)dx+

∫
X

∫
Y

(E[Y |x]− y)2p(x, y)dydx

Irreducible errorReducible error

See lecture notes for complete derivation.



BIAS-VARIANCE TRADEOFF

Consider the reducible error (RE) term

∫
X

(f(x)− E[Y |x])2p(x)dx

Consider further

1. the predictor depends on D; i.e., f(x) → f(x|D)

2. D is a realization of random variable D; i.e., f(x|D) is too

3. we can look at the expectation of f(x|D); i.e., E[f(x|D)]



Expected RE = E

[∫

X

(f(x|D)− E[Y |x])2p(x)dx

]

=

∫

X

(E[f(x|D)]− E[Y |x])2 p(x)dx

︸ ︷︷ ︸

+

∫

X

E
[

(f(x|D)− E[f(x|D)])2
]

p(x)dx

︸ ︷︷ ︸

The expected Reducible Error (RE), wrt random variable D

bias2 variance

Derivation in Bishop’s textbook (Chapter 3).

Bias: how much the expected output deviates from the optimal

Variance: how much the output deviates from its expected value

BIAS-VARIANCE TRADEOFF



NAIVE BAYES MODEL

Given: a set of observations D = {(xi, yi)}
n

i=1
, xi ∈ X , yi ∈ Y

Objective: learn the posterior p(y|x,D)

Naive Bayes Model:

p(y|x) =
p(x, y)

p(x)

=
p(x|y)p(y)
∑

y
p(x, y)

=
p(x|y)p(y)

∑
y
p(x|y)p(y)

Assume discrete Y.

p(x1, x2, ..., xd|y) =
d∏

j=1

p(xj |y)

Assume X = Rd.

← naive Bayes assumption



NAIVE BAYES CLASSIFICATION

Assume: discrete Xj , discrete Y

P (Xj = l|Y = k) = αj,l,k

xi,j = l ∈ Xj

yi = k ∈ Y

generalized Bernoulli distribution

P (Y = k) = αk

αj,l,k
est
=

#times Xj = l ∧ Y = k

#times Y = k
=

mj,l,k

nk

αk

est
=

#times Y = k

data set size
=

nk

n

∀i

1

1

0

0

0

0

0

yX

1

0

0

0

0

1

0

j

i



NAIVE BAYES CLASSIFICATION

αj,l,k
est
=

mj,l,k + "

nk + "|Xj |

αk

est
=

nk + "

n+ "|Y|

p(x1, x2, ..., xd|y) =
d∏

j=1

p(xj |y)

! = 1 gives Laplace smoothing

Assume: discrete Xj , discrete Y

generalized Bernoulli distribution

! = user-specified constant

|Xj | = the number of possible values

of feature j

1

1

0

0

0

0

0

yX

1

0

0

0

0

1

0

j

i



NAIVE BAYES CLASSIFICATION

Assume: continuous Xj , discrete Y

µj,k = E[Xj |Y = k]

X

x6,j

x5,j

x4,j

x2,j

x1,j

x3,j

x7,j

xi,j ∈ R

yi ∈ Y

Gaussian distribution

P (Y = k) = αk How many parameters?

σ2

j,k = V[Xj |Y = k]

∀i

1

1

0

0

0

0

0

y



NAIVE BAYES REGRESSION

Assume: continuous Xj , continuous Y

Gaussian distribution

p(x1, x2, ..., xd|y) =
d∏

j=1

p(xj |y)

y

p(xj |y) =
p(xj , y)

p(y)
where p(xj , y) is 2D Gaussian

What if features are discrete?

xi,j ∈ R

yi ∈ R

∀i

y7

y6

y5

y4

y3

y2

y1

X

x6,j

x5,j

x4,j

x2,j

x1,j

x3,j

x7,j



Let A, B, and C be binary features, such that B = C. Let Y = {−,+}

Let P (−) = P (+) = 1

2
. Let P (A) = P (B) = P (C) = 1

2
.

Optimal decision

P (+|A,B,C) > P (−|A,B,C)

Naive Bayes optimal decision (C is ignored)

P (A|+)P (B|+) > P (A|−)P (B|−)

Naive Bayes decision

P (A|+)P (B|+)2 > P (A|−)P (B|−)2

EXAMPLE: NAIVE BAYES CLASSIFIER W/ REDUNDANT FEATURES

P (B|+) = 1− P (A|+)

Optimal N.B. decision surface vs. real N.B. decision surface

P (B|+) = (1−P (A|+))2

P (A|+)2+(1−P (A|+))2

P (+|A) = P (A|+)

P (+|B) = P (B|+)
⇒



OPTIMAL BAYES MODEL

Given: a set of observations D = {(xi, yi)}
n

i=1
, xi ∈ X , yi ∈ Y

Objective: learn the posterior p(y|x,D)

Optimal Bayes Model:

Example: Let f1, f2 and f3 be binary classifiers.

Finite F

=
∑

f∈F

p(y|x, f)p(f |D)

Let p(fi|D) = {0.4, 0.3, 0.3} and P (Y = 1|fi) = {1, 0, 0}.

What is the MAP prediction? What is the optimal Bayes prediction?

p(y|x,D) =
∑

f∈F

p(y|x,D, f)p(f |x,D)


