

PERCEPTRON

CS6140

Predrag Radivojac KHOURY COLLEGE OF COMPUTER SCIENCES NORTHEASTERN UNIVERSITY

Fall 2024

LINEAR CLASSIFICATION

Given: a set of observations $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n, (\boldsymbol{x}_i, y_i) \in \mathbb{R}^d \times \{0, 1\}$

Objective: find best linear separator $f(\boldsymbol{x}) = w_0 + \sum_{j=1}^d w_j x_j$

EQUATION OF THE PLANE

A plane is defined using:

- 1. a point \mathbf{x}_0 lying in the plane
- 2. a vector \mathbf{w} normal to the plane

Let \mathbf{x} be on the plane defined by \mathbf{w} and \mathbf{x}_0 :

$$\mathbf{w}^{T}(\mathbf{x} - \mathbf{x}_{0}) = 0$$
$$\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\mathbf{x}_{0} = 0$$
$$\mathbf{w}^{T}\mathbf{x} + w_{0} = 0$$

DISTANCE FROM POINT TO THE PLANE

 $\mathbf{x} =$ outside the plane

$$\mathbf{x} = \mathbf{x}_{\perp} + r \frac{\mathbf{w}}{||\mathbf{w}||}$$

$$\mathbf{w}^T \mathbf{x} + w_0 = \underbrace{\mathbf{w}^T \mathbf{x}_\perp + w_0}_0 + r||\mathbf{w}|$$

$$r = \frac{\mathbf{w}^T \mathbf{x} + w_0}{||\mathbf{w}||}$$

EXAMPLE

Vector \mathbf{w} defines what side of the plane is positive.

EXAMPLE

$$x_1 + 1$$

What if $\mathbf{w} = (-2, 1)$?
 $\mathbf{x}, \mathbf{w} \in \mathbb{R}^2$
 $\mathbf{w}^T \mathbf{x} + w_0 = 0$

where
$$\mathbf{w} = (-2, 1)$$
 and $w_0 = -1$.

$$r = \frac{\mathbf{w}^T \mathbf{x} + w_0}{||\mathbf{w}||} \qquad \qquad \mathbf{x} = (0,0) \implies r = -\frac{1}{\sqrt{5}}$$
$$\mathbf{x} = (-1,1) \implies r = \frac{2}{\sqrt{5}}$$

EXAMPLE

Distances are unchanged when \mathbf{w} and w_0 are multiplied by a constant!

PERCEPTRON

QUESTIONS TO INVESTIGATE AND ANSWER

 \circ what functions can a perceptron represent?

- \circ how can we train a perceptron?
- \circ can we prove the convergence of the perceptron training algorithm?
- \circ addressing noisy data and non-linear concepts?

WHAT FUNCTIONS CAN PERCEPTRON REPRESENT

Perceptron's decision boundary

 $w_0 + w_1 x_1 + \ldots + w_d x_d = 0$

Consider $x \in \{0, 1\}^d$ and *m*-out-of-*d* functions

$$w_0 + mw \ge 0$$
 \leftarrow picked $w_1 = w_2 = \ldots = w_d = w$
 $w_0 + (m-1)w < 0$

Let's pick w_0 and w

HOW CAN WE TRAIN THE PERCEPTRON

Consider $\mathbf{x} \in \mathbb{R}^d$ and $\mathcal{Y} = \{-1, +1\}$.

Update weights after each new data point is presented to perceptron.

If \mathbf{x} is correctly classified, do nothing. If \mathbf{x} is underclassified

	$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{x}$	
If \mathbf{x} is overclassified		$\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$
	$\mathbf{w} \leftarrow \mathbf{w} - \mathbf{x}$	

Idea: each new weight vector is closer to the solution

PERCEPTRON TRAINING ALGORITHM

Algorithm 1 Perceptron training algorithm. The algorithm loops over the training data \mathcal{D} until either the weight vector is unchanged for a pre-specified number of steps or the maximum number of steps is exceeded.

Input:

Training data: $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n, \mathcal{X} = \{1\} \times \mathbb{R}^d \text{ and } \mathcal{Y} = \{-1, +1\}$ Learning parameter: $\eta \in (0, 1]$

Termination criteria; e.g., the maximum number of steps

Initialization:

 $\mathbf{w} \leftarrow \mathbf{0}$

Weight learning:

```
repeat until termination criteria are satisfied
draw the next labeled example (\mathbf{x}, y) from \mathcal{D}
if (\mathbf{w}^T \mathbf{x} \ge 0 \land y = -1) \lor (\mathbf{w}^T \mathbf{x} < 0 \land y = +1)
\mathbf{w} \leftarrow \mathbf{w} + \eta y \mathbf{x}
end
end
```

Output: Weight vector $\mathbf{w} \in \mathbb{R}^{d+1}$

PROOF OF CONVERGENCE

POCKET ALGORITHM

Perceptron training:

 \circ uses negative reinforcement

 \circ ignores correct predictions

Idea:

- \circ keep the best-so-far \boldsymbol{w} "in the pocket"
- \circ determine best \boldsymbol{w} by the run of correct classifications

Result:

 \circ mimimizes error rate

Algorithm 1 Pocket algorithm. The algorithm loops over the training data \mathcal{D} until either $\mathbf{w}_{\text{pocket}}$ is unchanged for a pre-specified number of steps or the maximum number of steps is exceeded.

Input:

Training data: $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n, \mathcal{X} = \{1\} \times \mathbb{R}^d$ and $\mathcal{Y} = \{-1, +1\}$ Learning parameter: $\eta \in (0, 1]$ Termination criteria; e.g. the maximum number of steps

Initialization:

```
 \mathbf{w} \leftarrow \mathbf{w}_{\text{pocket}} \leftarrow \mathbf{0} \\ \text{run} \leftarrow \text{run}_{\text{pocket}} \leftarrow 0
```

Weight learning:

```
repeat until termination criteria are satisfied
       draw the next labeled example (\mathbf{x}, y) from \mathcal{D}
       if (\mathbf{w}^T \mathbf{x} \ge 0 \land y = -1) \lor (\mathbf{w}^T \mathbf{x} < 0 \land y = +1)
               if run > run_{pocket}
                       \mathbf{w}_{\mathrm{pocket}} \gets \mathbf{w}
                       run_{pocket} \leftarrow run
               end
               \mathbf{w} \leftarrow \mathbf{w} + \eta y \mathbf{x}
               run \leftarrow 0
       else
               run \leftarrow run + 1
       end
end
if run > run_{pocket}
   \mathbf{w}_{\mathrm{pocket}} \gets \mathbf{w}
end
```

Output:

Weight vector $\mathbf{w}_{\text{pocket}} \in \mathbb{R}^{d+1}$

KERNELIZED PERCEPTRON

Algorithm:

 $\mathbf{w} \gets \mathbf{0}$

repeat until convergence

pick an example \mathbf{x} from \mathcal{D}

if **x** is incorrectly classified

 $\mathbf{w} \leftarrow \mathbf{w} + \eta y \mathbf{x}$

 \mathbf{else}

do nothing

end

end

$\eta \in (0,1] = \text{parameter}$

Solution:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

Prediction:

given a new example \mathbf{x} evaluate $\mathbf{w}^T \mathbf{x}$

$$\mathbf{w}^{T}\mathbf{x} = \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}^{T} \mathbf{x}$$
$$= \sum_{i=1}^{n} \alpha_{i} y_{i} k(\mathbf{x}_{i}, \mathbf{x})$$
$$\mathbf{x}_{i} \mathbf{x}_{i} \mathbf{x}_{i} \mathbf{x}_{i} \mathbf{x}_{i} \mathbf{x}_{i}$$
$$\mathbf{x}_{i} \mathbf{x}_{i} \mathbf{x}_{i} = \boldsymbol{\phi}^{T}(\mathbf{x}_{i}) \boldsymbol{\phi}(\mathbf{x})$$