

PRINCIPAL COMPONENT ANALYSIS

CS6140

Predrag Radivojac KHOURY COLLEGE OF COMPUTER SCIENCES NORTHEASTERN UNIVERSITY

Fall 2024

PROBLEM FORMULATION

Given: a set of vectors $\{\boldsymbol{x}_i\}_{i=1}^n$, where $\boldsymbol{x}_i \in \mathbb{R}^d$, sampled from $p_{\boldsymbol{X}}(\boldsymbol{x})$

Objective: find a linear mapping $T : \mathbb{R}^d \to \mathbb{R}^l$, where $l \leq d$, such that the reconstruction of projections back to \mathbb{R}^d is optimal in the mean-squared-error sense.

LINEAR MAPPING

A function $T : \mathbb{R}^d \longrightarrow \mathbb{R}^l$ is a linear mapping if for $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ and $\forall c \in \mathbb{R}$ $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ and $T(c\mathbf{x}) = cT(\mathbf{x})$

Claim: every linear map T can be represented by an $l \times d$ matrix **T** as $T(\mathbf{x}) = \mathbf{T}\mathbf{x}$

Example: rotation by 90° in 2D space.

 $\mathbf{T} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad \qquad \mathbf{x} = (2, 4)$ $T(\mathbf{x}) = \mathbf{T}\mathbf{x} = (-4, 2)$

PROBLEM FORMULATION

Matrix view: $\mathbf{x} \in \mathbb{R}^{d \times 1}$, $\mathbf{T} \in \mathbb{R}^{l \times d}$. The goal is to find \mathbf{T} , \mathbf{z} .

It will turn out later that $\tilde{\mathbf{T}}$ is in fact \mathbf{T}^T

IDEA

Haykin. Neural networks. 1999.

PRELIMINARIES: PROOF FOR COSINE

$$||\mathbf{c}||^{2} = (||\mathbf{b}|| - ||\mathbf{a}||\cos\alpha)^{2} + (||\mathbf{a}||\sin\alpha)^{2}$$

= $||\mathbf{b}||^{2} - 2||\mathbf{a}|| \cdot ||\mathbf{b}||\cos\alpha + ||\mathbf{a}||^{2}\cos^{2}\alpha + ||\mathbf{a}||^{2}\sin^{2}\alpha$
= $||\mathbf{a}||^{2} + ||\mathbf{b}||^{2} - 2||\mathbf{a}|| \cdot ||\mathbf{b}||\cos\alpha$

Combine the two:

$$||\mathbf{a}||^2 - 2\mathbf{a}^T\mathbf{b} + ||\mathbf{b}||^2 = ||\mathbf{a}||^2 + ||\mathbf{b}||^2 - 2||\mathbf{a}|| \cdot ||\mathbf{b}|| \cos \alpha$$

$$\cos(\alpha) = \frac{\mathbf{a}^T \mathbf{b}}{||\mathbf{a}|| \cdot ||\mathbf{b}||}$$

PROJECTION TO ONE DIMENSION

Let us project a vector \mathbf{x} to a unit vector \mathbf{v} . Note: $\mathbf{v}^T \mathbf{v} = 1$ or $||\mathbf{v}|| = 1$.

Let us project a random vector $\mathbf{X} \sim p(\mathbf{x})$ to some unit vector \mathbf{v} .

$$Z = \mathbf{X}^{T} \mathbf{v} = \mathbf{v}^{T} \mathbf{X}$$
$$\mathbb{E}[Z] = \mathbf{v}^{T} \mathbb{E}[\mathbf{X}] = 0$$
$$\overset{d \times d}{\downarrow}$$
$$\mathbb{E}[Z^{2}] = \mathbb{E}[\mathbf{v}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{v}] = \mathbf{v}^{T} \mathbb{E}[\mathbf{X} \mathbf{X}^{T}] \mathbf{v} = \mathbf{v}^{T} \mathbf{\Sigma} \mathbf{v} \quad \Rightarrow \quad \mathbb{V}[Z] = \mathbf{v}^{T} \mathbf{\Sigma} \mathbf{v}$$

PROJECTION TO ONE DIMENSION

For a set of vectors, let us find a unit vector \mathbf{v} so that the projection has maximum variance $\mathbb{V}[Z] = \mathbf{v}^T \mathbf{\Sigma} \mathbf{v}$.

Objective: Given Σ , find **v** to maximize variance of the projection.

 $\max \mathbf{v}^T \boldsymbol{\Sigma} \mathbf{v} \quad \text{s.t.} \quad \mathbf{v}^T \mathbf{v} = 1$

$$L(\mathbf{v},\lambda) = \mathbf{v}^T \mathbf{\Sigma} \mathbf{v} + \lambda (1 - \mathbf{v}^T \mathbf{v}) \qquad \Rightarrow \qquad \mathbf{\Sigma} \mathbf{v} = \lambda \mathbf{v} \qquad \text{The eigenvalue problem}$$

PROJECTION TO d DIMENSIONS

Consider now projecting to d orthogonal vectors:

$$\begin{split} \mathbf{\Sigma}\mathbf{V} &= \mathbf{V}\mathbf{\Lambda} & \leftarrow \text{matrix version} \\ \text{where } \mathbf{V} &= [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_d], \text{ with } \mathbf{V}^T \mathbf{V} &= \mathbf{I} & \leftarrow \text{because } \mathbf{V} \text{ is orthogonal} \\ \mathbf{\Lambda} &= \text{diag}\{\lambda_1, \lambda_2, \dots, \lambda_d\}, \text{ with } \lambda_1 \geq \lambda_2 \dots \geq \lambda_d \end{split}$$

Let us re-write: $\mathbf{V}^T \mathbf{\Sigma} \mathbf{V} = \mathbf{\Lambda}$

$$\mathbf{v}_i^T \boldsymbol{\Sigma} \mathbf{v}_j = \begin{cases} \lambda_i & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases}$$

 \leftarrow variance of projection Z_i

TRANSFORMATION

Let us express the *i*-th projection as $z_i = \mathbf{v}_i^T \mathbf{x} = \mathbf{x}^T \mathbf{v}_i$

Thus,

$$\mathbf{z} = (z_1, z_2, \dots, z_d) = (\mathbf{v}_1^T \mathbf{x}, \mathbf{v}_2^T \mathbf{x}, \dots, \mathbf{v}_d^T \mathbf{x}) = \mathbf{V}^T \mathbf{x} = \sum_{i=1}^d x_i \mathbf{v}_i^T$$

Let us reconstruct **x** now. Remember, $\mathbf{V}^{-1} = \mathbf{V}^T$.

$$\mathbf{x} = \mathbf{V}\mathbf{z} = \sum_{i=1}^{d} z_i \mathbf{v}_i$$

DIMENSIONALITY REDUCTION

Let us now keep the first l components of \mathbf{z} .

RECONSTRUCTION

Let us reconstruct \mathbf{x} now:

Matrix view:

$$\begin{array}{c} \stackrel{n \times d}{\downarrow} \\ \mathbf{X} = \mathbf{Z} \mathbf{V}^T \qquad \rightarrow \qquad \qquad \hat{\mathbf{X}} = \mathbf{Z} \ddot{\mathbf{V}}_{d \times l}^T \\ = \mathbf{Z} \mathbf{T} \end{array}$$

RECONSTRUCTION ERROR

Let us reconstruct \mathbf{x} now:

$$\hat{\mathbf{x}} = \sum_{i=1}^{l} z_i \mathbf{v}_i$$

The error vector $\mathbf{e} = \mathbf{x} - \hat{\mathbf{x}}$ is now

$$\mathbf{e} = \sum_{i=l+1}^d z_i \mathbf{v}_i$$

because

$$\mathbf{x} - \hat{\mathbf{x}} = \sum_{i=1}^{d} z_i \mathbf{v}_i - \sum_{i=1}^{l} z_i \mathbf{v}_i$$

We now have

$$\mathbb{E}[\boldsymbol{X} - \hat{\boldsymbol{X}}] = \boldsymbol{0} - \sum_{i=1}^{l} \mathbb{E}[Z_i] \mathbf{v}_i = \boldsymbol{0}$$
$$\mathbb{E}[||\boldsymbol{X} - \hat{\boldsymbol{X}}||^2] = \sum_{i=l+1}^{d} \mathbf{v}_i^T \boldsymbol{\Sigma} \mathbf{v}_i = \sum_{i=l+1}^{d} \lambda_i \qquad \leftarrow \text{proved later}$$

PRINCIPAL COMPONENT ANALYSIS AS REPRESENTATION LEARNING

 \mathbf{x} $\mathbf{z} = \mathbf{T}\mathbf{x}$ $\hat{\mathbf{x}} = \mathbf{T}^T\mathbf{z}$

RELATIONSHIP WITH SINGULAR VALUE DECOMPOSITION (SVD)

 $\downarrow^{n \times d} \downarrow$ Every matrix **X** has a SVD: **X** = **USV**^T.

$$\begin{split} \mathbf{U} &= \text{orthogonal}, \ n \times n \\ \mathbf{S} &= \text{diagonal}, \ n \times d \\ \mathbf{V}^T &= \text{orthogonal}, \ d \times d \end{split}$$

In MATLAB: [U, S, V] = svd(X)

Let's look at $\mathbf{X}^T \mathbf{X}$

 $\mathbf{X}^T \mathbf{X} = (\mathbf{U} \mathbf{S} \mathbf{V}^T)^T (\mathbf{U} \mathbf{S} \mathbf{V}^T) = \mathbf{V} \mathbf{S}^T \mathbf{S} \mathbf{V}^T.$

Recall, $\frac{1}{n-1}\mathbf{X}^T\mathbf{X}$ is the estimated covariance matrix when \mathbf{X} is normalized

$$\boldsymbol{\Sigma} = \frac{1}{n-1} \mathbf{X}^T \mathbf{X} = \frac{1}{n-1} \mathbf{V} \mathbf{S}^T \mathbf{S} \mathbf{V}^T = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T.$$

$$\Lambda = \frac{1}{n-1} \mathbf{S}^T \mathbf{S}.$$
 \leftarrow eigenvalue matrix

EIGENDECOMPOSITION VS. SINGULAR VALUE DECOMPOSITION

Eigendecomposition: $\frac{1}{n-1}\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^T$

Singular value decomposition: $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^T$

In MATLAB: $[V, \Lambda] = eig(\Sigma)$ [U, S, V] = svd(X)

Q: Is matrix **V** exactly the same in both?

A: Should be but not necessarily. Vectors in V can have opposite directions.

Depends on the software we use.

COMPUTATIONAL COMPLEXITY

We were solving the following system:

$$\mathbf{\Sigma}\mathbf{V}=\mathbf{V}\mathbf{\Lambda}$$

where $\mathbf{V} = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_d]$, with $\mathbf{V}^T \mathbf{V} = \mathbf{I}$

$$\mathbf{\Lambda} = \operatorname{diag}\{\lambda_1, \lambda_2, \dots, \lambda_d\}, \text{ with } \lambda_1 \geq \lambda_2 \dots \geq \lambda_d$$

Total complexity: $O(d^3 + nd^2)$

computing the covariance matrix (Σ): O(nd²)
computing eigenvectors (V) and eigenvalues (Λ): O(d³)

Singular value decomposition takes $O(\min\{nd^2, dn^2\})$

HANDLING HIGH-DIMENSIONAL DATA

Consider a centered data matrix \mathbf{X} , where $d \gg n$.

 $\overset{d \times d}{\underset{\downarrow}{\overset{\downarrow}{\sum}}} \text{ cannot fit in memory! }$

Pick now any eigenvalue λ and the corresponding eigenvector **v**

Note: \mathbf{X} is still column-normalized

HANDLING HIGH-DIMENSIONAL DATA

$$rac{n imes d}{\downarrow} rac{1}{n-1} \mathbf{X} \mathbf{X}^T \underbrace{\mathbf{X} \ddot{\mathbf{V}}}_{\mathbf{Z}} = \underbrace{\mathbf{X} \ddot{\mathbf{V}}}_{\mathbf{Z}} \mathbf{\Lambda}$$

Note: $d \gg n$, so we reduce **V** to $\ddot{\mathbf{V}}_{d \times l}$.

Eigenvalues of $\frac{1}{n-1}\mathbf{X}^T\mathbf{X}$ are the same as eigenvalues of $\frac{1}{n-1}\mathbf{X}\mathbf{X}^T$ There are at most *n* nonzero eigenvalues, for both $\frac{1}{n-1}\mathbf{X}^T\mathbf{X}$ and $\frac{1}{n-1}\mathbf{X}\mathbf{X}^T$

Solution:

$$\frac{1}{n-1}\mathbf{X}\mathbf{X}^T\mathbf{W} = \mathbf{W}\mathbf{\Lambda}$$

Note: we can reduce \mathbf{W} to $\ddot{\mathbf{W}}_{n \times l}$.

$$\frac{1}{n-1}\mathbf{X}^T\mathbf{X}\underbrace{\mathbf{X}^T\mathbf{W}}_{\mathbf{V}'} = \underbrace{\mathbf{X}^T\mathbf{W}}_{\mathbf{V}'}\mathbf{\Lambda}$$

The norm of each column of \mathbf{W} is 1, but not for $\mathbf{X}^T \mathbf{W}$. $\mathbf{V} \leftarrow \text{normalize}(\mathbf{V}')$ so that column norms are 1. $\leftarrow \text{ we centered } \mathbf{X} \text{ not } \mathbf{X}^T$

HANDLING HIGH-DIMENSIONAL DATA

Normalizing **V**' has a closed-form formula:
$$\mathbf{V} = \mathbf{X}^T \mathbf{W} \cdot \operatorname{diag} \left\{ \sqrt{\mathbf{W}^T \mathbf{X} \mathbf{X}^T \mathbf{W}} \right\}$$
$$\stackrel{\uparrow}{\underset{n \times n}{\stackrel{n \times$$

Algorithm:

Solve
$$\frac{1}{n-1}\mathbf{X}\mathbf{X}^T\mathbf{W} = \mathbf{W}\mathbf{\Lambda}$$
 to find $\mathbf{\Lambda}$ and \mathbf{W}
Keep l columns of \mathbf{W} to obtain $\ddot{\mathbf{W}}_{n \times l}$
 $\ddot{\mathbf{V}}_{d \times l} = \mathbf{X}^T \ddot{\mathbf{W}}_{n \times l} \cdot \operatorname{diag} \left\{ \sqrt{\ddot{\mathbf{W}}_{n \times l}^T \mathbf{X} \mathbf{X}^T \ddot{\mathbf{W}}_{n \times l}} \right\}$
 $\mathbf{Z} = \mathbf{X} \ddot{\mathbf{V}}_{d \times l}$

Additional considerations:

What if \mathbf{X} is sparse with huge d and we cannot center it? What if some columns of \mathbf{X} are constant?

APPLICATION: EIGENFACES

Given: a set of *n* images $\mathbf{X}_{n \times d}$, where each row is a flattened matrix.

Х

Find: transformation matrix $\mathbf{T}_{l \times d}$.

- \leftarrow a sample from Yale Faces B set, with n = 5000+ images of 28 subjects
 - \leftarrow each row is a sample of 5 images for the same subject
 - \leftarrow each image is processed to a 48×42 matrix, so $d = 48 \cdot 42 = 2016$

Mean image:

First 20 eigenvectors, shown as scaled matrices:

https://www.face-rec.org

25		1	西		
00	A	2	N.	*	
3.	s.	100	A	T	
ଳିଆଳ	10	-Ja-	20	96	

Sirovich & Kirby. Low-dimensional procedure for the characterization of human faces. J Opt Soc Am A, 1987. Turk & Pentland. Eigenfaces for recognition. J Cogn Neurosci, 1991.

RECONSTRUCTION ERROR

Yale Faces B data set

Note: reconstruction error is measured on the "training" set

HOW MANY COMPONENTS TO KEEP?

Yale Faces B data set

99%, 181 components99.9%, 556 components

It is often better to specify the percent of ratained variance, and not l.

APPLICATION: LATENT SEMANTIC ANALYSIS FOR DOCUMENT RETRIEVAL

Given: an $n \times d$ text document matrix **X** n = number of documents d = dictionary size

Find: latent semantic spaces for document retrieval and term similarity.

Semantic space = space where "terms and documents that are closely associated are placed near one another" (Deerwester et al., 1990).

	access	document	retrieval	information	theory	database	indexing	computer	REL	MATCH
Doc 1	х	x	x			х	х		R	
Doc 2				x*	x			x*		М
Doc 3			x	x*				x*	R	М

Query: "IDF in *computer*-based *information* look-up"

$$\begin{split} \mathbf{X} &= \mathbf{U} \mathbf{S} \mathbf{V}^T \approx \ddot{\mathbf{U}}_{n \times l} \ddot{\mathbf{S}}_{l \times l} \ddot{\mathbf{V}}_{d \times l}^T \\ \mathbf{X}^T &= \mathbf{V} \mathbf{S}^T \mathbf{U}^T \approx \ddot{\mathbf{V}}_{d \times l} \ddot{\mathbf{S}}_{l \times l}^T \ddot{\mathbf{U}}_{n \times l}^T \end{split}$$

Deerwester et al. Indexing by latent semantic analysis. J Am Soc Inf Sci, 1990.

Term similarities: $\mathbf{X}^T \mathbf{X} \approx \ddot{\mathbf{V}} \ddot{\mathbf{S}}^T \ddot{\mathbf{S}} \ddot{\mathbf{V}}^T$ Document similarities: $\mathbf{X} \mathbf{X}^T \approx \ddot{\mathbf{U}} \ddot{\mathbf{S}} \ddot{\mathbf{S}}^T \ddot{\mathbf{U}}^T$

R = relevantM = matched

APPLICATION: GENOMIC DATA VISUALIZATION

 $\mathbf{X}_{n \times d} =$ sparse matrix

n = 3192 subjects d = 500568 genomic loci l = 2 principal directions

Novembre et al. Genes mirror geography within Europe. Nature, 2008.

KERNEL PCA

Consider high-dimensional data. We had $\mathbf{\Gamma} = \frac{1}{n-1} \mathbf{X} \mathbf{X}^T$, where $\Gamma_{ij} = \frac{1}{n-1} \mathbf{x}_i^T \mathbf{x}_j$.

A mapping $\varphi : \mathcal{X} \to \mathcal{F}$ allows us to use any domain for inputs; i.e., $x \in \mathcal{X}$.

$$K_{ij} = oldsymbol{arphi}(x_i)^T oldsymbol{arphi}(x_j) \qquad \qquad \leftarrow \mathbf{K} ext{ is positive semi-definite}$$

Problem: $\frac{1}{n} \sum \mathbf{x}_i = \mathbf{0}$, but $\frac{1}{n} \sum \boldsymbol{\varphi}(x_i)$ is arbitrary.

 $\mathbf{K} \leftarrow \mathbf{K} - \mathbf{1}_n \mathbf{K} - \mathbf{K} \mathbf{1}_n + \mathbf{1}_n \mathbf{K} \mathbf{1}_n \qquad \leftarrow \text{proved later}$

 $\mathbf{1}_n =$ an $n \times n$ matrix where each element is $\frac{1}{n}$

Schölkopf et al. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput, 1998.

HANDLING TEST DATA WITH KERNEL PCA

Given: training set $\{x_i\}_{i=1}^n$ and test set $\{t_i\}_{i=1}^m$;

i.e., an $n \times n$ training kernel matrix **K** and $m \times n$ test matrix **K**^{test}.

$$K_{ij} = \varphi(x_i)^T \varphi(x_j)$$
$$K_{ij}^{\text{test}} = \varphi(t_i)^T \varphi(x_j)$$

Centering:

$$egin{array}{cccc} {}^{m imes n} & {}^{n imes n} \ \downarrow \ \mathbf{K}^{ ext{test}} \leftarrow \mathbf{K}^{ ext{test}} - \mathbf{1}_n' \mathbf{K} - \mathbf{K}^{ ext{test}} \mathbf{1}_n + \mathbf{1}_n' \mathbf{K} \mathbf{1}_n \end{array}$$

 $\mathbf{1}'_n = \text{an } m \times n \text{ matrix where each element is } \frac{1}{n}$ $\mathbf{1}_n = \text{an } n \times n \text{ matrix where each element is } \frac{1}{n}$

Schölkopf et al. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput, 1998.

DIFFERENCES BETWEEN KERNEL PCA AND PCA

Kernel PCA vs. PCA

 \circ KPCA offers many choices of similarity functions

 $\diamond~\mathbf{K}$ must be symmetric positive semi-definite

- \circ input space for KPCA need not be \mathbb{R}^d
 - \diamond KPCA can directly operate on sequences, strings, graphs
- \circ classification accuracy often improved over PCA, given l
- \circ KPCA allows l>d, PCA does not
- \circ loss of interpretability with KPCA
 - \diamond cannot easily visualize eigenvectors for images
 - \diamond requires separate optimization
- \circ computing time a problem for KPCA when n is large
- \circ additional numerical problems with KPCA
 - \diamond centering may cause that $K_{ij} \neq K_{ji}$ which gives complex Λ

APPENDIX: PROOF #1

Proof for the squared norm of the error vector:

$$\begin{split} \mathbb{E}[||(\boldsymbol{X} - \hat{\boldsymbol{X}})||^2] &= \mathbb{E}[(\boldsymbol{X} - \hat{\boldsymbol{X}})^T (\boldsymbol{X} - \hat{\boldsymbol{X}})] \\ &= \mathbb{E}[\boldsymbol{X}^T \boldsymbol{X}] - 2\mathbb{E}[\boldsymbol{X}^T \hat{\boldsymbol{X}}] + \mathbb{E}[\hat{\boldsymbol{X}}^T \hat{\boldsymbol{X}}] \end{split}$$

We investigate one of these terms

$$\mathbb{E}[\hat{\boldsymbol{X}}^T \hat{\boldsymbol{X}}] = \mathbb{E}[\sum_{i=1}^l Z_i \mathbf{v}_i^T \cdot \sum_{j=1}^l Z_j \mathbf{v}_j] = \mathbb{E}[\sum_{i=1}^l Z_i^2 \mathbf{v}_i^T \mathbf{v}_i] = \mathbb{E}[\sum_{i=1}^l Z_i^2]$$

because $\mathbf{v}_i^T \mathbf{v}_j = 0$ when $i \neq j$ and $\mathbf{v}_i^T \mathbf{v}_j = 1$ when i = j. This makes a double sum above a single sum.

APPENDIX: PROOF #1

We similarly have

$$\mathbb{E}[\boldsymbol{X}^T \boldsymbol{X}] = \mathbb{E}[\sum_{i=1}^d Z_i \mathbf{v}_i^T \cdot \sum_{j=1}^d Z_j \mathbf{v}_j] = \mathbb{E}[\sum_{i=1}^d Z_i^2]$$
$$\mathbb{E}[\boldsymbol{X}^T \hat{\boldsymbol{X}}] = \mathbb{E}[\sum_{i=1}^d Z_i \mathbf{v}_i^T \cdot \sum_{j=1}^l Z_j \mathbf{v}_j] = \mathbb{E}[\sum_{i=1}^l Z_i^2]$$

Finally, we have

$$\mathbb{E}[(\boldsymbol{X} - \hat{\boldsymbol{X}})^T (\boldsymbol{X} - \hat{\boldsymbol{X}})] = \sum_{i=1}^d \lambda_i - 2\sum_{i=1}^l \lambda_i + \sum_{i=1}^l \lambda_i = \sum_{i=l+1}^d \lambda_i$$

Q.E.D.

Appendix: Proof #2

Proof for the kernel normalized in the feature space:

$$K_{ij} \leftarrow (\varphi(x_i) - \frac{1}{n} \sum_{k=1}^n \varphi(x_k))^T (\varphi(x_j) - \frac{1}{n} \sum_{l=1}^n \varphi(x_l)) \leftarrow \text{centering in feature space}$$

$$= \varphi(x_i)^T \varphi(x_j) - \frac{1}{n} \sum_{l=1}^n \varphi(x_i)^T \varphi(x_l) - \frac{1}{n} \sum_{l=1}^n \varphi(x_k)^T \varphi(x_j) + \frac{1}{n^2} \sum_{k=1}^n \sum_{l=1}^n \varphi(x_k)^T \varphi(x_l)$$

$$= K_{ij} - \frac{1}{n} \sum_{k=1}^n K_{kj} - \frac{1}{n} \sum_{l=1}^n K_{il} + \frac{1}{n^2} \sum_{k=1}^n \sum_{l=1}^n K_{kl}$$

$$i \square - i \square + \square$$

Matrix form:

 $\mathbf{K} \leftarrow \mathbf{K} - \mathbf{1}_n \mathbf{K} - \mathbf{K} \mathbf{1}_n + \mathbf{1}_n \mathbf{K} \mathbf{1}_n$

 $\mathbf{1}_n =$ an $n \times n$ matrix where each element is $\frac{1}{n}$