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NEWTON-RAPHSON OPTIMIZATION

Setting: f:RY — R

Objective: solve the following optimization problem

2" = arg max {f(z)}



NEWTON-RAPHSON OPTIMIZATION

Suppose d = 1. A function f(z) in the neighborhood of point xg

> f(n)
f(x) = Z f n('-fUO) (:C — :L‘o)n, Taylor approximation
n=0 )

where f(™(xq) is the n-th derivative of function f(x) evaluated at point .

Consider the second order approximation:

F() ~ (o) + (@ — o) (o) + 5z — o) (z0).



NEWTON-RAPHSON OPTIMIZATION

Find the first derivative and make it equal to zero:

fl(x) = f(x0) + (2" — x0) f(x0) = 0.

Solving this equation for z* gives:
f' (o)
F(z0)

¥ =z —

Idea: Iterative optimization

Let t be the current iteration and z(®) an initial solution. Then,

(t+1) _ (t) f’(fﬁ(t))
C T T em)
t=0,1,2,...




EXAMPLE: NEWTON-RAPHSON OPTIMIZATION

Given: f(x) =22 -4z +38

Objective: Find minimum



MULTIVARIATE NEWTON-RAPHSON OPTIMIZATION

Take = (z1,22,...,24) € R?

f(x) =~ f(xo) + Vf(xo)" - (& — x0) + % (x — :BO)T - H () - (£ —x0) ,

where
af of of
Viix)= , s eens Gradient
f(z) (&51 02y o914 radien
and
2% Ffr . 0% f
61‘% 8:70183:2 8$18$d
Of %
O0x20 Ox2
Hf(m) = reom 2 Hessian
% Ed)
L Oxq0x1 amfi




MULTIVARIATE NEWTON-RAPHSON OPTIMIZATION

Update rule:

2D — () _ (Hf(m(t)))_l .Vf(a:(t))

Both gradient and Hessian are evaluated at point x®).

Hpgwy 1 — gradient descent (minimization) 2D = 2 . v f(x®)

Hppory ¢ —1 — gradient ascent (maximization) 2D = 2 4y vV f(x®)

I = d x d identity matrix nec (0, 1]



EXAMPLE: MULTIVARIATE NEWTON-RAPHSON OPTIMIZATION

Given: f(ry,m0) =23+ 23 +21 — 22+ 1

Objective: Find minimum



CONVERGENCE OF NEWTON-RAPHSON OPTIMIZATION

Let e® = 2() — z* be an error, where z* is the optimum.

||e(t+1) =0 <| |e(t) | |p) convergence of p-th order

Theorem. Assume Hessian satisfies the following conditions in the neighborhood of x*

HH(wml)) _ H(wm)H <A Hw<t+1> 0

If ) is sufficiently close to x* for some ¢ and if Hessian is positive definite,
then the Newton-Raphson technique is well defined and converges at second
order.

Fletcher. Practical methods of optimization. 1987.



PRELIMINARIES FOR CONSTRAINED OPTIMIZATION

T2 35

flzi, ) =af+ a1 —22+ 1
30
Consider: f(z1,z2) and level set f(x1,22) =0 all Ty =a2 4z +1
20 -

point (1,3) from the level set

15

Find: tangent zo = axy + b to f(x1,22) =0 at (1,3)
10 - To = 33

gradient of f(x1,x2) at point (1, 3)

il

Observation: gradient of f(z1,22) is parallel with the normal to the tangent of f(x1,z2) =0 at (3,1).



CONSTRAINED OPTIMIZATION

Objective: solve the following optimization problem

" = argmax {/(x)}

Subject to:
gi(x)=0 Vie{l,2,...,m}
hj(x) >0 Vje{l,2,...,n}

Or, in a shorter notation, to:
g(x) =0
h(x) >0



LAGRANGE MULTIPLIERS

Taylor’s expansion for g(x), where & and x + € are on the same level surface of g(x)
g(x +€) ~ g(x) + €' Vg(x)

We know that g(x) = g(x + €)
e'Vg(x) ~ 0

when € — 0 —> Vyg(a) is orthogonal
e'Vg(x)=0 to the level surface

Vg(x) and V f(x) are parallel!

@ Vf(x)+ aVg(x) =0 a#0

f () L(z,a) = f(x) + ag(x)



LAGRANGE MULTIPLIERS

Inactive constraint:

h(x) >0
Vf(x)=0
It holds that: h(x) >0
>0
p-h(x)=0

Active constraint:
h(x) >0

Vf(x) = —pVh(z) p>0

Karush-Kuhn-Tucker (KKT) conditions



EXAMPLE: LAGRANGE MULTIPLIERS

3$1+l’2+5:0

z* = argmin {27 + 23}
€T

Subject to: @

3$1+$2+5:0



EXAMPLE: LAGRANGE MULTIPLIERS

x* = arg min {||x/|}
X

Subject to:
Ax=Db
where A e R™*" x e R", be R™, m<n




