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PRELIMINARIES

Given: a set of observations D = {z;},_,, ©; € X

Objective: find a model f € F that describes the phenomenon well

Requirements:
(7) the ability to generalize well
(7i) the ability to incorporate prior knowledge and assumptions

(i11) scalability

Terminology through an example: D = {3.1,2.4,-1.1,0.1}

Parameter

What is the data generator? . )
estimation

F = Gaussian(p,0?), p € R, 0 € RT



STATISTICAL FRAMEWORK

Observations Knowledge + Assumptions
Data generator ----------- & Data set Experience
D=4z, . Fulf s o -
Optimization

Parameter estimation

e.g., fuap= ar% max (D Hp(f)}

B=E[F|D = D]
Model

Knowledge
Model inference: Observations + and + Optimization
Assumptions



MaXiIMUM A POSTERIORI (MAP) INFERENCE

Idea:

fvap = argmax {p(f|D)},
feF

where p(f|D) is called the posterior distribution.

How do we calculate it?

p(DIf) - p(f)

p(fID) = (D)

where p(D|f) = likelihood, p(f) = prior, and p(D) = data distribution.



MaXiIMUM A POSTERIORI (MAP) INFERENCE

Finding the data distribution:

> rerP(DIf)p(f) f:discrete
p(D) =

J=p(D|f)p(f)df  f: continuous

We can now simplify the process if we observe that

_ p(D[f) - p(f)

< p(D|f) - p(f)



MAXIMUM LIKELIHOOD (ML) INFERENCE

Express the posterior distribution as

o(fID) = p(DIf) - p(f)

o p(DIf) - p(f)

Now, ignore p(f) to get

fur = argmax {p(D|f)}
feEF

There are technical problems with this approach, but also reasons to use it.

MAP and ML estimates are called the point estimates.



EXAMPLE: ML INFERENCE

Example: D ={2,5,9,5,4,8} is an i.i.d. sample from Poisson(\), A € R"
Find A

Solution: Poisson probability mass function is p(x|\) = Azg,_ ”

Amr = argmax {p(D|\)}.
A€(0,00)

Likelihood: p(D|\) = p({z:}" |\)




EXAMPLE: ML INFERENCE

. . AZ?:l Zi e_n>‘
Likelihood: p(D|)\) — -
[Tz @

Log-likelihood: ({(D,)\) =1nAY z; —nA— Y In(x;))
=1 =1

Optimization: Solution:

DN 1~
oa a=nl
0



EXAMPLE: MAP INFERENCE

Example: D ={2,5,9,5,4,8} is i.i.d. sample from Poisson(\), A € RT.

Assume A is taken from I'(z|k, #) with parameters k = 3 and 6 = 1.

Find A.
Solution: Poisson: p(x|\) = ’\mxl_k
Gamma: I'(z|k,0) = W(k;, where z > 0, £ > 0, and 6 > 0.

)\Z?Zl Ti , g nA
I, @!
)\k: 1675
TORT (k)

Likelihood: p(D|)\) =

Prior: p(\) =



EXAMPLE: MAP INFERENCE

Taking the logarithm
Inp(A|D) < Inp(D|A) + Inp(N)

n 1 n
=InA(k—14+Y ;)= An+ ) - Y Ina;! - kIn6 — InT(k)
=1 =1

We now obtain

=1k, i

Sufficient statistic: no other stiatistic calculated from the same sample provides any additional value

to the parameter to be estimated (Fisher, 1922)



SUFFICIENT STATISTIC

Statistic: funtion of the data, in the statistical sense
Sufficient statistic:

Let D be the data set random variable and D the observed data set.
T be random variable representing some function of the data.
D ~ p(xy,29,...,2,|0).

t is a realization of T, computed from D.

T is sufficient if
p(D|t,0) = p(Dlt)

Example:
D = {x;},_,, i.id., T = E[X], where X ~ p(z|6)

t= 530 @



ANOTHER EXAMPLE

Example: D = {z;}!" , is i.i.d. sample from Gaussian(u,c?)

Find ¢ and o

Solution: Gaussian: p(z|u,o) =




RELATIONSHIP TO KULLBACK-LEIBLER (KL) DIVERGENCE

The KL divergence between two probability distributions p(z) and ¢(x) is

p(x)
q(z) !

i

DKL(pHQ):/_OO p(z)log 222

Assume now the data is generated according to some p(x|0;). We estimated it as p(z|6).
Let’s look at the KL divergence

¥ _E [log p(x])]

o0 1
/_oo (@16 108~




RELATIONSHIP TO KULLBACK-LEIBLER (KL) DIVERGENCE

1 & as.
> Jlogp(xild) =¥ Ellogp(x|6)
i=1
when n — oo.

Conclusion:

When n — oo, ML estimation implies p(z|6mr) = p(x|0:)

This usually implies Oy, = 6;



CONDITIONAL DISTRIBUTIONS

Given: a set of observations D = {(z,v:)}i—y, Ti,yi €R
Assumption: X and Y are random variables and p(y|z) = N (u = z,02)

Objective: find o



BAYESIAN APPROACH

Idea: consider posterior risk R

R= [ . plrmas
where £(f, f) is some loss function.
Assume £(f, f) = (f — f)? and find best f
0

S7 =20 2Lf p(fID)df

=0




BAYESIAN APPROACH

Solution:

fo = L /- p(fID)ds
— E[F|D = D]

Example: D ={2,5,9,5,4,8} is an i.i.d. sample from Poisson(\g), A € R*.
Assume )¢ is taken from I'(z|k, §) with parameters k = 3 and 0 = 1.

Estimate \g.



A NOTE ON OPTIMIZATION

We have looked at these types of optimization

1 Likelihood p(D|\)

A = argmax {p(z1, Ta, . .., Tn|A)}
A€ (0,00)

Was there a problem here?
Yes and no. We were lucky that A was indeed a positive number.

In previous slides: A = LS @i =5.5 € (0,00).

In the future, we might have to be more careful about enforcing constraints.



REVISITING MIXTURES OF DISTRIBUTIONS

Mixture of m = 2 Gaussian distributions:

w1 = 0.75, Wwo = 0.25

p(z) = Z w;p; ()

0.5 [ '
JE— nw= 1,0=1
........ w= -2, o=0.75
04l mixture
0.3}
0.2+
0.1F
O ...... | ’.."'r-... L L
4 3 2 1 0 1 2 3 4




PARAMETER ESTIMATION FOR MIXTURES OF DISTRIBUTIONS

Given: a set of observations D = {z;},_,, ©; € X

p(z|0) = > w;ip(x|b;). m
Z ’ w; >0, > w;=1.

_ Jj=1
where 0 = (w1, w2, ..., Wy, 01,02, ...,0)

Example: Consider a mixture of m = 2 exponential distributions.

p(x]6;) = Xje= %% where \; > 0

“A A
(x| A1, A2, wi, we) = wy - Aye” 1T 4w - Age” 2T

where A1, Ao > 0, wy,we >0, and w; =1 — we



PARAMETER ESTIMATION FOR MIXTURES OF DISTRIBUTIONS

Likelihood:

p(D|0) = ﬁp (x4]0)
=1

ﬁ (ijp z;|6; )

=1

p(D|0) has O(m™) terms. It can be calculated in O(mn) time as a log-likelihood.

How can we find 6?7 Is there a closed-form solution?



IDEA #1

Suppose we know what data point is generated by what mixing component.

That is, D = {(z;,¥:)}.—; is an i.i.d. sample from some distribution p(z,y),

where y € Y = {1,2,...,m} specifies the mixing component.

—.

@
I
—

p(D|0) = p(xi,yi0)

I
.EB

@
I
—

p(ilyi, 0)p(y:l0)

I
'E3

@
Il
—

wyip(xi|9yi)’

where w; = P(Y = j).



IDEA #1

Log-likelihood:

logp(D|f) = ) _ (logwy, +log p(xilfy,))

=1

1 log w; + Z Ing(xiW?Ji)a
=1

[
NE

<.
I
_

where n; is the number of data points in D generated by the j-th mixing component.

Constrained optimization: Let’s first find w

L(w,a) = an logw; + « ij -1
Jj=1 j=1

where « is the Lagrange multiplier.



IDEA #1

Set %L(w,a} = 0 for every k € Y and %L(w,a) = 0. Solve it.

It follows that wp = —"* and a = —n.

1 n
Wk = EZI(% = k),
=1

where I(-) is the indicator function.

To find all §;, we need to get concrete; i.e., p(z]0;) = \je 7.
iilo (xilAy;) =0
a)\k - EP\Ti|Ay; ) = U,

for each k € Y.



IDEA #1

Thus, assuming an exponential distribution we obtain that

ng

Ak = n )
2= 1y = k) -

for each k € ).

Recall that
Ly =t
we = — P =
k n £ Yy

If the mixing component designations y are known,

Conclusion: the parameter estimation is greatly simplified.



IDEA #2

Suppose we know the # but not the mixing component designations.

We start with the posterior as

|D 0 Hp yz’*rza

wy, p(x:]0y,)
H P

j=1W;P (zil6;)

and subsequently find the best configuration out of m” possibilities.

Data is i.i.d. so y;’s can be estimated separately. The MAP estimate for y;

wyip(xi|0yi)

7; = arg max
el {z;';l wjpmwj)}

Conclusion: if 8 is known, “cluster” assignments are simple.



COMBINE THE TWO IDEAS (ITERATIVELY)

1. Assume @ is known, call it §()

[\)

. Compute y(© using (9 as known
. Compute 01 using y(© as known

3
4. Compute y) using /(M) as known

o

. (until convergence)



CLASSIFICATION EXPECTATION MAXIMIZATION (CEM)

1. Initialize A\ and w” for Vk € Y

2. Calculate y\”) = arg max wy” p(riX7) for Vi € {1,2 n}
. Yy, = %ey > w;o)p(a:d)\;-o)) NN

3. Sett=0

4. Repeat until convergence

(a) wi™ =15 1y = k)

(t+1) _ >r 1y =k)
(b) A = n o Iy =k)

(t+1) (t+1)

(t+1) w T p(a| A )
(¢) v = argmax P (= by NG
key =1 W; p(xil 3 )

j=1

(d) t=t+1
5. Report )\,(f) and w,(:) for Vk € Y

Also called “hard EM”.



EXPECTATION-MAXIMIZATION (EM) ALGORITHM

Problems with the CEM formulation:

1. We want to estimate 6

2. We do not necessarily need to compute y

Main idea for the EM algorithm:

1. Take step t and assume #(!) is known

2. Maximize E[p(D, Y|0)|D, 0®] to calculate H*+1)



EXPECTATION-MAXIMIZATION (EM) ALGORITHM

Expected log-likelihood of the complete data over the posterior distribution for
y assuming ) is true:

>, logp(D, yl0)p(y|D,01)  y: discrete
Ellogp(D, Y |0)|D, 6] =
J, logp(D,y|0)p(y|D, 0())dy 1y : continuous

0+ — arg max {E[logp(D, Y|0)|D, G(t)]}
0



EXPECTATION-MAXIMIZATION (EM)

1. Initialize \*) and w\” for Vk € ¥

2. Sett=0

3. Repeat until convergence

® ®
w;p(xi| A7) .
(a) py; (k|z;, 0®)) = ;”:I:”ugt)p(mlzl)\;t)) for V(i, k)

(b) wi™ = L3 py, (klzs, 60)

(c) A = Yiy py; (Kzi,01)
k TR wipy; (Kl2i,00)

(d) t=t+1

4. Report )\5:) and wlgt) for vk € Y



HARD VS. SOFT EM

1. Initialize A*) and w” for Vk € Y

(0) (130
2. Calculate y§°) = arg max Pk sz,";cll)"“ )<0> for Vi
key E;Lzl w; p(l’ip‘j )

3. Sett=0

4. Repeat until convergence

(a) wy™ =15 1 = k)

by AT — S Iy =k)
( ) k - nor (t>—k
i=1 (yi =k)-x;
(t+1) (t+1)
t+1 R
(c) ?/z( = argax o <tf§f - (til)
key jrawy " Up(Eil AT

d) t=t+1

5. Report )\,(f) and w,(:) forVk e Y

1. Initialize )\,(CO) and w,(fo) forVk e Y
2. Sett=0
3. Repeat until convergence

w](;)p(zi \)\fj))

(a) Py; (k’xi’e(t)) = <m w§t)p(wi|)\§t))

j=1

(b) wlsit—i_l) = %Z?:l by; (k|x279(t))

(C) )\(H‘l) _ 2itipy (k|z:,09)
k T Y zipy; (K|wi,60(1)

d) t=t+1

4. Report )\,(f) and w,(:) for Vk € Y

for V(i, k)



EXPECTATION-MAXIMIZATION (EM) ALGORITHM

E-step: evaluate p(y|D, Q(t))

M-step: (1) = argmax {E[log p(D, Y'|0)|D, 0]}
0



How DID WE ARRIVE AT THIS SOLUTION?

1. Try to maximize likelihood p(D|0)

(a) can be difficult even as log-likelihood; e.g., we get log of a sum of
some function of parameters 6 that is unfriendly to differentiation

2. Recognize we have some unobserved or “hidden” variables

(a) mixture case: we figured out that there is a “class label” vector y so

we can see the complete data as set of pairs {(z;, )},

3. Attempt to maximize the likelihood of complete data p(D, y|0)

(a) cannot do because vector y is unobserved



How DID WE ARRIVE AT THIS SOLUTION?

4. Think of an iterative process and assume we have () as an approximation
of Oy, in step t. New goal: find #¢+1) of the next step (t + 1) that is a
little better than 6®) from step t.

(a) good news: we can compute the posterior of unobserved data p(y|D, ™)
since D and #*) are given.

(b) This will become the E-step.

5. To find #¢*Y | try to maximize the expected likelihood of the complete
data E[p(D, Y |0)|D, 6®], where we integrate over p(y|D,d®)

(a) this is still hard as we have to work with products instead of sums
6. Try to maximize the expected log-likelihood of the complete data E[log p(D, Y'|0)|D, 6(*)]

(a) good news: we get expressions that can be simplified so we can com-
pute 0+ by maximizing E[logp(D, Y'|0)|D, 0]

(b) This will become the M-step.



How DID WE ARRIVE AT THIS SOLUTION?

7. The EM algorithm iterates the E-step with the M-step.
8. Prove that maximizing E[log p(D, Y'|0)|D, #®)] maximizes p(D|0)

(a) good news: it can be done, but it is not obvious so it has to be done.

(b) bad news: we can only prove local maximization as the likelihood
function is not convex.



RECAP OF REASONING

1. Try to maximize likelihood p(D|6)
2. Recognize we have some unobserved or “hidden” variables
3. Attempt to maximize the likelihood of complete data p(D,y|0)

4. Think of an iterative process and assume we have () as an approximation
of Oy, in step t. New goal: find #(*+1) of the next step (¢ 4 1) that is a
little better than 6®) from step t.

5. To find #**Y | try to maximize the expected likelihood of the complete
data E[p(D, Y |0)|D, 6®], where we integrate over p(y|D,d®)

6. Try to maximize the expected log-likelihood of the complete data E[log p(D, Y'|0)|D, 6(*)]
7. The EM algorithm iterates the E-step with the M-step.

8. Prove that maximizing E[log p(D, Y'|0)|D, #®)] maximizes p(D|6)



WHY EM WORKS

p(D]oHD)

(t+1)y _ 1)y —
log p(D|6""") —log p(D|6"") = log O



WHY EM WORKS

p(D]oHD)
p(D[e®)

| / p(D,y|0t+D)
= 10
g D(DIeW)

log p(D|0"+) —log p(D|0M) = log

dy

Marginalize



WHY EM WORKS

p(D]oHD)

p(D|0®)

—lo /p(p’yw(tﬂ’)
g D(DIeW)

p(D, y|ot D)

p(D,y|6®)

log p(D|0"+) —log p(D|0M) = log

dy

Apply product rule = log/ p(y"D, Q(t))dy
Yy



WHY EM WORKS

(t+1)
(t+1)y _ 0y _ 1. P(PIOT)
log p(D|0*""") — log p(D|6™") 10g—p(p|9(t))

| /p(D,yw““))
=10
y P(DIOW)

p(D,yW(t“)) t
~ log / p(y|D,00)dy
y P(D,y|0®)
p(D, y|ot+Y)
p(D,ylo®)

dy

Apply Jensen’s inequality > / log p(y|'D, Q(t))dy
Yy

Jensen’s inequality: ¢ (E[X]) < E[p (X)], where ¢ is a convex function. log(-) above is a concave function.



WHY EM WORKS

p(D]oHD)
p(D[OM)

p(D, y|ot+Y)
=1 d
"g/y p(De®) Y

o /p(D,yW“H))
y DP(D,y|0®)

p(D,ylo"+Y)
/log »(D, y|6®) p(y|D,0")dy
y )

Ellog p(D, ¥ |6¢+1)[D, 0] — Eflog p(D, Y0))|D, 0]

log p(D|0" 1)) —log p(D]9V) = log

p(y|D,0M)dy

V

Rewrite

So,

log p(D|6"+1) > log p(D]60M)+E[log p(D, Y |6“+1)|D, 6] — Ellog p(D, Y [§))|D, 6]



WHY EM WORKS

p(D]oHD)
p(D[OM)

p(D, y|ot+Y)
=1 d
"g/y p(De®) Y

o /p(D,yW“H))
y DP(D,y|0®)

p(D,ylo"+Y)
/log »(D, y|6®) p(y|D,0")dy
Yy Y

Ellog p(D, ¥ |6¢+1)[D, 0] — Eflog p(D, Y0))|D, 0]

log p(D|0" 1)) —log p(D]9V) = log

p(y|D,0M)dy

V

Rewrite

So, Non-negative

A\

log p(D|6"+1) > log p(D]60M)+E[log p(D, Y |6“+1)|D, 6] — Ellog p(D, Y [§))|D, 6]




BiISHOP’S OPENING

First paragraph of Chapter 9, Bishop 2006

If we define a joint distribution over observed and latent variables, the correspond-
ing distribution of the observed variables alone is obtained by marginalization. This
allows relatively complex marginal distributions over observed variables to be ex-
pressed in terms of more tractable joint distributions over the expanded space of
observed and latent variables. The introduction of latent variables thereby allows
complicated distributions to be formed from simpler components. In this chapter,
we shall see that mixture distributions, such as the Gaussian mixture discussed in
Section 2.3.9, can be interpreted in terms of discrete latent variables. Continuous
latent variables will form the subject of Chapter 12.



K-MEANS CLUSTERING

1. Partitional approach to clustering

2. Each cluster is associated with a centroid

w

. Each point is assigned to the cluster with closest centroid

4. The number of clusters, K, must be specified

® (2.5,3.75)
3,3)




K-MEANS CLUSTERING

Algorithm 1 K-means clutering.

Input:
Data: D = {x;};_,, X = R4
Termination criteria; e.g., the maximum number of steps

Initialization:
Select K points ¢, ca, ..., cx € R? as initial centroids

Training:
repeat until centroids don’t change
Form K clusters by assigning each point to the closest centroid
Recompute each centroid as mean of points in the cluster
end

Output:
Centroids ¢y, co,...,Cx




EXAMPLE: K-MEANS CLUSTERING

(4, 5)
5 -+
@)
(2, 4)
4+ @)
(1.3) 3. 3)
31t O @)
2 -+




EXAMPLE:

K-MEANS CLUSTERING

(4,9)
(2,4)

(1,3) 3. 3)

@ 1)

(5, 6)




EXAMPLE:

K-MEANS CLUSTERING

(4,5) 1.41
(2,4)
(1,3) (3. 3)

4.12

@ 1)

(5, 6)




EXAMPLE: K-MEANS CLUSTERING

(5, 6)
4,5)
5 _
()
(2,4)
4.12
4 T @)
(1,3) 6.3) (8,3)
ST @) @)
(6,2)
2 _
3.16
(7,1)
1T ® @)
(3,2)




EXAMPLE: K-MEANS CLUSTERING

(5, 6)
(4,9)
5 4
@
(2,4)
s ©
(1,3) 3, 3) (8,3)

st O @)

2 —+

17T ®¢

@ 1)




EXAMPLE: K-MEANS CLUSTERING

Now: calculate all distances...

(5, 6)
+ ® and color all data points.
(4,5)
5 —_
o
(2,4)
. o
(1,3) 3. 3) (8,3)
st O o @
(6,2)
2T @
7, 1)
1T ® @
3, 1)




EXAMPLE:

K-MEANS CLUSTERING

Now: move cluster centers to be the
average of data points.

c1=1/2*(45)+1/2*(83)=(64)

C2=1/5*(13)+1/5*(24)+
1/5*(33)+1/5* (6 2) +
1/5* (7 1) = (3.8 2.6)

(5,6)
N ®
(4,5)
@
2.4)
@
(1,3) 3,3) (8 3)
T @ @ ®
6,2)
@
@ 1)
® @

3 1)

= : : : : : = >

2 3 4 5 6 7 8



EXAMPLE: K-MEANS CLUSTERING

Now: start next iteration

4 repeat distance calculation.
(4,5)
5 4
@

(2.4) (6,4)

4 T @ @
(1.3) 3.3) (8, 3)
3+ ) o 2.00 o
6,2
2 + (jm.
2.28
.1

. O




EXAMPLE:

K-MEANS CLUSTERING

Now: calculate all other distances...

(4,5)
@
(2, 4) (6, 4)
@ ®
(1.3) 3.3) (8.3)
T @ (] @
®
(3.8, 2.6) (6.2)
' [
(7, 1)
@
= = = = = = = »
2 3 4 5 6 7 8



EXAMPLE: K-MEANS CLUSTERING

Now: move cluster centers to be the

A average of data points.
. (4, 5) c1=1/4*(45)+1/4*(83)+
(] 1/4*(62)+ 1/4* (7 1) = (5.67 2.67)
(2, 4) (6,4) Co=1/3*(13)+1/3*(24)+
4 7T @ ® 1/3 * (3 3) = (2.00 3.33)
(1,3) 3, 3) (8,3)

3T @ @ ®

®

38,26 ©.2)
5 1 (3.8,2.6) ®

(7, 1)

1T @

v



EXAMPLE: K-MEANS CLUSTERING

Now: start next iteration

+ calculate distances again...
(4, 5)
5 -4
(2,4)

4+ ) 2.87

1,3 8,3

( ) ) (5.7, 2.7) (8.3)
3 —_

® (2, 3.3) @ ® ®
(6,2)
2T @
1)

1T @




EXAMPLE: K-MEANS CLUSTERING

Now: move cluster centers to be the

A average of data points.
4.9) c1=1/3*(62)+1/3*(83)+
5 —
) 13*(71)=(72)
(2,4) Co=1/4*(13)+1/4*(24)+
4 7T @ 1/4*(33)+1/4*(45)= (2.5 3.75)
1
1.9 ®3.3) (5.7, 2.7) (8.3)
3 —
® (2, 3.3) ® ® ®
(6,2)
2T [
(7, 1)
1 o




EXAMPLE: K-MEANS CLUSTERING

Now: if we calculate all distances, no data
A points will change color.

This means, we can stop!

5 -+
4 —
® (2.5,3.75)
(. (3, 3)
3 1 ®
2 4

v



