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PRELIMINARIES

Given: a set of observations D = {xi}
n

i=1
, xi ∈ X

Objective: find a model f̂ ∈ F that describes the phenomenon well

Requirements:

(ii) the ability to incorporate prior knowledge and assumptions

(i) the ability to generalize well

(iii) scalability

Terminology through an example: D = {3.1, 2.4,−1.1, 0.1}

F = Gaussian(µ,σ2), µ ∈ R, σ ∈ R+

What is the data generator?
Parameter

estimation



STATISTICAL FRAMEWORK



MAXIMUM A POSTERIORI (MAP) INFERENCE

Idea:

fMAP = argmax
f∈F

{p(f |D)} ,

where p(f |D) is called the posterior distribution.

How do we calculate it?

p(f |D) =
p(D|f) · p(f)

p(D)

where p(D|f) = likelihood, p(f) = prior, and p(D) = data distribution.



MAXIMUM A POSTERIORI (MAP) INFERENCE

Finding the data distribution:

p(D) =

⎧

⎪

⎨

⎪

⎩

∑

f∈F
p(D|f)p(f) f : discrete

∫

F
p(D|f)p(f)df f : continuous

p(f |D) =
p(D|f) · p(f)

p(D)

∝ p(D|f) · p(f)

We can now simplify the process if we observe that



MAXIMUM LIKELIHOOD (ML) INFERENCE

p(f |D) =
p(D|f) · p(f)

p(D)

∝ p(D|f) · p(f)

Express the posterior distribution as

fML = argmax
f∈F

{p(D|f)}

Now, ignore p(f) to get

There are technical problems with this approach, but also reasons to use it.

MAP and ML estimates are called the point estimates.



EXAMPLE: ML INFERENCE

Example: D = {2, 5, 9, 5, 4, 8} is an i.i.d. sample from Poisson(λ), λ ∈ R+

Find λ

Solution:

λML = argmax
λ∈(0,∞)

{p(D|λ)} .

Poisson probability mass function is p(x|λ) = λ
x
e
−λ

x!

p(D|λ) = p({xi}
n

i=1
|λ)

=
n∏

i=1

p(xi|λ)

=
λ
∑

n

i=1
xi · e−nλ

∏n

i=1
xi!

.

Likelihood:



Likelihood: p(D|λ) =
λ
∑

n

i=1
xi · e−nλ

∏n

i=1
xi!

ll(D,λ) = lnλ
n∑

i=1

xi − nλ−

n∑

i=1

ln (xi!)Log-likelihood:

∂ll(D,λ)

∂λ
=

1

λ

n∑

i=1

xi − n

= 0

Optimization:

λML =
1

n

n∑

i=1

xi

= 5.5

Solution:

EXAMPLE: ML INFERENCE



Example: D = {2, 5, 9, 5, 4, 8} is i.i.d. sample from Poisson(λ), λ ∈ R+.

Assume λ is taken from Γ(x|k, θ) with parameters k = 3 and θ = 1.

Find λ.

Solution: Poisson: p(x|λ) = λ
x
e
−λ

x!

Gamma: Γ(x|k, θ) = x
k−1

e
−

x
θ

θkΓ(k) , where x > 0, k > 0, and θ > 0.

Likelihood: p(D|λ) =
λ
∑

n

i=1
xi · e−nλ

∏n

i=1
xi!

Prior: p(λ) =
λk−1e−

λ

θ

θkΓ(k)
.

EXAMPLE: MAP INFERENCE



ln p(λ|D) ∝ ln p(D|λ) + ln p(λ)

= lnλ(k − 1 +
n∑

i=1

xi)− λ(n+
1

θ
)−

n∑

i=1

lnxi!− k ln θ − lnΓ(k)

Taking the logarithm

We now obtain

λMAP =
k − 1 +

∑n

i=1
xi

n+ 1

θ

= 5

EXAMPLE: MAP INFERENCE

to the parameter to be estimated (Fisher, 1922)

Sufficient statistic: no other stiatistic calculated from the same sample



SUFFICIENT STATISTIC

Statistic: funtion of the data, in the statistical sense

Example:

Sufficient statistic:

p(D|t, θ) = p(D|t)

Let D be the data set random variable and D the observed data set.

T be random variable representing some function of the data.

T is sufficient if

D ∼ p(x1, x2, . . . , xn|θ).

D = {xi}
n

i=1
, i.i.d., T = E[X], where X ∼ p(x|θ)

t =
1

n

∑n

i=1
xi

t is a realization of T , computed from D.



ANOTHER EXAMPLE

Example: D = {xi}
n

i=1
is i.i.d. sample from Gaussian(µ,σ2)

Find µ and σ

Solution: Gaussian: p(x|µ,σ) = 1
√

2πσ2
e
−

(x−µ)2

2σ2

µML =
1

n

n∑

i=1

xi σ
2

ML =
1

n

n∑

i=1

(xi − µML)
2
.



RELATIONSHIP TO KULLBACK-LEIBLER (KL) DIVERGENCE

The KL divergence between two probability distributions p(x) and q(x) is

Assume now the data is generated according to some p(x|θt).

DKL(p||q) =

∫
∞

−∞

p(x) log
p(x)

q(x)
dx

DKL(p(x|θt)||p(x|θ)) =

∫
∞

−∞

p(x|θt) log
p(x|θt)

p(x|θ)
dx

=

∫
∞

−∞

p(x|θt) log
1

p(x|θ)
dx−

∫
∞

−∞

p(x|θt) log
1

p(x|θt)
dx.

Let’s look at the KL divergence

We estimated it as p(x|θ).

−E [log p(x|θ)]



RELATIONSHIP TO KULLBACK-LEIBLER (KL) DIVERGENCE

when n → ∞.

1

n

n∑

i=1

log p(xi|θ)
a.s.
→ E[log p(x|θ)]

Conclusion:

When n → ∞, ML estimation implies p(x|θML) = p(x|θt)

This usually implies θML = θt



CONDITIONAL DISTRIBUTIONS

Given: a set of observations D = {(xi, yi)}
n

i=1
, xi, yi ∈ R

Assumption: X and Y are random variables and p(y|x) = N (µ = x,σ2)

Objective: find σ



BAYESIAN APPROACH

Idea: consider posterior risk R

R =

∫
F

ℓ(f, f̂) · p(f |D)df

where ℓ(f, f̂) is some loss function.

Assume ℓ(f, f̂) = (f − f̂)2 and find best f̂

∂

∂f̂
R = 2f̂ − 2

∫
F

f · p(f |D)df

= 0



BAYESIAN APPROACH

Solution:

fB =

∫
F

f · p(f |D)df

= E[F |D = D]

Example: D = {2, 5, 9, 5, 4, 8} is an i.i.d. sample from Poisson(λ0), λ ∈ R+.

Assume λ0 is taken from Γ(x|k, θ) with parameters k = 3 and θ = 1.

Estimate λ0.



A NOTE ON OPTIMIZATION

We have looked at these types of optimization

λ̂ = argmax
λ∈(0,∞)

{p(x1, x2, . . . , xn|λ)}

Was there a problem here?

Yes and no. We were lucky that λ̂ was indeed a positive number.

In the future, we might have to be more careful about enforcing constraints.

In previous slides: λ̂ = 1

n

∑n

i=1
xi = 5.5 ∈ (0,∞).

Likelihood p(D|λ)



REVISITING MIXTURES OF DISTRIBUTIONS

Mixture of m = 2 Gaussian distributions:

w1 = 0.75, w2 = 0.25

p(x) =
m∑

i=1

wipi(x)



PARAMETER ESTIMATION FOR MIXTURES OF DISTRIBUTIONS

where θ = (w1, w2, . . . , wm, θ1, θ2, . . . , θm)

p(x|θ) =
m∑

j=1

wjp(x|θj).

Given: a set of observations D = {xi}
n

i=1
, xi ∈ X

Example: Consider a mixture of m = 2 exponential distributions.

p(x|θj) = λje
−λjx, where λj > 0

p(x|λ1,λ2, w1, w2) = w1 · λ1e
−λ1x + w2 · λ2e

−λ2x

where λ1,λ2 > 0, w1, w2 ≥ 0, and w1 = 1− w2

m∑

j=1

wj = 1.wj ≥ 0,



PARAMETER ESTIMATION FOR MIXTURES OF DISTRIBUTIONS

It can be calculated in O(mn) time as a log-likelihood.

p(D|θ) =
n
∏

i=1

p(xi|θ)

=
n
∏

i=1

⎛

⎝

m
∑

j=1

wjp(xi|θj)

⎞

⎠

Likelihood:

p(D|θ) has O(mn) terms.

How can we find θ? Is there a closed-form solution?



IDEA #1

Suppose we know what data point is generated by what mixing component.

That is, D = {(xi, yi)}
n

i=1
is an i.i.d. sample from some distribution p(x, y),

p(D|θ) =
n∏

i=1

p(xi, yi|θ)

=
n∏

i=1

p(xi|yi, θ)p(yi|θ)

=
n∏

i=1

wyi
p(xi|θyi

),

where wj = P (Y = j).

where y ∈ Y = {1, 2, . . . ,m} specifies the mixing component.



IDEA #1

log p(D|θ) =
n∑

i=1

(logwyi
+ log p(xi|θyi

))

=
m∑

j=1

nj logwj +
n∑

i=1

log p(xi|θyi
),

Log-likelihood:

where nj is the number of data points in D generated by the j-th mixing component.

Constrained optimization: Let’s first find w

L(w,α) =
m
∑

j=1

nj logwj + α

⎛

⎝

m
∑

j=1

wj − 1

⎞

⎠

where α is the Lagrange multiplier.



IDEA #1

Set ∂

∂wk
L(w,α) = 0 for every k ∈ Y and ∂

∂α
L(w,α) = 0. Solve it.

To find all θj , we need to get concrete; i.e., p(x|θj) = λje
−λjx.

∂

∂λk

n∑

i=1

log p(xi|λyi
) = 0,

for each k ∈ Y .

wk =
1

n

n∑

i=1

I(yi = k),

It follows that wk = −

nk

α
and α = −n.



IDEA #1

λk =
nk∑n

i=1
I(yi = k) · xi

,

Thus, assuming an exponential distribution we obtain that

for each k ∈ Y .

wk =
1

n

n∑

i=1

I(yi = k)

Recall that

If the mixing component designations y are known,

the parameter estimation is greatly simplified.
Conclusion:



IDEA #2

p(y|D, θ) =
n∏

i=1

p(yi|xi, θ)

=
n∏

i=1

wyi
p(xi|θyi

)∑m
j=1

wjp(xi|θj)

Suppose we know the θ but not the mixing component designations.

We start with the posterior as

and subsequently find the best configuration out of mn possibilities.

ŷi = argmax
yi∈Y

{

wyi
p(xi|θyi

)
∑m

j=1
wjp(xi|θj)

}

Data is i.i.d. so yi’s can be estimated separately. The MAP estimate for yi

Conclusion: if θ is known, “cluster” assignments are simple.



COMBINE THE TWO IDEAS (ITERATIVELY)

1. Assume θ is known, call it θ(0)

2. Compute y
(0) using θ(0) as known

3. Compute θ(1) using y
(0) as known

4. Compute y
(1) using θ(1) as known

5. . . . (until convergence)



CLASSIFICATION EXPECTATION MAXIMIZATION (CEM)

1. Initialize λ
(0)
k and w

(0)
k for ∀k ∈ Y

2. Calculate y
(0)
i = argmax

k∈Y

{

w
(0)
k

p(xi|λ
(0)
k

)
∑

m
j=1 w

(0)
j p(xi|λ

(0)
j )

}

for ∀i ∈ {1, 2, . . . , n}

3. Set t = 0

4. Repeat until convergence

(a) w
(t+1)
k = 1

n

∑n
i=1 I(y

(t)
i = k)

(b) λ
(t+1)
k =

∑n
i=1 I(y(t)

i =k)
∑

n
i=1 I(y(t)

i =k)·xi

(c) y
(t+1)
i = argmax

k∈Y

{

w
(t+1)
k

p(xi|λ
(t+1)
k

)
∑

m
j=1 w

(t+1)
j p(xi|λ

(t+1)
j )

}

(d) t = t+ 1

5. Report λ(t)
k and w

(t)
k for ∀k ∈ Y

Also called “hard EM”.



EXPECTATION-MAXIMIZATION (EM) ALGORITHM

Problems with the CEM formulation:

1. We want to estimate θ

2. We do not necessarily need to compute y

Main idea for the EM algorithm:

1. Take step t and assume θ(t) is known

2. Maximize E[p(D,Y |θ)|D, θ(t)] to calculate θ(t+1)



EXPECTATION-MAXIMIZATION (EM) ALGORITHM

Expected log-likelihood of the complete data over the posterior distribution for
y assuming θ(t) is true:

E[log p(D,Y |θ)|D, θ(t)] =

⎧

⎪

⎨

⎪

⎩

∑

y
log p(D,y|θ)p(y|D, θ(t)) y : discrete

∫

y
log p(D,y|θ)p(y|D, θ(t))dy y : continuous

θ(t+1) = argmax
θ

{

E[log p(D,Y |θ)|D, θ(t)]
}



EXPECTATION-MAXIMIZATION (EM)

1. Initialize λ
(0)
k and w

(0)
k for ∀k ∈ Y

2. Set t = 0

3. Repeat until convergence

(a) pYi
(k|xi, θ

(t)) =
w

(t)
k

p(xi|λ
(t)
k

)
∑

m
j=1 w

(t)
j p(xi|λ

(t)
j )

for ∀(i, k)

(b) w
(t+1)
k = 1

n

∑n
i=1 pYi

(k|xi, θ
(t))

(c) λ
(t+1)
k =

∑n
i=1 pYi

(k|xi,θ
(t))

∑
n
i=1 xipYi

(k|xi,θ(t))

(d) t = t+ 1

4. Report λ(t)
k and w

(t)
k for ∀k ∈ Y



HARD VS. SOFT EM

1. Initialize λ
(0)
k and w

(0)
k for ∀k ∈ Y

2. Set t = 0

3. Repeat until convergence

(a) pYi
(k|xi, θ

(t)) =
w

(t)
k

p(xi|λ
(t)
k

)
∑

m
j=1 w

(t)
j p(xi|λ

(t)
j )

for ∀(i, k)

(b) w
(t+1)
k = 1

n

∑n
i=1 pYi

(k|xi, θ
(t))

(c) λ
(t+1)
k =

∑n
i=1 pYi

(k|xi,θ
(t))

∑
n
i=1 xipYi

(k|xi,θ(t))

(d) t = t+ 1

4. Report λ(t)
k and w

(t)
k for ∀k ∈ Y

1. Initialize λ
(0)
k and w

(0)
k for ∀k ∈ Y

2. Calculate y
(0)
i = argmax

k∈Y

{

w
(0)
k

p(xi|λ
(0)
k

)
∑

m
j=1 w

(0)
j p(xi|λ

(0)
j )

}

for ∀i

3. Set t = 0

4. Repeat until convergence

(a) w
(t+1)
k = 1

n

∑n
i=1 I(y

(t)
i = k)

(b) λ
(t+1)
k =

∑n
i=1 I(y(t)

i =k)
∑

n
i=1 I(y(t)

i =k)·xi

(c) y
(t+1)
i = argmax

k∈Y

{

w
(t+1)
k

p(xi|λ
(t+1)
k

)
∑

m
j=1 w

(t+1)
j p(xi|λ

(t+1)
j )

}

(d) t = t+ 1

5. Report λ(t)
k and w

(t)
k for ∀k ∈ Y



EXPECTATION-MAXIMIZATION (EM) ALGORITHM

E-step: evaluate p(y|D, θ(t))

M-step: θ(t+1) = argmax
θ

{

E[log p(D,Y |θ)|D, θ(t)]
}



HOW DID WE ARRIVE AT THIS SOLUTION?

1. Try to maximize likelihood p(D|θ)

(a) can be difficult even as log-likelihood; e.g., we get log of a sum of
some function of parameters θ that is unfriendly to differentiation

2. Recognize we have some unobserved or “hidden” variables

(a) mixture case: we figured out that there is a “class label” vector y so
we can see the complete data as set of pairs {(xi, yi)}

n

i=1

3. Attempt to maximize the likelihood of complete data p(D,y|θ)

(a) cannot do because vector y is unobserved



HOW DID WE ARRIVE AT THIS SOLUTION?

4. Think of an iterative process and assume we have θ(t) as an approximation
of θML in step t. New goal: find θ(t+1) of the next step (t + 1) that is a
little better than θ(t) from step t.

(a) good news: we can compute the posterior of unobserved data p(y|D, θ(t))
since D and θ(t) are given.

(b) This will become the E-step.

5. To find θ(t+1), try to maximize the expected likelihood of the complete
data E[p(D,Y |θ)|D, θ(t)], where we integrate over p(y|D, θ(t))

(a) this is still hard as we have to work with products instead of sums

6. Try to maximize the expected log-likelihood of the complete data E[log p(D,Y |θ)|D, θ(t)]

(a) good news: we get expressions that can be simplified so we can com-
pute θ(t+1) by maximizing E[log p(D,Y |θ)|D, θ(t)]

(b) This will become the M-step.



HOW DID WE ARRIVE AT THIS SOLUTION?

7. The EM algorithm iterates the E-step with the M-step.

8. Prove that maximizing E[log p(D,Y |θ)|D, θ(t)] maximizes p(D|θ)

(a) good news: it can be done, but it is not obvious so it has to be done.

(b) bad news: we can only prove local maximization as the likelihood
function is not convex.



RECAP OF REASONING

1. Try to maximize likelihood p(D|θ)

2. Recognize we have some unobserved or “hidden” variables

3. Attempt to maximize the likelihood of complete data p(D,y|θ)

4. Think of an iterative process and assume we have θ(t) as an approximation
of θML in step t. New goal: find θ(t+1) of the next step (t + 1) that is a
little better than θ(t) from step t.

5. To find θ(t+1), try to maximize the expected likelihood of the complete
data E[p(D,Y |θ)|D, θ(t)], where we integrate over p(y|D, θ(t))

6. Try to maximize the expected log-likelihood of the complete data E[log p(D,Y |θ)|D, θ(t)]

7. The EM algorithm iterates the E-step with the M-step.

8. Prove that maximizing E[log p(D,Y |θ)|D, θ(t)] maximizes p(D|θ)



WHY EM WORKS

log p(D|θ(t+1))− log p(D|θ(t)) = log
p(D|θ(t+1))

p(D|θ(t))

= log

∫
y

p(D,y|θ(t+1))

p(D|θ(t))
dy

= log

∫
y

p(D,y|θ(t+1))

p(D,y|θ(t))
p(y|D, θ(t))dy

≥

∫
y

log
p(D,y|θ(t+1))

p(D,y|θ(t))
p(y|D, θ(t))dy

= E[log p(D,Y|θ(t+1))|D, θ(t)]− E[log p(D,Y|θ(t))|D, θ(t)]



log p(D|θ(t+1))− log p(D|θ(t)) = log
p(D|θ(t+1))

p(D|θ(t))

= log

∫
y

p(D,y|θ(t+1))

p(D|θ(t))
dy

= log

∫
y

p(D,y|θ(t+1))

p(D,y|θ(t))
p(y|D, θ(t))dy

≥

∫
y

log
p(D,y|θ(t+1))

p(D,y|θ(t))
p(y|D, θ(t))dy

= E[log p(D,Y|θ(t+1))|D, θ(t)]− E[log p(D,Y|θ(t))|D, θ(t)]

Marginalize

WHY EM WORKS



log p(D|θ(t+1))− log p(D|θ(t)) = log
p(D|θ(t+1))

p(D|θ(t))

= log

∫
y

p(D,y|θ(t+1))

p(D|θ(t))
dy

= log

∫
y

p(D,y|θ(t+1))

p(D,y|θ(t))
p(y|D, θ(t))dy

≥

∫
y

log
p(D,y|θ(t+1))

p(D,y|θ(t))
p(y|D, θ(t))dy

= E[log p(D,Y|θ(t+1))|D, θ(t)]− E[log p(D,Y|θ(t))|D, θ(t)]

Apply product rule

WHY EM WORKS



log p(D|θ(t+1))− log p(D|θ(t)) = log
p(D|θ(t+1))

p(D|θ(t))

= log

∫
y

p(D,y|θ(t+1))

p(D|θ(t))
dy

= log

∫
y

p(D,y|θ(t+1))

p(D,y|θ(t))
p(y|D, θ(t))dy

≥

∫
y

log
p(D,y|θ(t+1))

p(D,y|θ(t))
p(y|D, θ(t))dy

= E[log p(D,Y|θ(t+1))|D, θ(t)]− E[log p(D,Y|θ(t))|D, θ(t)]

Apply Jensen’s inequality

Jensen’s inequality: ϕ (E [X]) ≤ E [ϕ (X)], where ϕ is a convex function. log(·) above is a concave function.

WHY EM WORKS



log p(D|θ(t+1))− log p(D|θ(t)) = log
p(D|θ(t+1))

p(D|θ(t))

= log

∫
y

p(D,y|θ(t+1))

p(D|θ(t))
dy

= log

∫
y

p(D,y|θ(t+1))

p(D,y|θ(t))
p(y|D, θ(t))dy

≥

∫
y

log
p(D,y|θ(t+1))

p(D,y|θ(t))
p(y|D, θ(t))dy

= E[log p(D,Y |θ(t+1))|D, θ(t)]− E[log p(D,Y |θ(t))|D, θ(t)]Rewrite

log p(D|θ(t+1)) ≥ log p(D|θ(t))+
︷ ︸︸ ︷

E[log p(D,Y |θ(t+1))|D, θ(t)]− E[log p(D,Y |θ(t))|D, θ(t)]

So,

WHY EM WORKS



log p(D|θ(t+1))− log p(D|θ(t)) = log
p(D|θ(t+1))

p(D|θ(t))

= log

∫
y

p(D,y|θ(t+1))

p(D|θ(t))
dy

= log

∫
y

p(D,y|θ(t+1))

p(D,y|θ(t))
p(y|D, θ(t))dy

≥

∫
y

log
p(D,y|θ(t+1))

p(D,y|θ(t))
p(y|D, θ(t))dy

= E[log p(D,Y |θ(t+1))|D, θ(t)]− E[log p(D,Y |θ(t))|D, θ(t)]Rewrite

log p(D|θ(t+1)) ≥ log p(D|θ(t))+
︷ ︸︸ ︷

E[log p(D,Y |θ(t+1))|D, θ(t)]− E[log p(D,Y |θ(t))|D, θ(t)]

So, Non-negative

WHY EM WORKS



BISHOP’S OPENING

First paragraph of Chapter 9, Bishop 2006



K-MEANS CLUSTERING

1. Partitional approach to clustering

2. Each cluster is associated with a centroid

3. Each point is assigned to the cluster with closest centroid

4. The number of clusters, K, must be specified



K-MEANS CLUSTERING

Algorithm 1 K-means clutering.

Input:
Data: D = {xi}

n

i=1
, X = Rd

Termination criteria; e.g., the maximum number of steps

Initialization:
Select K points c1, c2, . . . , cK ∈ Rd as initial centroids

Training:
repeat until centroids don’t change

Form K clusters by assigning each point to the closest centroid
Recompute each centroid as mean of points in the cluster

end

Output:
Centroids c1, c2, . . . , cK
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EXAMPLE: K-MEANS CLUSTERING
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EXAMPLE: K-MEANS CLUSTERING
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1.41

EXAMPLE: K-MEANS CLUSTERING
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EXAMPLE: K-MEANS CLUSTERING
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5.39

EXAMPLE: K-MEANS CLUSTERING
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Now: calculate all distances...

          and color all data points.

EXAMPLE: K-MEANS CLUSTERING
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Now: move cluster centers to be the 
average of data points.

c1 = 1/2 * (4 5) + 1/2 * (8 3) = (6 4)

c2 = 1/5 * (1 3) + 1/5 * (2 4) +

        1/5 * (3 3) + 1/5 * (6 2) +

        1/5 * (7 1) = (3.8 2.6)

EXAMPLE: K-MEANS CLUSTERING
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Now: start next iteration

          repeat distance calculation.

2.28

2.00

EXAMPLE: K-MEANS CLUSTERING



1 32 76 84 5

1

2

3

4

5

(7, 1)

(8, 3)

(6, 2)

(4, 5)

(3, 3)

(2, 4)

(1, 3)

Ä

Ä

(6, 4)

(3.8, 2.6)

Now: calculate all other distances...

EXAMPLE: K-MEANS CLUSTERING
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Now: move cluster centers to be the 
average of data points.

c1 = 1/4 * (4 5) + 1/4 * (8 3) +

        1/4 * (6 2) + 1/4 * (7 1) = (5.67 2.67)

c2 = 1/3 * (1 3) + 1/3 * (2 4) +

        1/3 * (3 3) = (2.00  3.33)

EXAMPLE: K-MEANS CLUSTERING
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Now: start next iteration

          calculate distances again...

2.60
2.87

EXAMPLE: K-MEANS CLUSTERING
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Now: move cluster centers to be the 
average of data points.

c1 = 1/3 * (6 2) + 1/3 * (8 3) +

       1/3 * (7 1) = (7 2)

c2 = 1/4 * (1 3) + 1/4 * (2 4) +

       1/4 * (3 3) + 1/4 * (4 5) =  (2.5  3.75)

EXAMPLE: K-MEANS CLUSTERING
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Now: if we calculate all distances, no data 
points will change color.

This means, we can stop!

EXAMPLE: K-MEANS CLUSTERING


