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TWO WAYS OF AVERAGING



STATIC STRUCTURE
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WHY SHOULD IT WORK?



BAGGING



RANDOM FORESTS



Idea: Combine “weak” models to create “strong” models.

Boosting by filtering

Three approaches:

Methodologies that answer theoretical questions (PAC learning).

Boosting by subsampling or reweighting

Models trained sequentially on different distributions or problems.

BOOSTING

Functional gradient boosting



BOOSTING BY FILTERING
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ADABOOST



GRADIENT BOOSTING: INTUITION

Objective: L = 1

n

∑n

i=1
(yi − f(xi))2

Idea:

◦ prediction f(xi) is imperfect

◦ can we improve it by learning g(xi) = yi − f(xi)

◦ we want to predict the residual yi − f(xi)

f (0)(x) = argmin
c∈R

∑n

i=1(yi − c)2

Incorporate into boosting:

Output: f (T )(x)

←− minimize mean squared error

f (t)(x) = f (t−1)(x) + γ(t)g(t)(x)

γ(t) = argmin
γ∈R

∑n
i=1(yi − f (t−1)(xi)− γg(t)(xi))2

g(t)(x) = argmin
h∈F

∑n

i=1(yi − f (t−1)(xi)− h(xi))2where

t = 1 . . . T

needed for more complex loss functions

←
−



WHY IS IT GRADIENT BOOSTING

Objective: L = 1

n

∑n

i=1
(yi − f(xi))2

Differentiate:

−

∂L

∂f(xi)
=

2

n
(yi − f(xi))

=
2

n
g(xi) ←− residual

Generalize:

◦ L can be any differentiable loss function, ideally convex

◦ we can find the gradient ∇L to optimize the “generalized residual”

◦ we can also find Hessian of L to improve optimization

◦ good idea to regularize



GRADIENT BOOSTING: XGBOOST

Convex loss: L(t) =
∑n

i=1

(

!(yi, f (t−1)(xi) + g(t)(xi))
)

+regularizer(g(t)(x))

Second order approximation:

L(t)
≈

n∑

i=1

[!(yi, f
(t−1)(xi)) + gradient · g(t)(xi)+

1

2
·Hessian ·g(t)2(xi)]+ regularizer

Chen & Guestrin. XGBoost: a scalable tree boosting system. KDD, 2016.

Details:

◦ boost trees

◦ improved splitting function

◦ many speedups

◦ added shrinkage for regularization



EXPERIMENT: BAGGING
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EXPERIMENT: BAGGING



EXPERIMENT: BAGGING



EXPERIMENT: BAGGING
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PROBABILISTIC GENERATIVE MIXTURE MODELS



MIXTURE OF EXPERTS


