

COMMITTEE MACHINES

CS6140

Predrag Radivojac KHOURY COLLEGE OF COMPUTER SCIENCES NORTHEASTERN UNIVERSITY

Fall 2024

MOTIVATION

Given: a set of observations $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n, x_i \in \mathcal{X}, y_i \in \mathcal{Y}$ **Objective:** learn the posterior $p(y|x, \mathcal{D})$

Optimal Bayes Model:

$$p(y|x, \mathcal{D}) = \sum_{f \in \mathcal{F}} p(y|x, \mathcal{D}, f) p(f|x, \mathcal{D})$$
 Finite \mathcal{F}

MOTIVATION

Given: a set of observations $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n, x_i \in \mathcal{X}, y_i \in \mathcal{Y}$ **Objective:** learn the posterior $p(y|x, \mathcal{D})$

Optimal Bayes Model:

$$p(y|x, \mathcal{D}) = \sum_{f \in \mathcal{F}} p(y|x, \mathcal{D}, f) p(f|x, \mathcal{D})$$
 Finite \mathcal{F}

Idea:

Don't just train a single model, train multiple models.

Average the outputs in some way.

MOTIVATION

Given: a set of observations $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n, x_i \in \mathcal{X}, y_i \in \mathcal{Y}$ **Objective:** learn $s(x|\mathcal{D})$ to approximate the posterior $p(y|x, \mathcal{D})$

The problem of local optima with rich hypothesis spaces:

 \circ every time we train, we find a different local optimium; i.e. $s'(x|\mathcal{D})$

$$s(x) = \sum_{s' \in \mathcal{S}_{\text{strong}}} w_{(s',x)} s'(x|\mathcal{D})$$
 Finite $\mathcal{S}_{\text{strong}}$

The problem of weak hypothesis space $\mathcal{S}_{\text{weak}}$:

 \circ we can only find a weak learner s'(x)

$$s(x) = \sum_{s' \in \mathcal{S}_{\text{weak}}} w_{(s',x)} s'(x|\mathcal{D})$$
 Finite $\mathcal{S}_{\text{weak}}$

TWO WAYS OF AVERAGING

Static structures:

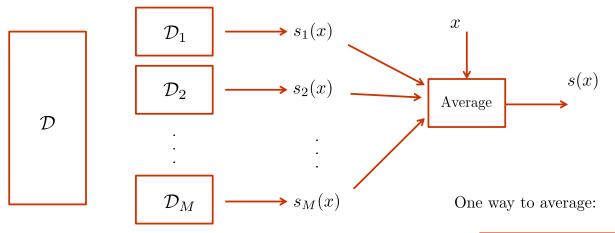
pre-trained models, applied independently of xexamples: bagging, boosting, random forests

Dynamic structures:

pre-trained models, applied depending on xexamples: mixtures of experts

Haykin. Neural networks, 1999.

STATIC STRUCTURE



$$s(x) = \frac{1}{M} \sum_{i=1}^{M} s_i(x)$$

WHY SHOULD IT WORK?

Given: $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n, x_i \in \mathcal{X}, y_i \in \mathcal{Y}$

Idea:

Let $f_A(x) = \mathbb{E}[f(x|D)]$ be an "averaged" model. Then, for a fixed x

$$\mathbb{E}[(y - f(x|D))^2] = y^2 - 2y\mathbb{E}[f(x|D)] + \mathbb{E}[f^2(x|D)]$$
$$\mathbb{E}[(y - f(x|D))^2] \ge (y - f_A(x))^2$$

Jensen's inequality $\mathbb{E}[Z^2] \ge \mathbb{E}^2[Z]$

BAGGING

Bagging: Bootstrap aggregating

Approach:

- \circ create *B* bootstrap samples \mathcal{D}_b , where b = 1, 2, ..., B
- \circ train a model $f_b(x)$ for each \mathcal{D}_b
- let the final decision f(x) be a majority vote by $\{f_1(x), \ldots, f_B(x)\}$; technically, $f(x) = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \sum_{b=1}^{B} I(f_b(x) = y)$

Averaging scenarios:

- \circ use majority vote (original idea by Leo Breiman)
- \circ average soft predictions, then threshold the model
- \circ create soft predictions by averaging thresholded models $f_b(x)$

RANDOM FORESTS

Idea. Construct an ensemble of trees, 100 to 1000.

In practice:

Randomize dataset

 \circ bootstrap the dataset

Randomize features upon which we split \circ at each node, keep e.g. $F = \log_2 d + 1$ features, then split

Breiman. Random forests. Mach Learn, 2001.

BOOSTING

Idea: Combine "weak" models to create "strong" models.

Methodologies that answer theoretical questions (PAC learning).

Models trained sequentially on different distributions or problems.

Three approaches:

Boosting by filtering

Boosting by subsampling or reweighting

Functional gradient boosting

BOOSTING BY FILTERING

Idea: Construct a committee of 3 experts.

- 1) Expert f_1 is trained on n_1 examples picked randomly
- 2) Expert f_2 is trained as follows
 - 2.1. Flip a coin

Heads \rightarrow pass examples through f_1 until one is misclassified

include that example in training set for f_2

Tails \rightarrow pass examples through f_1 until one is correctly classified

include that example in training set for f_2

2.2. Continue until n_1 examples are collected, then train f_2

BOOSTING BY FILTERING

Idea: Construct a committee of 3 experts.

3) Expert f_3 is trained as follows

3.1. Select n_1 examples by keeping those where f_1 and f_2 disagree

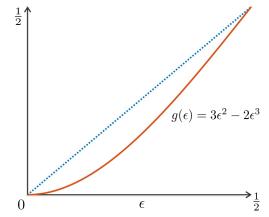
Data distributions are different for training f_1 , f_2 , and f_3

The final prediction obtained by majority voting.

It can be proved that if f_1, f_2, f_3 all have error rate of $\epsilon < \frac{1}{2}$

then the committee machine has error $g(\epsilon) = 3\epsilon^2 - 2\epsilon^3$

Idea: Repeat the process recursively.



Algorithm 1 AdaBoost algorithm. Typically, T = 100.

Input:

 $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$, where $x_i \in \mathcal{X}$ and $y_i \in \mathcal{Y}$. Weak learning algorithm *a* that maps a data set to \mathcal{F} Positive integer *T*

Initialization:

Initialize sampling distribution $p^{(1)}(i) = \frac{1}{n}$ for $\forall i \in \{1, 2, ..., n\}$

Loop:

for
$$t = 1$$
 to T
Sample data set $\mathcal{D}^{(t)}$ from \mathcal{D} according to $p^{(t)}(i)$
Learn model $f_t(x)$ from $\mathcal{D}^{(t)}$
Calculate error ϵ_t on training data \mathcal{D} as $\epsilon_t = \sum_{i:f_t(x_i) \neq y_i} p^{(t)}(i)$
Set $\beta_t = \frac{\epsilon_t}{1-\epsilon_t}$
Set $w_t = \ln \frac{1}{\beta_t}$
Set $p^{(t+1)}(i) = \frac{p^{(t)}(i)}{Z} \cdot \begin{cases} \beta_t & \text{if } f_t(x_i) = y_i \\ 1 & \text{otherwise} \end{cases}$, where Z is a normalizer
end

Output:

$$f(x) = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \left(\sum_{t=1}^{T} w_t \cdot I(f_t(x) = y) \right)$$

AdaBoost

Theorem. Assume $\epsilon_t < \frac{1}{2}$ and let $\gamma_t = \frac{1}{2} - \epsilon_t$. Then the following bound holds

$$\frac{1}{n} |\{i: f(x_i) \neq y_i\}| \le \prod_{t=1}^T \sqrt{1 - 4\gamma_t^2} \le e^{-2\sum_{t=1}^T \gamma_t^2}$$

In practice:

Training error $\rightarrow 0$, but the test error continues to decrease

AdaBoost theory shows relationship to SVMs

Minimizing ϵ_t is equivalent to minimizing $E = \sum_{i=1}^n e^{-y_i f(x_i)}$

GRADIENT BOOSTING: INTUITION

Objective:
$$L = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Idea:

 \circ prediction $f(x_i)$ is imperfect

- \circ can we improve it by learning $g(x_i) = y_i f(x_i)$
- \circ we want to predict the residual $y_i f(x_i)$

Incorporate into boosting:

$$f^{(0)}(x) = \operatorname*{arg\,min}_{c \in \mathbb{R}} \sum_{i=1}^{n} (y_i - c)^2$$

 $t = 1 \dots T$

$$f^{(t)}(x) = f^{(t-1)}(x) + \gamma^{(t)}g^{(t)}(x)$$
 where

Output: $f^{(T)}(x)$

$$g^{(t)}(x) = \underset{h \in \mathcal{F}}{\operatorname{arg\,min}} \sum_{i=1}^{n} (y_i - f^{(t-1)}(x_i) - h(x_i))^2$$
$$\gamma^{(t)} = \underset{\gamma \in \mathbb{R}}{\operatorname{arg\,min}} \sum_{i=1}^{n} (y_i - f^{(t-1)}(x_i) - \gamma g^{(t)}(x_i))^2$$
$$\uparrow_{\text{needed for more complex loss functions}}$$

 \leftarrow minimize mean squared error

WHY IS IT GRADIENT BOOSTING

Objective:
$$L = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Differentiate:

$$-\frac{\partial L}{\partial f(x_i)} = \frac{2}{n}(y_i - f(x_i))$$
$$= \frac{2}{n}g(x_i) \qquad \longleftarrow \text{ residual}$$

Generalize:

- $\circ L$ can be any differentiable loss function, ideally convex
- \circ we can find the gradient ∇L to optimize the "generalized residual"
- \circ we can also find Hessian of L to improve optimization
- \circ good idea to regularize

GRADIENT BOOSTING: XGBOOST

Convex loss: $L^{(t)} = \sum_{i=1}^{n} \left(\ell(y_i, f^{(t-1)}(x_i) + g^{(t)}(x_i)) \right) + \operatorname{regularizer}(g^{(t)}(x))$

Second order approximation:

$$L^{(t)} \approx \sum_{i=1}^{n} \left[\ell(u_i, f^{(t-1)}(x_i)) + \text{gradient} \cdot g^{(t)}(x_i) + \frac{1}{2} \cdot \text{Hessian} \cdot g^{(t)2}(x_i) \right] + \text{regularizer}$$

Details:

 \circ boost trees

 \circ improved splitting function

 \circ many speedups

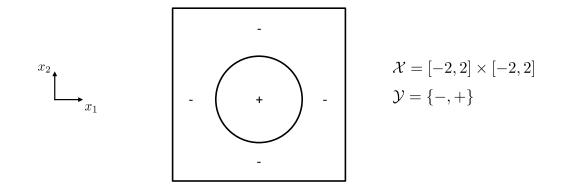
 \circ added shrinkage for regularization

Chen & Guestrin. XGBoost: a scalable tree boosting system. KDD, 2016.

Data set:

- \circ binary classification
- \circ a unit-radius circle within a 4×4 square
- \circ 200 examples, added a small amount of noise

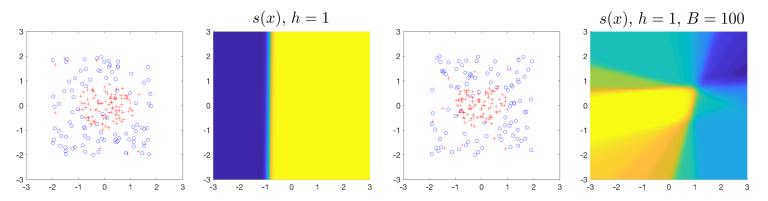
- \circ neural networks
- \circ regression trees
- \circ w/ and w/o bagging



Data set:

- \circ a unit-radius circle within a 4×4 square
- $\circ n_{+} = 100, n_{-} = 100$
- \circ 5% error in positives, 10% error in negatives

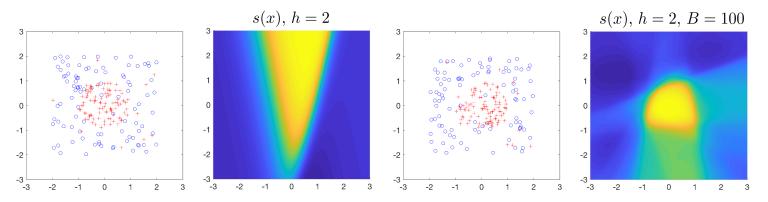
- \circ single-output two-layer neural networks
- \circ h hidden neurons, tanh(x) activation
- \circ RPROP optimization



Data set:

- \circ a unit-radius circle within a 4×4 square
- $\circ n_{+} = 100, n_{-} = 100$
- \circ 5% error in positives, 10% error in negatives

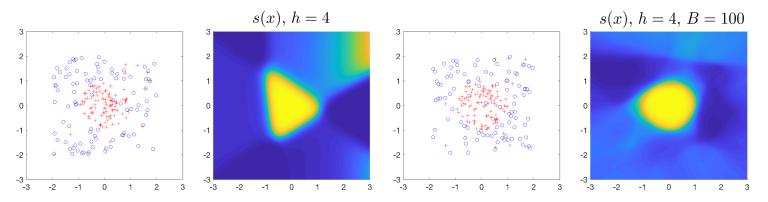
- \circ single-output two-layer neural networks
- \circ h hidden neurons, tanh(x) activation
- \circ RPROP optimization



Data set:

- \circ a unit-radius circle within a 4×4 square
- $\circ n_{+} = 100, n_{-} = 100$
- \circ 5% error in positives, 10% error in negatives

- \circ single-output two-layer neural networks
- \circ h hidden neurons, tanh(x) activation
- \circ RPROP optimization



Data set:

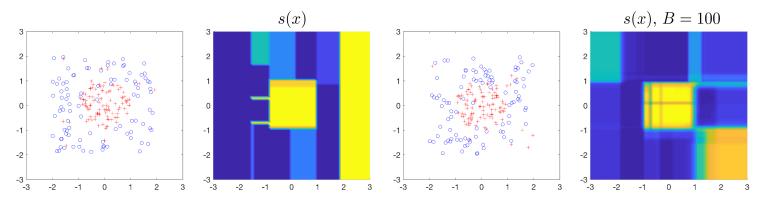
 \circ a unit-radius circle within a 4×4 square

 $\circ n_{+} = 100, n_{-} = 100$

 \circ 5% error in positives, 10% error in negatives

Models:

 \circ regression trees



PROBABILISTIC GENERATIVE MIXTURE MODELS

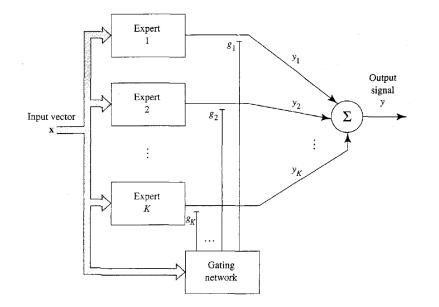
$\mathbf{Model:}$

- x drawn according to p(x)
- \circ pick model k to generate a target according to p(k|x)
- \circ generate target using a linear model with additive zero-mean error

e.g.,
$$Y = \sum w_{kj} X_j + \epsilon_k$$
, where $\epsilon_k \sim \mathcal{N}(0, \sigma_k^2)$

$$p(y|x,\theta) = \sum_{k=1}^{K} p(y|x,w_k) p(k|x)$$

MIXTURE OF EXPERTS



Haykin. Neural networks, 1999.