
Chapter 7

Generalized Linear Models

In previous sections, we saw that the statistical framework provided valuable insights into
linear regression, especially with respect to explicitly stating most of the assumptions in the
system. These assumptions were necessary to rigorously estimate parameters of the model,
which could then be subsequently used for prediction on previously unseen data. In this
section, we introduce generalized linear models (GLMs) which extend ordinary least-squares
regression beyond Gaussian probability distributions and linear dependencies between the
features and the target. This generalization will also introduce you to a broader range of
loss functions, called Bregman divergences.

We shall first revisit the main points of the ordinary least-squares regression. There,
we assumed that a set of i.i.d. data points with their targets D = {(xi, yi)}n

i=1
were drawn

according to some distribution p(x, y). We also assumed that an underlying relationship
between the features and the target was linear; i.e.,

Y =
dÿ

j=0

ÊjXj + Á,

where Ê was a set of unknown weights and Á was a zero-mean normally distributed random
variable with variance ‡2. To simplify generalization, we will slightly reformulate this model.
In particular, it will be useful to separate the underlying linear relationship between the
features and the target from the fact that Y was normally distributed. That is, we will
write that

1. E[y|x] = Ê€x

2. p(y|x) = N (µ, ‡2)

with µ = Ê€x connecting the two expressions. This way of formulating linear regression
will allow us (i) to generalize the framework to non-linear relationships between the features
and the target as well as (ii) to use the error distributions other than Gaussian.

7.1 Exponential transfer and the Poisson distribution
We will start first with an example of a GLM, before moving on to the general class and
general definition. Assume that data points correspond to cities in the world—described
by some numerical features—and that the target variable is the number of sunny days
observed in a particular year. The target variable y may look like a Poisson distribution,
given features x. It would be more natural, therefore, to model p(y|x) = Poisson(⁄), where
⁄ > 0 is the parameter (mean) of the Poisson distribution: E[y|x] = ⁄. However, because

101



⁄ œ R+, it would not be appropriate to model ⁄ with Ê€x œ R. Rather, we would like
to transfer our linear prediction with some function f to adjusts the range of the linear
combination of features to the domain of the parameters of the probability distribution.

We can do so by introducing an exponential transfer for this Poisson distribution, and
more generally, any invertible transfer function f . If we can instead estimate Ê such that ⁄ =
eÊ€

x, then we can guarantee our estimates are in the correct range. Alternatively, one can
consider that we are learning a linear weighting of features to learn a transformed parameter,
log(⁄) = Ê€x. This simple modification is why these models are called generalized linear
models, because the key component is a still a linear weighting. We formalize the types of
distributions and transfers that can be considered in the below sections, but first finish o�
this example with Poisson regression to provide a concrete example.

To establish the GLM model for Poisson regression, we assume (1) an exponential trans-
fer between the expectation of the target and linear combination of features, and (2) the
Poisson distribution for the target variable.

1. E[y|x] = exp
!
Ê€x

"
or log(E[y|x]) = Ê€x

2. p(y|x) = Poisson(⁄)

Exploiting the fact that E [y|x] = ⁄, we connect the two formulas using ⁄ = eÊ€
x. The

resulting probability distribution is

p(y|x) = eÊ€
xy

· e≠e
Ê€

x

y!

for any y œ N.
We can use maximum likelihood estimation to find the parameters of the regression

model. The log-likelihood function has the form

ll(w) =
nÿ

i=1

lli(w)

lli(w) = w€xiyi ≠ ew
€

xi ≠ ln yi!

Our goal now is to maximize the log-likelihood function. It is easy to see that Òll(w) = 0
does not have a closed-form solution. Therefore, unlike in ordinary least-squares regression,
we will have to use gradient descent. We could choose to use first-order or second-order
gradient descent, and batch or stochastic gradient descent. The key step in any of these is
to first compute the gradient for one example. We start by deriving the partial derivative
of the log-likelihood

ˆlli(w)
ˆwj

= xijyi ≠ ew
€

xixij

= xij

1
yi ≠ ew

€
xi

2
.

The gradient for one sample is

Òlli(w) = xi · (yi ≠ pi)
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where pi = ew
€

xi is the prediction. Notice that yi ≠ pi corresponds to a prediction error,
for the ith example. The batch gradient is

≠Òll(w) =
nÿ

i=1

Òlli(w)

=
nÿ

i=1

xi (yi ≠ pi) (7.1)

= X€ (y ≠ p)

where p is a vector with elements pi = ew
€

xi and p ≠ y is an error vector.
Commonly, one would now just do stochastic or batch gradient descent. For stochastic

gradient descent, each step consists of using the gradient for one example and for batch gra-
dient descent, each step consists of using the gradient for all examples. We can additionally
consider the Hessian matrix, both to evaluate the properties of the stationary points as well
as to allow for second-order gradient descent—though it is likely too expensive if d is large.
The second partial derivative of the log-likelihood function for one example is

ˆ2lli(w)
ˆwjˆwk

= ≠xijew
€

xixik

= ≠xijpixik

with
ˆ2ll(w)
ˆwjˆwk

=
nÿ

i=1

ˆ2lli(w)
ˆwjˆwk

.

For P an n ◊ n diagonal matrix with pi on the diagonal, the Hessian matrix is therefore

Hll(w) = ≠X€PX. (7.2)

This matrix is negative definite if X is not low-rank, which would mean there is only one
stationary point and that it is the global maximum. In fact, we know that the objective
for Poisson regression is concave, even if X is not full rank, and so all stationary points are
global maxima.

7.2 Exponential family distributions
In the previous section, we used a specific example to illustrate how to generalize beyond
Gaussian distributions. The approach more generally extends to any exponential family
distribution. For simplicity, here we focus on the natural exponential family, which is
su�cient for most generalized linear models. The natural exponential family is a class of
probability distributions with the following form

p(x|◊) = exp (◊x ≠ a(◊) + b(x))

where ◊ œ R is the parameter to the distribution, a : R æ R is a log-normalizer function
and b : R æ R is a function of only x that will typically be ignored in our optimization
because it is not a function of ◊. Many of the often encountered (families of) distributions
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are members of the exponential family; e.g. exponential, Gaussian, Gamma, Poisson, or the
binomial distributions. Therefore, it is useful to generically study the exponential family to
better understand commonalities and di�erences between individual member functions.

Example 17: The Poisson distribution can be expressed as

p(x|⁄) = exp (x log ⁄ ≠ ⁄ ≠ log x!) ,

where ⁄ œ R+ and X = N0. Thus, ◊ = log ⁄, a(◊) = e◊, and b(x) = ≠ log x!. ⇤
Now let us get some further insight into the properties of the exponential family param-

eters and why this class is convenient for estimation. The function a(◊) is typically called
the log-partitioning function or simply a log-normalizer. It is called this because

a(◊) = log
ˆ

X

exp (◊x + b(x)) dx

and so plays the role of ensuring that we have a valid density:
´

X
p(x)dx = 1. Importantly,

for many common GLMs, the derivative of a corresponds to the inverse of the link function.
For example, for Poisson regression, the link function g(◊) = log(◊), and the derivative of
a is e◊, which is the inverse of g. Therefore, as we discuss below, the log-normalizer for
an exponential family informs what link g should be used (or correspondingly the transfer
f = g≠1).

The properties of this log-normalizer are also key for estimation of generalized linear
models. It can be derived that

ˆa(◊)
ˆ◊

= E [X]

ˆ2a(◊)
ˆ◊2

= V[X]

7.3 Formalizing generalized linear models
We shall now formalize the generalized linear models. The two key components of GLMs
can be expressed as

1. E[y|x] = f(Ê€x) or g(E[y|x]) = Ê€x where g = f≠1

2. p(y|x) is an Exponential Family distribution

The function f is called the transfer function and g is called the link function. For Poisson
regression, f is the exponential function, and as we shall see for logistic regression, f is
the sigmoid function. The transfer function adjusts the range of Ê€x to the domain of Y ;
because of this relationship, link functions are usually not selected independently of the dis-
tribution for Y . The generalization to the exponential family from the Gaussian distribution
used in ordinary least-squares regression, allows us to model a much wider range of target
functions. GLMs include three widely used models, linear regression, Poisson regression
and logistic regression, which we will talk about in the next chapter about classification.

To relate these more clearly to exponential family distributions, we have to consider
conditional distributions. Each p(y|x) is an exponential family distribution, with parameter
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◊ = x€w. When learning w—by maximizing likelihood—we are learning the parameter ◊i

for each sample (xi, yi). The general log-likelihood is

ll(w) = log
nŸ

i=1

e◊iyi≠a(◊)+b(yi)

=
ÿ

i

(◊iyi ≠ a(◊) + b(yi))

=
ÿ

i

lli(w)

with gradients

ˆlli(w)
ˆwj

= ˆ◊i

ˆwj

yi ≠
ˆa(◊i)
ˆwj

= ˆ◊i

ˆwj

yi ≠
ˆa(◊i)

ˆ◊i

ˆ◊i

ˆwj

=
3

yi ≠
ˆa(◊i)

ˆ◊i

4
ˆ◊i

ˆwj

.

As was clear for Poisson regression, there is no guarantee of a closed-form solution for
w. Therefore, GLM formulations usually use iterative techniques such as gradient descent.
Hence, a single mechanism can be used for a wide range of link functions and probability
distributions, using these above gradients.

This update can be made more concrete, using the most common setting for GLMs.
Importantly, this setting only requires knowledge of the transfer function f , without explic-
itly needing to know the log-normalizer a. This simplification arises from the connection
between the transfer f and the log-normalizer a alluded to above. We have discussed that
the transfer function f is chosen to reflect the range of the output variable y. However, the
choice should have other properties as well. In particular, we would like to ensure that the
g provides a smooth, concave log-likelihood, to simplify optimization. Usefully, the param-
eter a of the exponential family distribution provides us with just such a choice: f = Òa.
Because ˆ◊i

ˆwj
= xij for ◊i = x€

i
w, we get that

ˆlli(w)
ˆwj

=
3

yi ≠
ˆa(◊i)

ˆ◊i

4
ˆ◊i

ˆwj

= (yi ≠ f(◊i)) xij

=
1
yi ≠ f(x€

i w)
2

xij

Therefore, given the appropriate transfer f for the desired exponential family distribution,
the stochastic gradient descent update is simply

wt+1 = wt ≠ ÷t

1
yi ≠ f(x€

i wt)
2

xi

and the batch gradient descent update is

wt+1 = wt ≠ ÷t

nÿ

i=1

1
yi ≠ f(x€

i wt)
2

xi

= wt ≠ ÷tX€ (y ≠ p)
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where pi = f(x€

i
wt). To examine the Hessian, the second partial derivative of the log

likelihood function for one example is

ˆ2lli(w)
ˆwjˆwk

= ≠xij

ˆf(◊i)
ˆ◊i

xik.

For D an n ◊ n diagonal matrix with ˆf(◊i)

ˆ◊i
on the diagonal, the Hessian matrix is therefore

Hll(w) = ≠X€DX. (7.3)

As in Poisson regression, this matrix is guaranteed to be negative semi-definite, and further
negative definite if X is not low-rank.

Remark: The common setting of f = Òa for GLMs has a connection to widely used
objectives called Bregman divergences. These divergences are written as Da(ŷ||y), indicating
the di�erence between ŷ and y, where the divergence is parametrized by a. The minimization
of this Bregman divergence corresponds to the minimization of the negative log-likelihood
of the corresponding natural exponential family:

argmin
◊

Da(x||g(◊)) = argmin
◊

≠ ln p(x|◊).

See [18, Section 2.2] and [1] for more details about this relationship.
Note that the chosen link does not necessarily have to correspond to the derivative of

a. Rather, this provides a mechanism for ensuring a nice loss function, since Bregman
divergences have nice properties, including being convex in the first argument. However,
this does not mean that any other link will necessarily result in an undesirable loss function.
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