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Abstract: Enhancing mobile robots with the ability to follow language instruc-
tions will improve navigation efficiency in previously unseen environments. How-
ever, state-of-the-art (SOTA) vision-and-language navigation (VLN) methods are
mainly evaluated in simulation, neglecting the complex real world. Directly trans-
ferring SOTA navigation policies learned in simulation to the real world is chal-
lenging due to the visual domain gap and the absence of prior knowledge about
unseen environments. In this work, we propose a novel navigation framework to
address the VLN task in the real world. Utilizing the powerful foundation mod-
els, the proposed framework includes four key components: (1) a large language
models (LLMs) based instruction parser that converts a language instruction into a
sequence of pre-defined macro-action descriptions, (2) an online visual-language
mapper that builds a spatial and semantic map of the unseen environment using
large visual-language models (VLMs), (3) a language indexing-based localizer
that grounds each macro-action description to a waypoint location on the map,
and (4) a DD-PPO-based local controller that predicts the action. Evaluated on
an Interbotix LoCoBot WX250 in an unseen lab environment, without any fine-
tuning, our pipeline significantly outperforms the SOTA VLN baseline in the real
world.

Keywords: Vision-and-language Navigation, Online Visual-language Mapping,
Foundation Models

1 Introduction

Figure 1: Vision-and-language Navigation in Continuous Environments

Humans navigate efficiently in familiar environ-
ments by constructing maps containing both spatial
and visual contexts (e.g., landmarks) [1, 2]. For ex-
ample, humans can easily imagine the path to the
coffee machine from anywhere in their houses be-
cause they maintain not only a spatial but also a se-
mantic understanding of the environment [2]. How-
ever, in unfamiliar environments, instructions be-
come necessary for efficient navigation. Therefore,
enhancing mobile robots with the ability to follow
instructions in natural language will improve navi-
gation efficiently in unseen scenarios, making robots more useful in daily life.

The vision-and-language navigation (VLN) task [3] aims to benchmark this challenge. Depicted
in Figure 1, a mobile robot uses visual inputs (i.e., RGB-D) to navigate in unseen environments
by following unstructured natural language instructions. In the initial VLN task, the mobile robot
teleports between the nodes on a pre-collected navigation graph of the environment. However, this
setting is impractical for real-world robot applications. To address this limitation, [4, 5] further
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Figure 2: Framework Overview

extends the VLN to continuous environments (VLN-CE) where the robot moves continuously in
physical space (i.e. SE(2)) by either taking primitive discrete actions [4] or by controlling the linear
and angular velocities [6]. Despite significant progress is made in VLN-CE, most recent methods
[7, 8, 9, 10, 11, 4] are primarily evaluated in simulation, ignoring the complex and noisy real world.

Transferring a VLN agent trained in simulation to the real world is challenging due to the visual
domain gap and the absence of prior environment information [12]. To mitigate these challenges,
fusing extra sensor information (e.g. laser scan) and employing domain randomization techniques
[13] are recommended [12]. Besides, recent work [14, 15] demonstrates that using foundation mod-
els [16], such as large language models (LLMs) and large visual language models (VLMs), can
be beneficial for navigation in the real world. Specifically, LLMs are utilized to parse the instruc-
tion into landmarks or executable code, leveraging their powerful textual interpretation capabilities.
VLMs are used for processing complex real-world observations and grounding language instruc-
tions. However, these methods still require prior mapping of the environment, which is not directly
applicable to VLN-CE.

In this work, we propose a novel navigation framework to tackle the VLN-CE task in the real world,
leveraging the powerful foundation models. Depicted in Figure 2, to ground the unstructured lan-
guage instructions, we utilize a large language model (LLM) to parse the instruction into a sequence
of pre-defined robot macro-action descriptions, which describe the robot’s executable movements
and associated landmarks. To handle the complex and noisy observations in unseen environments,
we build an online visual-language map using a large visual-language model (VLM). With the latest
map and the parsed macro-action descriptions, a language indexing-based localizer grounds each
macro-action description to a waypoint location on the map. Treating the waypoint as a point-goal,
we adopt an off-the-shelf DD-PPO local policy to predict the next action. We conducted the experi-
ments on an Interbotix LoCoBot WX250 in an unseen lab environment. In the examined instruction
following tasks, without any fine-tuning, the proposed pipeline significantly outperforms the state-
of-the-art VLN-CE baseline in the real world.

2 Related Work

Vision-and-Language Navigation In VLN, two main settings exist, namely discrete environments
(VLN-DE) [3] and continuous environments (VLN-CE) [17]. In VLN-DE, due to the short horizon
of an episode, the agent can store the visual memory for every step and efficiently reason the visual

2



memory with language instruction using the attention mechanism [18, 19, 20, 21, 22]. In contrast,
the long horizon of an episode in VLN-CE makes the metric map a more reasonable choice of
visual memory where the observations at different steps can be fused together in the form of a
map [9, 7, 10]. [12] first attempts to tackle the vision-and-language navigation in the real world by
transferring the policy trained in the simulator to the real world. Unlike all these works that require
training in the simulator, our approach requires no training in simulation and no fine-tuning in the
real world. Instead, we use foundation models to enable generalization to the real world.

Navigation with online mapping Building maps during navigation achieves impressive perfor-
mance in multiple embodied navigation tasks such as point-goal navigation, object-goal navigation,
and image-goal navigation [23, 24, 25, 26]. However, these methods are designed for particular
tasks that require the goal to be specified in a desired format (e.g. a pose, an object class label, or
an image). In VLN-CE, only instructions in natural language are provided, requiring our method to
implicitly reason about the goal. Besides, the map built by our approach is a visual-language map.
Different from the occupancy maps and semantic maps, the built visual-language map stores both
the spatial occupancy and the language-associated visual features.

Navigation using foundation models Foundation models [16] have recently been used in navigation
tasks. CoWs [27] adapts open-vocabulary models such as CLIP [28] and proposes a language-driven
zero-shot object navigation (L-ZSON) task to benchmark object searching. LM-Nav [15] proposes
a navigation framework that incorporates three types of foundation models (i.e., large language
model (LLM), visual-language model (VLM), and visual navigation model (VNM)) and achieves
long-distance navigation in outdoor environments. Our approach also uses off-the-shelf foundation
models so that no fine-tuning is needed during inference. However, our approach is designed for
the VLN-CE task, which is different from the L-ZSON task. Unlike LM-Nav, our method does
not require prior data collected from the environment. VLMaps [14] is the most related work.
But, unlike VLMaps which requires a pre-collected offline dataset to build the environment map
beforehand, our method performs online visual-language mapping during navigation. Moreover,
both LM-Nav and VLMaps are designed for multi-goal navigation tasks. In summary, our approach
can be considered as an extension of VLMaps to tackle the VLN-CE task in the real world.

3 Problem Statement

We consider the vision-and-language navigation task in continuous environment (VLN-CE) [17].
In particular, the continuous setting refers to the scenario where the robot has to take primitive
actions (e.g., move forward, turn left) to navigate to the desired goal in physical space (i.e., SE(2))
while following an instruction in natural language. This is in contrast to the discrete setting, where
the robot selects discrete nodes from a pre-collected navigation graph, as seen in previous work
[12, 8, 17].

Formally, at the beginning of each episode, an instruction in natural language L =
⟨w0, w1, w2, ..., wL⟩ is given, where wi is the token for a single word in the instruction. The robot
also receives an initial front-view observation o0 determined by the initial pose s0 = ⟨x0, y0, θ0⟩,
which defines the robot’s position and the heading. Following [17], at every time step t, the robot
chooses one action at from a set of four discrete actions (i.e., move forward, turn left, turn right,
and stop) to execute. Note that, concurrent work like [3] defines the action space as linear and angu-
lar velocities, which is different from the current setting. After taking the action at, the robot moves
to a new pose st+1 and observes a new ot+1. Following the instruction L, the episode terminates
when the robot chooses the “stop” action or meets the timeout. The goal is to find a sequence of
⟨s0, o0, a0, s1, o1, a1, ..., sT , ot, at⟩ that aligns with the language instruction L.

4 Method

In this section, we first explain how to parse the instruction into macro-action descriptions using
LLMs in Sec. 4.1. Then, the online visual-language mapping is explained in Sec. 4.2. Given
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the latest map and the parsed macro-action descriptions, we explain the language indexing-based
localizer in Sec. 4.3. Finally, we explain the DD-PPO-based local controller in Sec. 4.4.

4.1 Instruction Parser

We observe that the instruction in the VLN-CE task consists of several sub-instructions. For in-
stance, in the Room-to-Room (R2R) task [3], the robot is asked to move from one room to another
adjacent room following the instruction. A typical instruction might read as follows “Exit the bed-
room and turn left. Walk straight past the gray couch and stop near the rug.”. The entire instruction
can be parsed into a sequence of sub-instructions such as ⟨“Exit the bedroom”, “Turn left”, “Walk
straight passing the gray couch”, “stop near the rug” ⟩. Furthermore, we have noticed that each
parsed sub-instruction describes either a pure robot movement (e.g., “turn left”) or describes both
the movement and associated landmarks. For instance, “Walk straight passing the gray couch”
contains the movement “walk straight” and the landmark “gray couch”. However, these parsed
sub-instructions can not be directly executed by the robot.

To address this, we leverage the powerful textual interpretation abilities of LLMs (i.e., GPT 3.5
[29]) to parse and convert the instruction into a sequence of pre-defined robot macro-action descrip-
tions. Specifically, inspired by [14], we define a set of macro-action descriptions serving as prior
information about the robot’s movements. Formally, we define 10 macro-action descriptions, each
represented as a Python dictionary that includes the movement’s name and associated parameters.
For example, “Walk straight passing the gray couch” corresponds to “{”name”: ”move to”, ”land-
mark”: ”gray couch”}”. Following a similar approach to [14], we interact with ChatGPT through
few-shot prompt engineering and parse each instruction before conducting navigation experiments.

4.2 Online Visual-language Mapper

In VLN-CE, collecting data from the target environments is prohibitive because they are assumed to
be unseen. Therefore, we extend VLMaps to the online setting and introduce an online mapper that
progressively builds the visual-language map of the unseen environment.

In general, the visual-language map fuses the visual-language feature computed from VLMs with a
2-D occupancy grid [14]. These visual-language features enhance the representation of the 2-D oc-
cupancy map by incorporating richer semantic features compared to semantic labels. Furthermore,
the visual-language map inherently benefits from the powerful generalization abilities of VLMs,
which are promising to handle complex real-world observations and diverse language instructions.
We adopt LSeg [30, 14], a large visual-language model renowned its dense pixel-wise semantic
segmentation driven by flexible language labels. Specifically, LSeg’s ViT-based [31] visual encoder
aligns the pixel embedding with the text embedding of the corresponding semantic class [30]. Ad-
ditionally, LSeg’s CLIP-based [28] text encoder provides a flexible representation that generalizes
well to previously unseen semantic classes during inference. Pretrained on large-scale image-text
pairs, LSeg demonstrates significant potential for handling complex robot observations and unseen
landmark objects in the real world.

Formally, the visual-language map takes the form of a grid map, denoted as M ∈ RH×W×C ,
where H,W are the height and the width of the map, respectively, and C is the dimension of the
stored visual-language feature in each grid cell. The resolution of the map is set at ρ = 5 cm, and
each grid cell corresponds to a 25 cm2 region in the real world. In contrast to [14] that builds the
map from an offline dataset, we update the map at every time step. Formally, at the time step t,
the robot observes a new RGB image Irgb, a new depth image Idepth, and a relative pose change
pt = ⟨xt, yt, θt⟩ with respective to the initial pose. We assume the knowledge of the camera intrinsic
matrix K. Consequently, we begin by back-projecting each pixel (i, j) ∈ Idepth into a 3-D point
pcam = (x, y, z) = K−1(i × d(i, j), j × d(i, j), d(i, j))T in the camera frame, where z = d(i, j)
is the depth value for pixel (i, j). Then, we project the 3-D points to the world frame pworld =
T−1 × pcam, where T is the extrinsic matrix. In our world frame definition, the origin is positioned
at the top-left corner of the map, the x axis extends to the right, and the y axis extends downward,
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following the conventions established in [23, 25]. On the map, the robot is consistently initialized in
the middle and facing to the right ⟨H2 ,

W
2 , 0.0⟩. Finally, the 3-D points Pw are projected to the map

plane as follows:

(pxmap, p
y
map) = [

pyworld

ρ
,
pxworld

ρ
] (1)

Meanwhile, we use the visual encoder of LSeg EViT : Rh×w×3 → Rh×w×C to compute the
dense pixel-wise visual-language features. Following the same transformation above, we store the
pixel-wise visual-language feature fij = EV iT (Irgb[i, j]) of pixel (i, j) at the corresponding grid
(pxmap, p

y
map). In this way, the new visual-language features are projected onto the map plane as M .

The global map Mt−1 gets updated as follows:

Mt[u, v] =

{
M [u, v], if Mt−1[u, v] = None
M [u,v]+Mt−1[u,v]

n+1 , otherwise
(2)

where u, v are grid cell indices and n is the number of stored features. As [14], we average the
features in each grid cell to handle the situation where the same object might be perceived from
different views.

4.3 Language Indexing-based Localizer

The instruction parser parses the instruction into a sequence of macro-action descriptions. Since we
use DD-PPO as the local policy, we propose to ground each macro-action description to a waypoint
location on the map and set it as an intermediate point-goal for DD-PPO. Formally, suppose the
current robot location on the map is ⟨xt, yt, θt⟩.

For pure movement macro-action description such as “{”name”: ”move forward”, ”dist”: D}”, the
waypoint position is computed as ⟨xt +D× cos θt, yt +D× sin θt, θt⟩. When there is no specified
moving distance, we set the default moving distance to be half meters. A similar strategy is applied
to pure turning actions.

For landmark-associated macro-action such as “{”name”: ”move to left”, ”landmark”: ”chair”}”,
we first localize the landmark object on the visual-language map through language indexing. Specif-
ically, we construct a label list [ltarget, l

2
default, ..., l

k
default, other] where the first world is the landmark

label and the remaining are the default labels. Note that “other” is LSeg’s default label to represent
any out-of-range object classes. LSeg’s text encoder takes in the label list and outputs a text embed-
ding feature matrix ftext ∈ RC×(K+1). The similarity score for every label at every grid cell can be
computed as Mt × ftext, where Mt ∈ RH×W×C . With the similarity matrix, we choose the label
for each grid cell by selecting the label with the maximal similarity score. Therefore, at every time
step, a semantic map is generated. To localize the desired landmark, we first apply density-based
spatial clustering (DBSCAN) [32] to find the centers of all landmark labels. Next, we compute the
orientation and Euclidean distance between the robot’s current location and the centers on the map.
We select the nearest label in front of the robot and use the corresponding center location as the
waypoint. The design choice is because the instructions in VLN-CE are generated from the per-
spective of the robot’s egocentric view. Combined with online mapping, we can mitigate the object
ambiguity issue during navigation (See Figure 6). The waypoint is represented as a 2-D egocentric
polar coordinate (ρ, ϕ), where ρ represents the relative distance of the waypoint in meters and ϕ is
the egocentric orientation towards the waypoint in radius.

4.4 DD-PPO-based Local Controller

To deal with the noisy observations in the real world, we use the DD-PPO navigation policy,
pre-trained on a large-scale point-goal navigation task, as the local controller [33, 34]. Specifi-
cally, the controller takes in a front-view RGB-D observation {Irgb, Idepth} and a point-goal rep-
resented as a 2-D egocentric polar coordinate (ρ, ϕ) as inputs. The off-the-shelf local policy
π(at|Irgb, Idepth, (ρ, ϕ)) predicts the next action at. Specifically, the action space is discrete and
contains four primitive actions including a “stop” action to indicate termination or reaching the goal
point.
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Figure 4: Single Instruction Following Task

5 Experiments

5.1 Mobile Robot and Environment Setup

Figure 3: Interbotix Lo-
CoBot WX250

We conducted all experiments using an Interbotix LoCoBot WX250
equipped with an Intel RealSense D435 camera for capturing both depth
and RGB images. The RGB image dimensions are 640 × 480 × 3
and the depth dimensions are 640 × 480. The camera is mounted on a
Kobuki base at a height of approximately 53 cm with an elevation angle
of −15.7 degrees. In our experiments, we disabled the robot’s arms and
exclusively controlled the Kobuki base. We implemented four primitive
actions to align with the output of the DD-PPO local policy. Specifi-
cally, the ’move forward’ action advances the robot by 0.25 cm, while
the ’turn left’ and ’turn right’ actions rotate the base by 15 degrees. A
’stop’ action was also included for no movement. We conducted the en-
tire experiment using ROS Noetic in an unstructured lab environment,
which was unseen by both our pipeline and the baseline method. Figure 3 shows the robot used in
all experiments.

5.2 Baseline

We compare our method against Cross-modal Map Learning (CM2) [7], a learning-based SOTA
method to tackle the VLN-CE task. CM2 employs a strategy where it generates both global occu-
pancy maps and global semantic maps by hallucinating information from local maps back-projected
from depth and semantic observations, enhancing the spatial and semantic understanding of the un-
seen environments. Given an instruction, CM2 learns cross-modal map attention to ground the entire
instruction into a sequence of waypoints on the map. The waypoint sequence will be predicted at
every time step and the DD-PPO local policy is used to predict the next action. We select the best
model provided by the author as our comparison 1. To make the comparison fair, both CM2 and our
method use the same front-view RGB-D observations and relative pose as inputs. We also use the
same DD-PPO controller from [34, 33]. It’s important to note that CM2 is extensively trained in
simulation and does not undergo fine-tuning with real-world data. In contrast, our pipeline requires
no training in the simulator and no fine-tuning in the real world, leveraging pre-trained foundation
models.

5.3 Instruction Following Tasks

In the context of VLN-CE, instructions often include several sub-instructions that the robot must
follow. To evaluate the performance of our proposed pipeline, we designed two types of instruction-
following tasks, ranging from easy to challenging. The first task, “Single Instruction Following
Task”, involves instructions that contain only one sub-instruction for the robot to execute. For
instance, an instruction might read as “Move forward by 2 meters.” This task aims to assess the

1https://github.com/ggeorgak11/CM2
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robot’s ability to correctly infer the goal from the instruction and execute it accurately. It’s important
to note that in VLN, the goal location is implicitly encoded in the instruction. The second task,
namely “Complex Instruction Following Task”, is more demanding. Here, instructions include
multiple sub-instructions that the robot must carry out. For instance, an instruction might read
as “Move to the left side of the chair. Then, turn left by 90 degrees.” In addition to evaluating
goal inference and execution accuracy, this task assesses each method’s ability to ground complex
instructions in the real world. Figure 4 and 5 show examples of the proposed tasks.

5.4 Results
Table 1: Results of Pure Motion Task

Target Dist (m) Actual Dist (m) Est Dist (m) Err Dist (m)
0.5 0.426 - -
1.0 0.748 0.238 0.014
2.0 1.678 0.308 0.014

Single Instruction Following - Pure Mo-
tion Task: We evaluate the accuracy of our
method in executing instructions that involve
pure movement. The tested straight dis-
tances range from 0.5 to 2.0 meters, with each distance tested in 5 independent runs using different
instructions. For example, instructions include “Go forward by 1.0 meter” or “Navigate ahead by
1.0 meter.” We provide two metrics: “Actual Dist”, representing the straight distance actually tra-
versed by our pipeline, and “Est Dist”, an estimate of the distance between the stop position and
the goal position on the map. Because the off-the-shelf DD-PPO controller outputs “STOP” action
when it believes the goal is nearby. The movement error, “Err Dist” is computed by subtracting
the “Target Dist” with the sum of “Actual Dist” and “Est Dist”. As shown in Table 1, the average
movement error out of 15 runs in the real world is approximately 1.4 cm. This result highlights the
effectiveness of using DD-PPO as the local policy in real-world scenarios and the accuracy of the
map built by our online mapper.

Table 2: Results of Landmark-associated Motion Task

Method CM2 [7]
Instruction SR (%) Dist to Goal (m)

“Navigate to the left side of the chair” 60 0.88
“Navigate to the right side of the chair” 40 0.97

“Navigate to the front of the chair” 20 1.37
“Move in between the box and the chair” 0 2.06

Average 30 1.32
Method Ours

“Navigate to the left side of the chair” 100 0.79
“Navigate to the right side of the chair” 100 0.83

“Navigate to the front of the chair” 100 0.81
“Move in between the box and the chair” 80 0.20

Average 95 0.66

Single Instruction Following -
Landmark-Associated Task: In
this task, unlike the instructions
provided, the instructions implicitly
specify spatial goals. We compare
our method with the CM2 baseline
using four different instructions,
indicating four distinct spatial goals.
For each instruction, we conduct 5
independent runs with varying initial
robot locations. In Table 2, our
approach significantly outperforms
the CM2 baseline, achieving a much higher mean success rate of 95% compared to CM2’s 30%
and substantially smaller distances to the goal location (Ours 0.2m v.s. CM2’s 2.06m). The
key to our method’s success lies in the powerful generalization ability of VLMs to real-world
observations since the grounding a single instruction is not difficult. In contrast, CM2 struggles with
generalization to the real world due to the visual domain gap, despite using the same DD-PPO local
controller and being trained in visually realistic scenes in Matterport3D dataset [? ], which consists
of scenes reconstructed by real-world images captured from various indoor environments. The
empirical results suggest that pre-trained VLMs would be powerful off-the-shelf visual encoders to
tackle unseen observations in the real world.

Table 3: Results of Complex Instruction Following
Task

Method SR (%) Dist to Goal (m) Time steps
CM2 [7] 0 4.9 203.4

Ours 100 0.256 88.6

Complex Instruction Following Task: In
this task, we examine our pipeline with
more complex instructions comprising
multiple sub-instructions and landmark
objects. We conducted the experiment
with 5 independent runs from different ini-
tial robot locations and varying the de-
scription for every sub-motion. Table 3 shows the results. In summary, CM2 struggles to complete
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Figure 5: Complex Instruction Following Task

Figure 6: Trajectory visualization

this complex instruction task. The visual domain gap still poses challenges, which exaggerate when
the instruction becomes more complex because the performance of grounding a complex instruc-
tion highly relies on the quality of the hallucinated map, which requires the method to be robust
to unseen, complex, and noisy observations in the real world. In contrast, our method achieved
a 100% success rate and stopped approximately 26 cm from the goal location, despite using the
same DD-PPO controller as CM2. Unlike a simple language parser, we uses the LLMs to convert
the instruction into a sequence of pre-defined macro-action descriptions, leveraging the powerful
textual interpretation abilities of LLMs. Empirically, we found that LLMs is robust to different sub-
instruction descriptions and can convert the sub-instruction to the desired format (e.g., a pre-defined
macro-action description in our setting). Moreover, although CM2 achieves SOTA performance of
VLN-CE in the simulation, it exhibits limited generalization to the VLN-CE task in the real world.
As shown in Figure 6, we found that VLMs generalize surprisingly well to the observations in the
real world even though they are not particularly trained for navigation tasks.

6 Conclusions

In this work, we propose a novel navigation framework to address the VLN-CE task in real-world
scenarios. Leveraging three foundational models (LLMs, VLMs, and DD-PPO), and notably, with-
out any fine-tuning, our method significantly outperforms the SOTA VLN-CE baseline. We have
observed that the visual domain gap between simulation and the real world presents a significant
challenge for transferring SOTA VLN-CE navigation policies from simulation to reality, even though
the simulator contains real-world observations. Therefore, through our demonstrated instruction fol-
lowing tasks, we hope to provide insights into solving the VLN-CE task in real-world scenarios by
harnessing the capabilities of these foundational models.
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