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Abstract

Finite-state approaches have been highly successful at describ-
ing the morphological processes of many languages. Such
approaches have largely focused on modeling the phone- or
character-level processes that generate candidate lexicaltypes,
rather thantokensin context. For the full analysis of words
in context,disambiguationis also required (Hakkani-T̈ur et al.,
2000; Hajǐc et al., 2001). In this paper, we apply a novel
source-channel model to the problem of morphological disam-
biguation (segmentation into morphemes, lemmatization, and
POS tagging) for concatenative, templatic, and inflectional lan-
guages. The channel model exploits an existing morphological
dictionary, constraining each word’s analysis to be linguistically
valid. The source model is a factored, conditionally-estimated
random field (Lafferty et al., 2001) that learns to disambiguate
the full sentence by modeling local contexts. Compared with
baseline state-of-the-art methods, our method achieves statisti-
cally significant error rate reductions on Korean, Arabic, and
Czech, for various training set sizes and accuracy measures.

1 Introduction

One of the great successes in computational linguistics
has been the construction of morphological analyzers for
diverse languages. Such tools take in words and enu-
merate the possible morphological analyses—typically a
sequence of morphemes, perhaps part-of-speech tagged.
They are often encoded as finite-state transducers (Ka-
plan and Kay, 1981; Koskenniemi, 1983; Beesley and
Karttunen, 2003).

What such tools do not provide is a means todis-
ambiguatea word incontext. For languages with com-
plex morphological systems (inflective, agglutinative,
and polysynthetic languages, for example), a word form
may have many analyses. To pick the right one, we
must consider the word’s context. This problem has
been tackled using statistical sequence models for Turk-
ish (Hakkani-T̈ur et al., 2000) and Czech (Hajič et al.,
2001); their approaches (and ours) are not unlike POS
tagging, albeit with complex tags.
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In this paper, we describe context-based models for
morphological disambiguation that take full account of
existing morphological dictionaries by estimatingcondi-
tionally against only dictionary-accepted analyses of a
sentence (§2). These models are an instance of condi-
tional random fields (CRFs; Lafferty et al., 2001) and
include overlapping features. Our applications include
diverse disambiguation frameworks and we make use of
linguistically-inspired features, such as local lemma de-
pendencies and inflectional agreement. We apply our
model to Korean and Arabic, demonstrating state-of-the-
art results in both cases (§3). We then describe how our
model can be expanded to complex, structured morpho-
logical tagging, including an efficient estimation method,
demonstrating performance on Czech (§4).

2 Modeling Framework

Our framework is a source-channel model (Jelinek,
1976). Thesource(modeled probabilistically byps) gen-
erates a sequence of unambiguous tagged morphemes
y = 〈y1, y2, ...〉 ∈ Y+ (Y is the set of unambiguous
tagged morphemes in the language).1 The precise con-
tents of the tag will vary by language and corpus but
will minimally include POS.y passes through achan-
nel (modeled bypc), which outputsx = 〈x1, x2, ...〉 ∈
(X ∪ {OOV})+, a sequence of surface-level words in the
language and out-of-vocabulary words (OOV; X is the
language’s vocabulary). Note that|x| may be smaller
than |y|, since some morphemes may combine to make
a word. We will denote byyi the contiguous subse-
quence ofy that generatesxi; ~y will refer to a dictionary-
recognizedtypein Y+.

At test time, wedecodethe observedx into the most
probable sequence of tag/morpheme pairs:

ŷ = argmax
y

p(y | x) = argmax
y

ps(y) · pc(x | y) (1)

Training involves constructingps andpc. We assume
that there exists a training corpus of text (each wordxi

annotated with its correct analysisy∗i ) and a morpholog-
ical dictionary. We next describe the channel model and
the source model.

1The sequence also includes segmentation markings be-
tween words, not shown to preserve clarity.



a. There are many kinds of trench mortars.

b. . — 1998 1998—Sanaa accuses Riyadh of occupying border territories.
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c. Klimatizovańa j́ıdelna, sv̌etlá ḿıstnost pro sńıdaňe. Air-conditioned dining room, well-lit breakfast room.
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5
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6 7 8

Figure 1: Lattices for example sentences in Korean (a), Arabic (b), and Czech (c). Arabic lemmas are not shown, and some Arabic
and Czech arcs are unlabeled, for readability. The Arabic morphemes are shown in Buckwalter’s encoding. The arcs in the correct
path through each lattice are solid (incorrect arcs are dashed). Note the adjective-noun agreement in the correct path through the
Czech lattice (c). The Czech lattice has no lemma-ambiguity; this is typical in Czech (see§4).

2.1 Morphological dictionaries and the channel

A great deal of research has gone into developing mor-
phological analysis tools that enumerate valid analyses
~y ∈ Y+ for a particular wordx ∈ X. Typically these
tools are unweighted and therefore do not enable token
disambiguation.2

They are available for many languages. We will refer
to this source of categorial lexical information as a mor-
phological dictionaryd that mapsX → 2Y+

. The setd(x)
is the set of analyses for wordx; the setd(x) is the set of
whole-sentence analyses for sentencex = 〈x1, x2, ...〉.

d(x) can be represented as an acyclic lattice with a
“sausage” shape familiar from work in speech recogni-
tion (Mangu et al., 1999). Note that for languages with
bound morphemes,d(x) will consist of a set of sequences
of tokens, so a given “link” in the sausage lattice may
contain paths of different lengths. Fig. 1 shows sausage
lattices for sentences in three languages.

In this paper, the dictionary defines the support set of
the channel model. That is,pc(x | y) > 0 if and only
if y ∈ d(x). This is a clean way to incorporate do-
main knowledge into the probabilistic model; this kind
of constraint has been applied in previous work at decod-
ing time (Hakkani-T̈ur et al., 2000; Hajǐc et al., 2001). In
such a model, each word is independent of its neighbors
(because the dictionary ignores context).

Estimation. A unigramchannel model defines

2Probabilistic modeling of what we call the morphologi-
cal channel was first carried out by Levinger et al. (1995), who
used unlabeled data to estimatep(~y | x) for Hebrew, with the
support defined by a dictionary.

pc(x | y) def=
|x|∏
i=1

p(xi | yi) (2)

The simplest estimate of this model is to makep(·, ·)
uniform over (x, ~y) such that~y ∈ d(x). Doing so and
marginalizing to getp(x | ~y) makes the channel model
encode categorial information only, leaving all learning
to the source model.3

Another way to estimate this model is, of course,
from data. This is troublesome, because—modulo
optionality—x is expected to beknowngiven ~y, result-
ing in a huge model with mostly 1-valued probabili-
ties. Our solution is to take aprojectionπ of ~y and let
p(· | ~y) ≈ p(· | π(~y)). In this paper,π maps the analysis
to its morphological tag (or tag sequence). We will refer
to this as the “tag channel.”

OOV. Morphological dictionaries typically do not have
complete coverage of a language. We can augment them
in two ways using the training data. If a known wordx
(one for whichd(x) is non-empty) appears in the training
dataset with an analysis not ind(x), we add the entry to
the dictionary. Unknown words (those not recognized by
the dictionary) are replaced by anOOV symbol. d(OOV)
is taken to be the set of all analyses for anyOOV word
seen in training. Rather than attempt to recover the mor-
pheme sequence for anOOV word, in this paper we try
only for the tag sequence, replacing all of anOOV’s mor-
phemes with theOOV symbol. SinceOOV symbols ac-
count for less than 2% of words in our corpora, we leave

3Note that this makes the channel term in Eq. 1 a constant.
Then decoding means maximizingps(y) overy ∈ d(x), equiv-
alently maximizingp(y | d(x)).



more sophisticated channel models to future work.

2.2 The source model

The source modelps defines a probability distribution
overY+, sequences of (tag, morpheme) pairs. Our source
models can be viewed as weighted multi-tape finite-state
automata, where the weights are associated with local, of-
ten overlapping features of the path through the automa-
ton.

Estimation. We estimate the sourceconditionallyfrom
annotated data. That is, we maximize∑

(x,y)∈X+×Y+

p̃(x,y) log ps

(
y | d(x), ~θ

)
(3)

wherep̃(·, ·) is the empirical distribution defined by the
training data and~θ are the model parameters. In terms
of Fig. 1, our learner maximizes the weight of the correct
(solid) path through each lattice, at the expense of the
other incorrect (dashed) paths. Note that

log ps

(
y | d(x), ~θ

)
= log

ps

(
y | ~θ

)
∑

y′∈d(x) ps

(
y′ | ~θ

) (4)

The sum in the denominator is computed using a dynamic
programming algorithm (akin to the forward algorithm);
it involves computing the sum of all paths through the
“sausage” lattice of possible analyses forx. By doing
this, we allow knowledge of the support of thechannel
model to enter into our estimation of thesourcemodel. It
is important to note that theestimationof the model (the
objective function used in training, Eq. 3) is distinct from
the source-channelstructureof the model (Eq. 1).

The lattice-conditional estimation approach was
first used by Kudo et al. (2004) for Japanese seg-
mentation and hierarchical POS-tagging and by
Smith and Smith (2004) for Korean morphological
disambiguation. The resulting model is an instance of
a conditional random field(CRF; Lafferty et al., 2001).
When training a CRF for POS tagging, IOB chunking
(Sha and Pereira, 2003), or word segmentation (Peng
et al., 2004), one typically structures the conditional
probabilities (in the objective function) using domain
knowledge: in POS tagging, the set of allowed tags for
a word is used; in IOB chunking, the bigram “O I” is
disallowed; and in segmentation, a lexicon is used to
enumerate the possible word boundaries.4

4This refinement is in the same vein as the move frommax-
imum likelihoodestimation toconditional estimation. MLE
would make the sum in the denominator of Eq. 4Y+, which
for log-linear models is often intractable to compute (and for
sequence models may not converge). Conditional estimation
limits the sum to the subset ofY+ that is consistent withx, and
our variant further stipulates consistency with the dictionary en-
tries forx.

Our approach is the same, with two modifications.
First, we model the relationship between labelsyi and
wordsxi in a separately-estimated channel model (§2.1).
Second, our labels are complex. Each wordxi is tagged
with a sequenceof one or more tagged morphemes; the
tags may include multiple fields. This leads to models
with more parameters. It also makes the dictionary es-
pecially important for limiting the size of the sum in the
denominator, since a complex label setY could in prin-
ciple lead to a huge hypothesis space for a given sen-
tencex. Importantly, it makes training conditions more
closely match testing conditions, ruling out hypotheses a
dictionary-aware decoder would never consider.

Optimization. The objective function (Eq. 3) is con-
cave and known to have a unique global maximum. Be-
cause log-linear models and CRFs have been widely de-
scribed elsewhere (e.g., Lafferty, 2001), we note only that
we apply a standard first-order numerical optimization
method (L-BFGS; Liu and Nocedal, 1989). The struc-
ture, features, and regularization of our models will be
described in§3 and§4.

Prior work (morphological source models).
Hakkani-T̈ur et al. (2000) described a system for Turkish
that was essentially a source model; Hajič et al. (2001)
described an HMM-based system for Czech that could
be viewed as a combined source and channel. Both
used dictionaries and estimated their (generative) models
using maximum likelihood (with smoothing).5 Given
enough data, a ML-estimated model will learn to recog-
nize a good pathy, but it may not learn to discriminate
a goody from wrong alternativesper se. The generative
framework is limiting as well, disallowing the straight-
forward inclusion of arbitrary overlapping features. We
present a competitive Czech model in§4.

3 Concatenative Models

The beauty of log-linear models is that estimation is
straightforward givenany features, even ones that are
not orthogonal (i.e., “overlap”). This permits focusing
on feature (or feature template) selection without worries
about the mathematics of training.

We consider two languages modeled by concatenative
processes with surface changes at morpheme boundaries:
Korean and Arabic.

Our model includes features for tagn-grams, mor-
phemen-grams, and pairs of the two (possibly of differ-
ent lengths and offsets). Fig. 2 illustratesTM3, our base
model. TM3 includes feature templates for some tuples
of three or fewer elements, plus begin and end templates.

5Hajič et al. also included a rule-based system for pruning
hypotheses, which gave slight performance gains.
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Figure 2: The base two-level trigram source model,TM3. Each
polygon corresponds to a feature template. This is a two level,
second-order Markov model (weighted finite-state machine) pa-
rameterized with overlapping features. Note that only some fea-
tures are labeled in the diagram.

A variant, TM3H, includes all of the same templates,
plus a similar set of templates that look only atheadmor-
phemes. For instance, a feature fires for each trigram
of heads, even though there are (bound) morphemes be-
tween them. This increases the domain of locality for se-
mantic content-bearing morphemes. This model requires
slight changes to the dynamic programming algorithms
for inference and training (the previous two heads must
be remembered at each state).

Every instantiation of the templates seen inany lattice
d(x) built from training data is included in the model, not
just those seen in correct analysesy∗.6

3.1 Experimental design

In all of our experiments, we vary the training set size
and the amount of smoothing, which is enforced by a di-
agonal Gaussian prior (L2 regularizer) with varianceσ2.
The σ2 = ∞ case is equivalent to not smoothing. We
compare performance to the expected performance of a
randomized baseline that picks for each word tokenx an
analysis fromd(x); this gives a measure of the amount of
ambiguity and is denoted “channel only.” Performance
of unigram, bigram, and trigram HMMs estimated us-
ing maximum likelihood (barely smoothed, using add-
10−14) is also reported. (The unigram HMM simply
picks the most likely~y for eachx, based on training data
and is so marked.)

In the experiments in this section, we report three per-
formance measures.Tagging accuracy is the fraction
of words whose tag sequence was correctly identified
in entirety; morphemeaccuracy is defined analogously.

6If we used only features observed to occur iny∗, we would
not be able to learn negative weights forunlikelybits of structure
seen in the latticed(x) but not iny∗.

Lemmaaccuracy is the fraction of words whose lemma
was correctly identified.

3.2 Korean experiments

We appliedTM3 and TM3H to Korean. The dataset is
the Korean Treebank (Han et al., 2002), with up to 90%
used for training and 10% (5K words) for test. The mor-
phological dictionary isklex (Han, 2004). There are 27
POS tags in the tag set; the corpus contains 10K word
types and 3,272 morpheme types. There are 1.7 mor-
phemes per word token on average (σ = 0.75). A Ko-
rean word generally consists of a head morpheme with a
series of enclitic suffixes. In training the head-augmented
model TM3H, we assume the first morpheme of every
word is the head and lemma.

Results are shown in Tab. 1.TM3H achieved very slight
gains overTM3, and the tag channel model was helpful
only with the smaller training set. The oracle (last line
of Tab. 1) demonstrates that the coverage of the dictio-
nary remains an obstacle, particularly for recovering mor-
phemes. Another limitation is the small amount of train-
ing data, which may be masking differences among esti-
mation conditions. We report the performance ofTM3H

with “factored” estimation. This will be discussed in
detail in §4; it means that a model containingonly the
head features was trained on its own, then combined with
the independently trainedTM3 model at test time. Fac-
tored training was slightly faster and did not affect per-
formance at all; accuracy scores were identical with un-
factored training.

Prior work (Korean). Similar results were presented
by Smith and Smith (2004), using a similar estimation
strategy with a model that included far more feature tem-
plates. TM3 has about a third as many parameters and
TM3H about half; performance is roughly the same (num-
bers omitted for space). Korean disambiguation results
were also reported by Cha et al. (1998), who applied a
deterministic morpheme pattern dictionary to segment
words, then used a bigram HMM tagger. They also ap-
plied transformation-based learning to fix common er-
rors. Due to differences in tag set and data, we cannot
compare to that model; a bigram baseline is included.

3.3 Arabic experiments

We appliedTM3 andTM3H to Arabic. The dataset is the
Arabic Treebank (Maamouri et al., 2003), with up to 90%
used for training and 10% (13K words) for test. The mor-
phological dictionary is Buckwalter’s analyzer (version
2), made available by the LDC (Buckwalter, 2004).7 This
analyzer has total coverage of the corpus; there are no

7Arabic morphological processing was also addressed by
Kiraz (2000), who gives a detailed review of symbolic work in
that area, and by Darwish (2002).



Korean Arabic
POS tagging morpheme lemma POS tagging morpheme lemma

accuracy accuracy accuracy accuracy accuracy accuracy
σ2 32K 49K 32K 49K 32K 49K 38K 76K 114K 38K 76K 114K 38K 76K 114K

most likely~y 86.0 86.9 87.5 88.8 95.3 95.7 84.5 87.0 88.3 83.2 86.2 87.0 37.9 39.8 40.9
channel only 62.6 62.6 70.3 70.8 86.4 86.4 43.7 43.7 43.7 41.2 41.2 41.2 27.2 27.2 27.2
bigram HMM 90.7 91.2 83.2 86.1 96.9 97.2 90.3 92.0 92.8 89.2 91.4 91.6 85.7∗ 87.8∗ 87.9∗

trigram HMM 91.5 91.8 83.3 86.0 97.0 97.2 89.8 92.0 93.0 88.5 91.3 91.3 85.2∗ 87.8∗ 87.7∗

TM3 ∞ 90.7 91.3 89.3 90.5 97.1 97.4 94.6 95.4 95.9 93.4 94.3 94.9 89.7∗ 90.5∗ 90.7∗

un
ifo

rm
ch

an
ne

l

10 91.2 91.7 89.4 90.6 97.1 97.6 95.3 95.7 96.1 93.9 94.5 95.0 90.2∗ 90.6∗ 91.1∗

1 91.5 92.2 89.4 90.6 97.1 97.5 95.2 95.7 96.0 93.9 94.5 94.7 90.0∗ 90.7∗ 91.0∗

TM3H ∞ 91.1 91.1 89.3 90.4 97.2 97.5 95.0 95.7 96.0 94.0 94.8 95.3 93.3 93.9 94.2
(factored) 10 91.3 91.9 89.5 90.6 97.3 97.6 95.3 95.7 96.1 94.2 94.7 95.4 93.4 93.6 94.4

1 91.4 92.2 89.5 90.7 97.3 97.6 95.4 95.8 96.1 94.4 94.8 95.1 93.3 93.8 94.2
channel only 51.4 51.3 60.6 60.4 81.2 81.7 41.4 40.6 40.1 39.9 39.1 38.6 26.7∗ 26.5∗ 26.4∗

bigram HMM 91.2 90.9 88.9 90.1 97.0 97.3 91.0 92.3 93.4 89.7 91.5 91.9 88.1∗ 89.9∗ 90.0∗

trigram HMM 91.6 91.9 88.9 90.2 97.1 97.4 91.1 92.9 93.7 89.6 92.2 92.0 88.1∗ 90.6∗ 90.4∗

TM3 ∞ 90.8 91.0 89.5 90.5 97.4 97.5 95.1 95.7 96.0 93.8 94.6 95.0 92.2∗ 93.1∗ 93.2∗

ta
g

ch
an

ne
l

10 90.6 91.1 89.5 90.7 97.2 97.6 95.2 95.6 96.0 93.9 94.7 95.0 92.4∗ 93.2∗ 93.5∗

1 90.1 90.9 89.5 90.7 97.1 97.6 94.9 95.5 95.8 93.8 94.5 94.8 92.2∗ 93.0∗ 93.1∗

TM3H ∞ 91.0 91.0 89.4 90.5 97.2 97.6 95.1 95.8 96.0 94.0 95.1 95.4 93.3 94.3 94.4
(factored) 10 90.4 91.2 89.6 90.7 97.4 97.6 95.2 95.7 96.0 94.1 94.8 95.4 93.3 94.0 94.6

1 90.1 91.0 89.5 90.7 97.3 97.6 95.1 95.5 95.9 94.1 94.9 95.1 93.3 94.0 94.4
oracle givend(x) 95.3 95.7 90.2 91.2 98.1 98.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 1: Korean (left, 5K test-set) and Arabic (right, 13K test-set) disambiguation. A word is marked correct only if its entire
tag (or morpheme) sequence (or lemma) was correctly identified. Morpheme and lemma accuracy do not includeOOV words. The
oracle is an upper bound on accuracy given the morphological dictionary.∗These models do not explicitly predict lemmas; the
lemma is chosen arbitrarily from those that match the hypothesized tag/morpheme sequence for each word.Bold scores indicate a
significant improvement over the trigram HMM (binomial sign test,p < 0.05).

OOV words. There are 139 distinct POS tags; these con-
tain some inflectional information which we treat atom-
ically. For speed,TM3H was trained in two separate
pieces:TM3 and the lemma features added byTM3H.

Arabic has a templatic morphology in which conso-
nantal roots are transformed into surface words by the
insertion of vowels and ancillary consonants. Our sys-
tem does not model this process except through the use
of Buckwalter’s dictionary to define the set of analyses
for each word (cf., Daya et al., 2004, who modeled inter-
digitation in Hebrew). We treat the analysis of an Ara-
bic word as a sequence~y of pairs of morphemes and
POS tags, plus a lemma. The lemma, given in the dic-
tionary, provides further disambiguation beyond the head
morpheme. The lemma is a standalone dictionary head-
word and not merely the consonantal root, as in some
other work. The “heads” modeled byTM3H correspond
to these lemmas. There are 20K word types, and 34K
morpheme types. There are 1.7 morphemes per word to-
ken on average (σ = 0.77).

Results are shown in Tab. 1. Across tasks and training
set sizes, our models reduce error rates by more than 36%
compared to the trigram HMM source with tag channel.
The TM3H model and the tag channel offer slight gains
over the baseTM3 model (especially on lemmatization),
though the tag channel offers no help in POS tagging.

Prior work (Arabic). Both Diab et al. (2004) and
Habash and Rambow (2005) use support-vector ma-
chines with local features; the former for tokenization,
POS tagging, and base phrase chunking; the latter for
full morphological disambiguation. Diab et al. report
results for a coarsened 24-tag set, while we use the full
139 tags from the Arabic Treebank, so the systems are
not directly comparable. Habash and Rambow present
even better results on the same POS tag set. Our full dis-
ambiguation results appear to be competitive with theirs.
Khoja (2001) and Freeman (2001) describe Arabic POS
taggers and many of the issues involved in developing
them, but because tagged corpora did not yet exist, there
are no comparable quantitative results.

4 Czech: Model and Experiments

Inflective languages like Czech present a new set of chal-
lenges. Our treatment of Czech is not concatenative;
following prior work, the analysis for each wordx is a
single tag/lemma pairy. Inflectional affixes in the sur-
face form are represented as features in the tag. While
lemmatization of Czech is not hard (there is little ambi-
guity), tagging is quite difficult, because morphological
tags are highly complex. Our tag set is the Prague Depen-
dency Treebank (PDT; Hajič, 1998) set, which consists of
fifteen-field tags that indicate POS as well as inflectional
information (case, number, gender, etc.). There are over
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Figure 3: The Czech model, shown as an undirected graphi-
cal model. The structure of the full model is on the left; fac-
tored components for estimation are shown on the right. Each
of these five models contains a subset of theTM3 features. The
full model is only used to decode. The factored models make
training faster and are used for pruning.

1,400 distinct tag types in the PDT.
Czech has been treated probabilistically before, per-

haps most successfully by Hajič et al. (2001).8 In con-
trast, we estimate conditionally (rather than by maximum
likelihood for a generative HMM) and separate the train-
ing of the source and the channel. We also introduce a
novelfactoredtreatment of the morphological tags.

4.1 Factored tags and estimation

Because Czech morphological tags are not monolithic,
the choice among them can be treated as several more or
less orthogonal decisions. The case feature of one word,
for example, is expected to be conditionally independent
of the next word’s gender, given the next word’s case.
Constraints in the language are expected to cause features
like case, number, and gender to agree locally (on words
that have such features) and somewhat independently of
each other. Coarser POS tagging may be treated as an-
other, roughly independent stream.

Log-linear models and the use of a morphological dic-
tionary make this kind of tag factoring possible. Our
approach is to separately train five log-linear models.
Each model is itself an instance of some of the templates
from TM3, modeling a projection of the full analysis.
The model and its factored components are illustrated in
Fig. 3.

POS model. The full tag is replaced by the POS tag
(the first two fields); there are 60 POS tags. TheTM3

8Czech morphological processing was studied by
Petkevǐc (2001), Hlav́acov́a (2001) (who focuses on han-
dling OOV words), and Mŕakov́a and Sedlacek (2003) (who use
partial parsing to reduce the set of possible analyses),inter alia.

feature templates are included twice: once for the full tag
and once for a coarser tag (the first PDT field, for which
there are 12 possible values).9

Gender, number, and case models. The full tag is re-
placed by the gender (or case or number) field. This
model includes bigrams and trigrams as well as field-
morpheme unigram features. These models are intended
to learn to predict local agreement.

Tag-lemma model. This model contains unigram fea-
tures of full PDT tags, both alone and with lemmas. It is
intended to learn to penalize morphological tags that are
rare, or that are rare with a particular lemma. In our for-
mulation, this isnot a channel model, because it ignores
the surface word forms.

Each model is estimated independently of the others.
The latticed(x) against which the conditional probabili-
ties are estimated contains the relevantprojectionof the
full morphological tags (with lemmas). To decode, we
run a Viterbi-like algorithm that uses the union of all
models’ features to pick the best analysis (full morpho-
logical tags and lemmas) allowed by the dictionary.

There are two important advantages of factored train-
ing. First, each model is faster to train alone than a model
with all features merged; in fact, training the fully merged
model takes far too long to be practical. Second, factored
models can be held out at test time to measure their effect
on the system, without retraining.

Prior work (factored training). Separately training
different models that predict the same variables (e.g.,x
andy) then combining them for consensus-based infer-
ence (either through a mixture or a product of proba-
bilities) is an old idea (Genest and Zidek, 1986). Re-
cent work in learning weights for the component “ex-
pert” models has turned tocooperativetechniques (Hin-
ton, 1999). Decoding that findsy (givenx) to maximize
some weighted average of log-probabilities is known as
a logarithmic opinion pool(LOP). LOPs were applied
to CRFs (for named entity recognition and tagging) by
Smith et al. (2005), with an eye toward regularization.
Their experts (each a CRF) contained overlapping feature
sets, and the combined model achieved much the same
effect as training a single model with smoothing. Note
that our models, unlike theirs,partition the feature space;
there is only one CRF, but some parameters are ignored
when estimating other parameters. We have not estimated
log-domain mixing coefficients—we weight all models’
contributions equally. Sutton and McCallum (2005) have
applied factored estimation to CRFs, motivated (like us)
by speed; they also describe how factored estimation

9Lemma-trigram and fine POS-unigram/lemma-bigram fea-
tures were eliminated to limit model size.



full morph. lemma POS OOV POS
accuracy accuracy accuracy accuracy

σ2 376K 768K 376K 768K 376K 768K 376K 768K
channel only 61.4 60.3 85.1 84.2 88.5 87.2 17.8 16.4
most likely~y 80.0 80.8 98.1 98.1 97.9 97.8 52.0 52.0
Hajič et al. HMM 88.8 89.2 97.9 97.9 95.8 95.8 52.0 52.0
+ OOV model 90.5 90.8 97.9 97.9 96.7 96.6 93.0 92.9

full ∞ 88.1 88.5 98.3 98.5 98.3 98.3 60.2 61.8
oracle given pruning 98.6 99.3 99.5 99.6 99.1 99.7 60.2 90.3

10 88.4 88.5 98.4 98.4 98.3 98.2 61.8 59.4
oracle given pruning 99.3 99.3 99.5 99.6 99.8 99.7 93.4 90.6

1 88.6 88.6 98.4 98.4 98.2 98.1 60.0 56.7
oracle given pruning 99.3 99.3 99.5 99.6 99.8 99.8 95.0 94.0

– POS ∞ 87.9 88.0† 98.2 98.2† 98.0 97.9† 55.7 51.7†

10 88.1 88.3† 98.2 98.3† 98.0 97.9† 55.4 51.6†

1 88.4 88.5† 98.2 98.2† 98.0 97.9† 55.0 51.9†

– tag-lemma ∞ 87.8 88.3 98.3 98.6 98.3 98.3 60.2 59.7
10 88.0 88.1 98.4 98.5 98.3 98.2 59.1 59.1
1 88.0 88.1 98.4 98.4 98.2 98.1 59.0 58.1

POS only ∞ 65.6∗ 65.5∗ 98.3 98.6 98.3 98.4 60.2 63.7
10 65.7∗ 65.5∗ 98.5 98.6 98.5 98.5 65.2 66.4
1 65.7∗ 65.5∗ 98.6 98.7 98.6 98.6 67.2 67.2

POS & ∞ 81.2 82.3 98.3 98.6 98.3 98.4 60.2 63.9
tag-lemma† 10 81.9 82.3 98.5 98.6 98.4 98.5 65.8 67.2

1 82.0 82.3 98.4 98.5 98.5 98.4 67.8 66.3
oracle givend(x) 99.8 99.8 99.5 99.6 99.9 99.9 100.0 100.0

Table 2: Czech disambiguation:
test-set (109K words) accuracy. A
word is marked correct only if its
entire morphological tag (or mor-
pheme or POS tag) was correctly
identified. Note that the full tag
is a complex, 15-field morphologi-
cal label, while “POS” is a projec-
tion down to a tagset of size 60.
Lemma accuracy does not include
OOV words. ∗The POS-only model
selects only POS, not full tags; these
measures are expected performance
if the full tag is selected randomly
from those in the dictionary that
match the selected POS.†Required
more aggressive pruning. Bold
scores were significantly better than
the HMM of Hajič et al. (binomial
sign test,p < 0.05). Our models
were slightly but significantly worse
on full tagging, but showed signif-
icant improvements on recovering
POS tags and lemmas.

maximizes a lower bound on the unfactored objective.
Smith and Smith (2004) applied factored estimation to a
bilingual weighted grammar, driven by data limitations.

4.2 Experiments

Our corpus is the PDT (Hajič, 1998), with up to 60% used
for training and 10% (109K words) used for test.10 The
morphological dictionary is the one packaged with the
PDT; it covers about 98% of the tokens in the corpus. The
remaining 2% have (unsurprisingly) a diverse set of 300–
400 distinct tags, depending on the training set size.11

Results are shown in Tab. 2. We compare to the HMM
of (Hajič et al., 2001)without its OOV component.12 We
report morphological tagging accuracy on words; we also
report lemma accuracy (on non-OOV words), POS accu-

10We used less than the full corpus to keep training time
down; note that the training sets are nonetheless substantially
larger than in the Korean and Arabic experiments.

11During training, these project down to manageable num-
bers of hypotheses in the factored models. At test-time, how-
ever, Viterbi search is quite difficult whenOOV symbols occur
consecutively. To handle this, we pruneOOV arcs from the lat-
tices using the factored POS and inflectional models. For each
OOV, every model prunes a projection of the analysis (e.g., the
POS model prunes POS tags) until 90% of the posterior mass or
3 arcs remain (whichever is more conservative). Viterbi decod-
ing is run on a lattice containingOOV arcs consistent with the
pruned projected lattices.

12Resultswith theOOV component are also reported in Tab. 2,
but we cannot guarantee their experimental validity, since the
OOV component is pre-trained and may have been trained on
data in our test set.

racy on all words, and POS accuracy onOOV words. The
channel model (not shown) tended to have a small, harm-
ful effect on performance.

Without any explicit OOV treatment, our POS-only
component model significantly reduces lemma and POS
errors compared to Hajič et al.’s model. On recovering
full morphological tags, ourfull model is close in perfor-
mance to Hajǐc et al., but still significantly worse. It is
likely that for many tasks, these performance gains are
more helpful than the loss on full tagging is harmful.

Why doesn’t our full model perform as well as Hajič et
al.’s model? An error analysis reveals that our full model
(768K,σ2 = 1), compared to the HMM (768K) had 91%
as many number errors but 0.1% more gender and 31%
more case errors. Taking out those three models (“POS
& tag-lemma” in Fig. 2) is helpful on all measures ex-
cept full tagging accuracy, due in part to substantially
increased errors on gender (87% increase), case (54%),
and number (35%). The net effect of these components,
then, is helpful, but not quite helpful enough to match
a well-smoothed HMM on complex tagging. We com-
pared the models on the training set and found the same
pattern, demonstrating that this is not merely a matter of
over-fitting.

5 Future Work

Two clear ways to improve our models present them-
selves. The first is betterOOV handling, perhaps through
an improved channel model. Possibilities include learn-
ing weights to go inside the FST-encoded dictionaries and



directly modeling spelling changes. The second is to turn
our factored model into a LOP. Training the mixture co-
efficients should be straightforward (if time-consuming)
with a development dataset.

A drawback of our system (especially for Czech) is
that some components (most notably, the Czech POS
model) take a great deal of time to train (up to two weeks
on 2GHz Pentium systems). Speed improvements are
expected to come from eliminating some of the over-
lapping feature templates, generalized speedups for log-
linear training, and perhaps further factoring.

6 Conclusion

We have explored morphological disambiguation of di-
verse languages using log-linear sequence models. Our
approach reduces error rates significantly on POS tag-
ging (Arabic and Czech), morpheme sequence recovery
(Korean and Arabic), and lemmatization (all three lan-
guages), compared to baseline state-of-the-art methods
For complex analysis tasks (e.g., Czech tagging), we have
demonstrated that factoring a large model into smaller
components can simplify training and achieve excel-
lent results. We conclude that aconditionally-estimated
source model informed by an existing morphological dic-
tionary (serving as an unweighted channel) is an effective
approach to morphological disambiguation.
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Serial combination of rules and statistics: A case study in
Czech tagging. InProc. of ACL.
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