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Abstract

Dynamic type-checking and object-oriented programming

often go hand-in-hand; scripting languages such as Python,

Ruby, and JavaScript all embrace object-oriented (OO) pro-

gramming. When scripts written in such languages grow and

evolve into large programs, the lack of a static type disci-

pline reduces maintainability. A programmer may thus wish

to migrate parts of such scripts to a sister language with a

static type system. Unfortunately, existing type systems nei-

ther support the flexible OO composition mechanisms found

in scripting languages nor accommodate sound interopera-

tion with untyped code.

In this paper, we present the design of a gradual typing

system that supports sound interaction between statically-

and dynamically-typed units of class-based code. The type

system uses row polymorphism for classes and thus supports

mixin-based OO composition. To protect migration of mix-

ins from typed to untyped components, the system employs a

novel form of contracts that partially seal classes. The design

comes with a theorem that guarantees the soundness of the

type system even in the presence of untyped components.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features—Classes

and objects

General Terms Languages, Design

Keywords gradual typing, first-class classes, contracts,

sealing, design by contract, row polymorphism, blame theo-

rem (proof technique)
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1. Untyped Object-Oriented Style

The popularity of untyped programming languages such as

Python, Ruby, or JavaScript has stimulated work on com-

bining static and dynamic type-checking. The idea is now

popularly called gradual typing [27]. At this point, gradual

typing is available for functional programming languages

such as Racket [33, 34], for object-oriented languages such

as Ruby [12] or Thorn [38], and for Visual Basic [23] on the

.NET platform. Proposals for gradual typing also exist for

JavaScript [19] and Perl [31]. Formal models have validated

soundness for gradual type systems, allowing seamless in-

teroperation between sister languages [22, 27, 32].

(define drracket-frame%
(size-pref-mixin
(searchable-text-mixin
(searchable-mixin
(status-line-mixin
(text-mixin
(editor-mixin
(standard-menus-mixin
frame%))))))))

Figure 1. Abbreviated code with a chain of mixins

Unfortunately, no existing gradual type system supports

the full range of object-oriented styles found in scripting

languages. These untyped languages tend to support flexible

mechanisms for class composition, such as mixins or traits,

that allow the programmer to abstract over inheritance. Fur-

thermore, some untyped languages support a generalization

of mixins and traits where classes are first-class values and

thus can inherit from other classes at runtime. For example,

the implementation of the DrRacket IDE [8] makes exten-

sive use of layered combinations of mixins to implement text

editing features, as seen in the abbreviated example given in

figure 1—the full code uses 17 mixins.

In such languages, class composition requires the pro-

grammer to reason about the specialization interfaces [20]

of superclasses. A faithful type system must enable the pro-

grammer to express this reasoning via types. Meanwhile, a

gradually typed language should support the exchange of



import widget% from "gui.rkt"
(define editor%

(class widget%
(super-new)

(define/public (on-key key)

(case key
[("C-x") (do-cut)]
. . . ))

(define/public (on-paint) . . . )

(define/public (save-file name) . . . )

(define/private (do-cut) . . . )

. . . ))

(define (modal-mixin base%)

(class base%
(super-new)

(field [mode ’command])

(define/public (toggle-mode)

(if (eq? mode ’command)

(set! mode ’insert)
(set! mode ’command)))

(define/override (on-key key)

(if (eq? mode ’command)

(on-key/cmd key)

(on-key/ins key))) . . . ))

"editor.rkt"

Figure 2. Editor module

classes between typed and untyped components while en-

forcing the type system’s invariants. This desideratum im-

plies protecting cross-component inheritance.

To address these issues, we propose a novel gradual type

system that properly validates a programmer’s reasoning in

the presence of both dynamic class composition and inheri-

tance across untyped-typed boundaries. Our design rests on

two technical results. First, we introduce partial run-time

sealing as a mechanism to protect inheritance-related in-

variants at the boundary between typed and untyped com-

ponents. Second, we utilize row polymorphism to express

constraints on class composition at component boundaries.

We present examples motivating the design in section 2.

Our design comes with a formal model, which we outline

in section 3. We address soundness for the system, including

typed-untyped interaction, in section 4. 1

2. Typing & Protecting First-Class Classes

We use Racket—a language with first-class classes [11]—to

present our design. Our choice of language is motivated by

our practical experience with first-class classes in Racket and

the availability of Typed Racket [33], a gradually typed sister

language of Racket. While our design is developed with

Racket in mind, many of the lessons learned should apply to

other languages with dynamic class and object composition,

such as Ruby, Python, or JavaScript.

In Typed Racket, untyped and typed code interoperate at

the granularity of modules. Interactions between modules

are mediated by higher-order behavioral contracts [9]. That

is, when exporting values to untyped modules from typed

modules, the language turns types into appropriate contracts.

In a typed module, the programmer annotates imports from

untyped modules with types, that are enforced at runtime via

contracts.

1 For the complete definitions and proofs, see the technical report version of

this paper [30].

Unfortunately, Typed Racket does not currently support

first-class classes and the programming patterns they sup-

port, particularly mixins and traits. While these program-

ming patterns are widely used, they greatly complicate grad-

ual typing. To illustrate the problems, we present a series of

examples using (mostly) Racket syntax. The scientific reader

will easily recognize similar problems in related languages.

2.1 Programming with First-Class Classes

The architectures of GUI toolkits showcase the benefits of

OO programming, including the use of dynamic class com-

position. Our goal is, however, to expose the pitfalls of mi-

grating untyped OO code to a typed world. To that end, we

start with an untyped sample library for text editing wid-

gets and then migrate some the code to an evolving explicitly

typed dialect of the language.

Classes in Racket The editor%2 class in figure 2 extends

widget%, a base class provided by the GUI library. The new

sub-class uses super-new to call the constructor of widget%.

It defines three new public methods: on-key for handling key

events, on-paint for drawing the contents to the screen, and

save-file for saving the contents of the editor.

The first position in the class form, which specifies the

superclass, is notably not limited to names of classes. We

can supply any expression as long as it evaluates to a class.

This feature allows the definition of runtime mixins.

Mixins A mixin is simply a function that take a class as

an argument and subclasses it using the class form. With

mixins, programmers may parameterize classes over base

classes and thus decouple features from specific points in

class hierarchies. The right-hand column in figure 2 presents

a sample mixin that adds simple modal editing—as in vi—

to an arbitrary editor.

2 By convention, class names are suffixed with % in Racket.



Concretely, modal-mixin adds a mode field that controls

which keybindings are active, initially set to the command
mode. The mixin explicitly overrides the on-key method so

that it dispatches key handling to the appropriate method.3

We can apply the mixin to create a concrete modal editor:

(define modal-editor% (modal-mixin editor%))

Not all applications of modal-mixin to base classes are suc-

cessful. For example, if the base class already implements a

toggle-mode method or lacks an on-key method, then mixin

application fails with a runtime error.

In other words, public method definitions require the

absence of the method in the superclass while override

definitions require their presence. Our type system must

express these restrictions in order to accommodate mixins

or other dynamic patterns of composition.

As defined, modal-mixin can be applied to any class that

lacks the method toggle-mode and has the method on-key.

Thus, modal-mixin’s functionality is not tied to a particular

class hierarchy and is composable with other editor features.

More concretely, we can compose modal-mixin with other

mixins from our editor library to produce several combina-

tions of functionality:

(define ide-editor%
(modal-mixin

(line-num-mixin (indent-mixin editor%))))

(define word-processing-editor%
(modal-mixin

(spelling-mixin (search-mixin editor%))))

In short, mixins are polymorphic with regard to the special-

ization interface [20] that the mixin expects. With this in

mind, we need to consider how to accommodate the pro-

gramming patterns we have just discussed in a typed setting.

2.2 A First Design for Typed First-Class Classes

From our previous discussion, we can identify two require-

ments for a typed sister language: it must support class poly-

morphism and its types must express constraints on method

presence and absence. One possibility is to use a type system

with bounded polymorphism and subtyping for class types.

This choice is problematic, however, because runtime inher-

itance and subtyping are at odds.

For example, consider this code snippet:

(define typed-editor%
(class widget%

(super-new)

(define/public (on-key [key : String]) : Void

(case key
[("C-x") (do-cut)] . . . ))

(define/public (on-paint) : Void . . . )

(define/public (save-file [name : String]) : Void . . . )

(define/private (do-cut) : Void . . . ) . . . ))

3 Like C♯, Racket requires that override methods be explicitly identified.

It defines a typed variant of the editor% class from fig-

ure 2. The revised definition is like the untyped one but

adds type annotations to methods. Width subtyping on class

types allows casting a class to a narrower type, i.e., the

type system can forget methods or fields. If the type sys-

tem allowed width subtyping on class types, typed-editor%
could be downcast to T = (Class ([on-paint : (→ Void)])).

This is fine for a client that uses the instances of class, as

the instances would have the type (Object ([on-paint : (→
Void)])) and therefore support only calls to the on-paint
method. However, inheritance is now unsound because the

type system has no knowledge of whether methods are actu-

ally present or absent.

Thus, the following definition type-checks but raises a

runtime error because a public method is redefined:

(define piano%
(class (cast T typed-editor%) ;; subsumption

(super-new)

;; already defined in superclass

(define/public (on-key [key : Note])

: Void

(play-sound key))))

In short, naive width subtyping for class types is unsound

with respect to Racket’s inheritance semantics; even for

Java, the naive approach would fail because a subclass may

override a method with a different type.

Row polymorphism Another possibility is to repurpose row

polymorphism [36], studied in the context of type infer-

ence for objects [26, 36], object calculi [10], and extensible

records [13, 18]. Functions over extensible records also re-

quire polymorphism over row members with constraints on

the presence or absence of members. Unlike subtyping, row

polymorphism prohibits forgetting class members. Instead,

row polymorphism for classes abstracts over the features of

a class type—both method signatures and types of fields—

using constraints on row variables to express absence and

row signatures to express presence.

With row polymorphic types, the type of modal-mixin
from figure 2 could be written as follows:

(∀ (r / on-key toggle-mode))

((Class ([on-key : (String → Void)] | r))
→
(Class ([toggle-mode : (→ Void)]

[on-key : (String → Void)] | r))))])

The mixin’s type is given as a function type that is poly-

morphic in a row variable r, which, in turn, is constrained

to lack on-key and toggle-mode members. These particular

constraints are needed because r is a placeholder for the rest

of the methods or fields, which should contain neither on-key
nor toggle-mode. If r has an on-key method, it conflicts with

on-key in the argument class that the mixin overrides. Since



Transparent Opaque Sealing

Classes

Contracts

Clients

def/pub (m1 x) . . .

def/pub (m2 x) . . .

m1 : c1 7→ c2

(m1 o) X

(m2 o) X

def/pub (m1 x) . . .

def/pub (m2 x) . . .

m1 : c1 7→ c2

def/pub (m1 x) . . .

def/pub (m2 x) . . .

m1 : c1 7→ c2

(m1 o) X

(m2 o) ×

Figure 3. Kinds of class contracts

modal-mixin adds toggle-mode to its base class, whose type

contains r, the row variable r must also lack toggle-mode.

Row variables are instantiated like ordinary type vari-

ables. Applying a row abstraction to a concrete row type re-

quires that the row satisfies the constraints on the variable.

Thus, the variable r above can be instantiated with the con-

crete row ([on-paint : (→ Void)] [insert : (String → Void)])

but not with the row ([on-key : (String → Void)]) or a row

that contains this signature, due to the constraints on on-key.

By using row polymorphism, we make a tradeoff with

subtyping. Class abstractions specify polymorphism explic-

itly in their type, rather than allowing the use of the sub-

sumption rule. That is, we shift the burden of typing to the

implementor of a mixin. This does not complicate the ap-

plication of mixins because, in practice, type application of

rows can be inferred [35]. In contrast, our type system does

allow width subtyping on the types of objects, since objects

in Racket cannot be extended after creation.

In other words, our approach is pay-as-you-go. Program-

mers need to be aware of row polymorphism only when deal-

ing with abstractions that are not provided in most typed

object-oriented languages, such as mixins. Meanwhile, pro-

grammers need not consider row polymorphism when deal-

ing with objects, and can instead reason about their programs

using familiar subtyping rules.

2.3 Protecting Typed Code from Untyped Code

Types are only half of the gradual typing story. Runtime

monitoring of type system invariants is the other half, which

we handle with higher-order contracts [9, 29] in the style of

Tobin-Hochstadt and Felleisen [32]. Every type for a class

becomes a run-time contract at the boundary where it flows

from a typed module to an untyped module or vice versa. A

contract for first-class classes specifies clauses that protect

methods and fields of the contracted class. Class contracts

are specified separately from the definition of the class, since

classes are values and are not defined in a static hierarchy.

Our contract-based approach does not scale smoothly be-

cause we wish to formulate types that are polymorphic in

method and field clauses. Figure 3 presents illustrative di-

agrams for three different ways of dealing with methods

or fields not included in a class contract. Strickland and

Felleisen’s contracts [29] are transparent: they allow un-

mentioned methods or fields to pass through without any en-

forcement. Our design requires two additional mechanisms

for handling unmentioned behavior in order to fully protect

typed code: opaque class contracts and sealing class con-

tracts. Opaque contracts disallow any unmentioned behavior

by raising a contract error at the boundary. Sealing contracts

allow unmentioned behavior to pass through the boundary

but require a matching unsealing to access it.

import editor% from "editor.rkt" with type:

(Class [on-key (String → Void)]

[on-paint (→ Void)] . . . )

(send (new editor%) on-key "C-x")

"typed-editor.rkt"

Opaque contracts Suppose we import the editor functional-

ity from the untyped module in figure 2 into the nearby typed

module typed-editor.rkt. Note that we use a double border

to distinguish typed modules from untyped ones. Since the

editor class is untyped, we must specify an import type for

the class so that Typed Racket can type check its uses. The

given class type specifies the signatures of the individual

methods. To protect this import, a natural choice would be to

translate the type into a class contract that checks matching

predicates. Unfortunately, the existing class contracts imple-

ment transparent behavior, i.e., they require that the meth-

ods mentioned in the contract have the specified behaviors

but make no guarantees about any unspecified methods.

Hence, transparent contracts cannot protect typed code

properly, even in this simple case. Recall that editor% in fig-

ure 2 implements a method that is absent from its import

type, namely save-file, and thus its corresponding transpar-

ent import contract allows the method to pass through. In the

code fragment labeled "typed-editor.rkt" (continued), this



would result in a name conflict in the typed module because

the type system does not know that editor% provides save-
file. That is, the code would type-check but signal a runtime

error blaming the typed module for an error that the type

system seemingly ruled out.

. . .

(define my-editor%
(class editor%

(super-new)

;; error: save-file must be absent in editor%
(define/public (save-file [filename : String])

: Void

. . . )))

"typed-editor.rkt" (continued)

To avoid this safety gap, we introduce and use opaque

contracts so that typed code cannot accidentally import

classes that contain unknown methods. Note that the intro-

duction of opaque contracts and the prohibition on subtyping

for class types are due to the same underlying cause, namely

the desire to retain familiar inheritance semantics.

import editor% from "typed-editor.rkt"
import modal-mixin from "editor.rkt" with type:

(∀ (r / on-key toggle-mode)

((Class ([on-key : (String → Void)] | r))
→
(Class ([toggle-mode : (→ Void)]

[on-key : (String → Void)] | r))))

(modal-mixin% editor%)

"typed-modal.rkt"

Sealing contracts For every feature in our type system, we

need a corresponding feature in the contract system to en-

force its invariants at runtime. Thus, we need some form of

parametric contract to protect row polymorphic functions on

classes. Consider what happens when an untyped mixin is

imported into the typed module "typed-modal.rkt" below.

This module imports modal-mixin from figure 2 with a para-

metric type and calls the mixin on the editor% class from

"typed-editor.rkt". Assuming modal-mixin is defined prop-

erly, no runtime error can blame the typed module.

Suppose, however, that the programmer who wrote "ed-
itor.rkt" adds another public method to modal-mixin, as in

the revised version of "editor.rkt". Even if the creator of

typed-modal.rkt does not adapt the type to the new situation,

our system must discover the additional method and signal

a violation—otherwise the type system would be unsound.

One apparent option is to map the type to an opaque contract,

which prohibits the flow of modal-mixin across the module

boundary. Unfortunately, opaque contracts would also rule

out the application of the correct version of modal-mixin to

a base class with methods other than on-key.

. . .

(define (modal-mixin base%)

(class base%
(super-new)

. . . ;; as above

(define/public (switch-mode) . . . )

. . . ))

"editor.rkt" (revised)

Instead, we introduce and use sealing contracts, which

prevent the addition or use of sealed methods until a cor-

responding unsealing contract is applied. Sealing contracts

use unforgeable keys generated at run-time to prevent unau-

thorized access. This prevents modal-mixin from adding un-

specified methods but allows unspecified methods from the

base class to flow through mixin application. In other words,

sealing contracts for mixin types reflect their key feature,

polymorphism over base types.

Metaphorically speaking, sealing contracts establish a

private channel through one component to another. We use

such a channel to send a typed class through an untyped

mixin, ensuring that the mixin cannot tamper with the pro-

tected names of the class en route. A sealing contract at a

negative position (e.g., function argument) establishes an

entrance to the channel. Dually, a contract in a positive po-

sition (e.g., function result) establishes an exit. The ends of

the channel are locked with unforgeable keys, allowing only

authorized code to send and receive values on the channel.

Our system seals classes because class types are poly-

morphic. Classes that pass through sealing contracts are not

completely inaccessible, however. Instead, sealing is applied

at the granularity of class members such as methods and

fields. Attempts to invoke a sealed method name, access a

sealed field name, or extend a class using a sealed name all

fail with a contract error. In contrast, sealing contracts do not

impose any access limitations on exposed methods. This es-

tablishes the connection with row polymorphism: class types

allow the use of concrete members at the specified type but

disallow the use of abstract members from a row variable.

Like most OO languages, Racket also contains stateful

operations. In general, the combination of polymorphic con-

tracts and state requires some care to ensure soundness. In

particular, the precise timing for key generation on seals

is crucial. One choice is to generate keys for seals when a

contract is applied, e.g., when an untyped value is imported

into a typed module. For example, consider the situation in

figure 4a. The "state.rkt" module exports state-mixin and

"broken-client.rkt" imports the mixin with a type that sug-

gests it is the identity function on classes. Suppose that keys

for seals are generated once as the mixin is imported. The

first time that state-mixin is called, editor% is sealed on en-



(define (state-mixin base-class)
(define storage #f)
(cond [(not storage)

(set! storage base-class)
base-class]

[else storage]))

import state-mixin from "state.rkt"
with type:

(∀ (r) (Class (| r)) → (Class (| r)))

(send (new (state-mixin editor%))

on-key)

(send (new (state-mixin modal-editor%))

toggle-mode)

"state.rkt"

"broken-client.rkt"

(a) Misuse of state

(define (search-mixin base-class)
(class base-class

(super-new)

(define/public (search string)

. . .

;; bad call to save-file

(send this save-file 0))))

import editor% from "typed-editor.rkt"
import search-mixin% from "search.rkt"

with type:

(∀ (r / autosave)

(→ (Class ( | r))
(Class

(search : (String → Void) | r))))

(define searchable% (search-mixin editor%))

(send (new searchable%) search "x")

"search.rkt"

"search-client.rkt"

(b) Invalid method invocation

Figure 4. Potential violations of soundness via mixins

try to the mixin and unsealed on exit. Sending the on-key
message is thus acceptable, and no contract errors are raised.

The next line is a call to state-mixin, perhaps formu-

lated under the assumption that it behaves like the identity

function—a possibility suggested by its row-polymorphic

type. This time, the mixin is applied to modal-editor%,

which is sealed with the same key as editor%. This allows

state-mixin to return editor% without triggering a contract

error, and that cause the method missing error for toggle-
mode. In short, even though the code type-checked in our

imaginary type system, it caused a run-time type error.

To be sound, our system must generate these seals at

each mixin invocation. This ensures that editor% andmodal-
editor% are sealed with distinct unforgeable keys and that

the second call to state-mixin signals a contract error.

Object contracts are like class contracts, except that they

transparently protect particular instances. Since object types

offer width subtyping, contracts on objects need not enforce

the kind of opacity that class contracts enforce.

2.4 Access restrictions for method invocation

While opaque contracts ensures that untyped code cannot

access methods unlisted in interfaces, dynamic uses of in-

heritance (e.g., mixins or traits) create a potential hole in

this protection. Consider the example in figure 4b. An un-

typed mixin imported into the "search-client.rkt" module

editor%

save-file

searchable%

search

class/c {-}

(send obj search "x")

class/c {search : string? → void?}

typed

untyped

Figure 5. A snapshot of the class hierarchy after unsealing

has a method search that assumes the existence of a save-file
method in its base class. Moreover, search provides a faulty

argument to save-file. When search is invoked on an instance

of searchable%, an error occurs due to that faulty argument.

Since the type given in the client module does not mention



e ::= v | x | (e e) | op(e) | if e e e | send(e, m, e) | iget(f∗, e) | iset!(f∗, e, e) | new(e) (expressions)

| monl,ll (c, e) | class(e) {f := v mpx. e mox. e}

op ::= num? | bool? (primitives)

v ::= #t | #f | n | cv | o | λx. e (values)

cv ::= object% | class/vι(cv) {(f, v) mx. e} (class values)

o ::= object/v(cv) {(f, a)} (objects)

f∗ ::= f | a (field terms)

x ∈ Var (variables)

f ∈ Field (fields)

m ∈ Method (method names)

a ∈ Location (locations)

l, j, k ∈ Label (contract labels)

Figure 6. Untyped Expressions

save-file and the class is unsealed by the time it is instan-

tiated, sealing contracts do not catch this faulty method in-

vocation. That is, a method invocation from untyped code

to typed code can be unsafe and must be rejected unless a

contract protects the method.

To prevent faulty access via mixins, we require method

calls to dispatch to either a method defined within the same

component or a contracted method. That is, if untyped code

invokes a method that is not protected by a contract, its

definition must reside in untyped code as well. The same

condition applies to typed code.

Figure 5 illustrates this restriction graphically. The dia-

gram shows the object interactions established by the code in

figure 4b. There are two relevant component transitions here:

one between the editor% class and the mixin from the un-

typed component, and one between searchable%—created

by the mixin—and its use in the typed component. A con-

tract protects both boundaries, but the inner contract disal-

lows the call to save-file because the contract specification

does not include that method.

The problem with cross-boundaries access was discov-

ered during a first, failed attempt to establish the soundness

of our type system design. Conversely, the failure suggested

this constraint on protected method calls. Fortunately, this

constraint does not reduce the expressiveness of purely typed

or untyped code, but it requires that invocations that trans-

fer control from typed to untyped code (and vice versa) are

properly monitored by the contract system.

3. Formalizing Typed First-Class Classes

Our examples have exposed thorny problems about pro-

grams that use dynamic class composition across the bound-

ary between typed and untyped components. To communi-

cate our solution, we present a formal model of gradually-

typed dynamic class composition. The model is both a vehi-

cle for a compact presentation of our design and a platform

for proving its soundness. We consider type soundness the

baseline property of any type system, to be preserved even

when typed components are linked with untyped code.

3.1 Syntax

Our language, called TFCC, allows the embedding of typed

terms in untyped terms and vice versa. The interactions

between them are mediated by monitors with contracts. A

monitored term can be thought of as a server module that

exports services to its context, i.e., its client(s). This section

starts with a look at the untyped portion of the language

(figure 6) and then proceeds to the typed portion (figure 7).

Expressions include values, variables, applications, primi-

tive operations, conditionals, method invocation, object in-

stantiation, field mutation, contract monitors, and classes.

The set of values includes booleans, numbers, class values,

objects, and λ-abstractions. Method invocations are written

send(e0, m, e1) where e0 is the receiver, m the method

name, and e1 the argument to the method.

The expression class(e) {f := v mpx. ep mox. eo}
consists of a superclass expression e, field names f paired

with corresponding initial values, and definitions of public

methods mp and override methods mo. If the superclass ex-

pression evaluates to a suitable value, a class reduces to a

class value class/v with a unique key ι that is used for

method dispatch. The term object% represents the root of

the class hierarchy. Field declarations produce mutable local

fields, which are only accessible from within method bodies.

We include state so that the calculus can express examples

that introduce potential unsoundness in the absence of ap-

propriate dynamic sealing, as explained in section 2.

State Fields make objects stateful. The iget and iset!

expressions, respectively, get and set field values locally.

Types include Int and Bool plus function types. An object

or class type consists of rows, describing method signatures.



σ ::= τ | ∀(ρ\m).τ (type schemes)

τ ::= Int | Bool | Class er | Object r | τ → τ (types)

r ::= {(m : τ)} (rows)

er ::= r | {(m : τ) | ρ} (extended rows)

eτ ::= (eτ eτ ) | x | op(eτ ) | if eτ eτ eτ | Λ(ρ\m). eτ | eτ [r] | send(eτ , m, eτ ) (typed expressions)

| iget(f∗, eτ ) | iset!(f∗, eτ , eτ ) | new(eτ ) | monl,ll (c, e)

| class(eτ ) {f : τ := vτ mp(x : τ) : τ eτ mo(x : τ) : τ eτ}

vτ ::= #t | #f | n | cvτ | oτ | λ(x : τ) eτ (typed values)

cv ::= object% | class/vι(cvτ ) {(f, τ, vτ ) mp(x : τ) : τ eτ mo(x : τ) : τ eτ} (typed class values)

o ::= object/v(cvτ ) {(f, τ, a)} (typed objects)

Figure 7. Typed Expressions

For example, {(on-key : τ1), (on-paint : τ2)} is a row

with labels on-key and on-paint and types τ1 and τ2. Rows

in class types may be extended with a row variable as in

{(on-key : τ1), (on-paint : τ2) | ρ}. With r1 ⊕ r2, we

concatenate two rows.

Typed expressions require type annotations for all variable

declarations. Since we abstract over rows, we also have type

abstractions Λ(ρ\m). eτ and type applications eτ [r].

Untyped-Typed Interaction A monitor mon
k,l
j (c, e) sepa-

rates a program into components [5], i.e., e and the context

of mon, mediated by the contract c. The superscript labels k
and l name the server and client components respectively.

The label j names the contract c. In our model, monitors

play only one role. They mediate between typed and untyped

components. Hence it suffices to use just two labels, instead

of unique labels per components: u for untyped, t for typed.

Our reduction semantics models exchanges of values be-

tween components with substitutions of monitored values,

which embeds typed values within untyped code and vice

versa. A typed-in-untyped embedding is valid if the moni-

tor’s contract is related to the type of the embedded term; an

untyped-in-typed embedding is valid if it type-checks in the

typed context with the contract interpreted as a type. The bi-

jective function TJK, defined in figure 9, specifies the natural

correspondence between contracts and types.

Contracts check type-like properties at runtime. In contrast

to Eiffel, our higher-order contracts describe the behaviors

of entire objects, including their methods [9, 29].

The model’s contract language includes flat or predicate

contracts, function contracts, class contracts, and contracts

for parametric functions. Figure 8 presents the syntax of con-

tracts in two parts: pre-contracts are surface syntax, which

are elaborated into (core) contracts.

c ::= flat(op) | c 7→ c (pre-contracts)

| ∀c(ρ\m).(c 7→ c) | class/c•([m c 7→ c])

| class/c∗(ρ, [m c 7→ c]) | object/c([m c 7→ c])

e ::= . . . | blamell (expressions)

c ::= flat(op) | c 7→ c (core contracts)

| ∀c(ρ\m).(c 7→ c) | class/c•([m c 7→ c])

| seal/c([m c 7→ c],m, γ)

| unseal/c([m c 7→ c], γ) | object/c([m c 7→ c])

γ ::= ς | ρ (key terms)

ς ∈ Key (keys)

v ::= . . . | ∀Gl,ll (ρ\m).(c 7→ c){v} (values)

cv ::= . . . | Gl,ll {cv, (m c 7→ c)} (class values)

| SGl,ll {cv,m, ς}

o ::= . . . | OGk,lj {o, [m c 7→ c]} (objects)

Figure 8. Contracts and guards

Class contracts come in two varieties: opaque and sealing.

The former differs from transparent class contracts [29] in

that they enforce the absence of methods not mentioned

in a contract. This feature of class/c• ensures that typed

modules can safely import classes from untyped modules.

Sealing contracts class/c∗ have meaning only within a

row polymorphic contract. They are used to specify whether

a given contract position should be polymorphic. For a nega-

tive position, an elaboration from pre-contracts to core con-

tracts translates class/c∗ to a sealing contract seal/c; it

becomes an unseal/c contract in a positive position. Both

seal/c and unseal/c contain γ, which is either a variable

or a key for unlocking seals.4

4 The variable case is required by our choice of semantics and occurs only

in intermediate reduction steps.



The runtime syntax also includes guards. Guards act like

contract monitors but, unlike monitors, are values. Since

guards are values, they can pass through contract boundaries.

The parametric guard ∀G
k,l
j (ρ\m).(c 7→ c){v} behaves like

a function. When applied, it generates a fresh seal key for its

contract. This ensures that keys cannot be forged using state,

as explained in section 2.3.

Since contract checking for a class is delayed until its

methods are invoked, we use G
k,l
j {cv, (m c 7→ c)} to retain

the contracts in the class hierarchy. Similarly, the sealing

guard SG
l,k
j {cv, [m c1 7→ c2],m′, ς} wraps a class cv in or-

der to retain seals until they are checked.

TJflat(int?)K = Int

TJflat(bool?)K = Bool

TJc1 7→ c2K = TJc1K → TJc2K

TJ∀c(ρ\m).(c1 7→ c2)K = ∀ρ\m.TJc1 7→ c2K

TJclass/c•([m c1 7→ c2])K =

Class {(m : TJc1 7→ c2K)}

TJseal/c([m c1 7→ c2],m, ρ)K =

Class {(m : TJc1 7→ c2K) | ρ}

TJunseal/c([m c1 7→ c2], ρ)K =

Class {(m : TJc1 7→ c2K) | ρ}

TJobject/c([m c1 7→ c2])K =

Object{(m : TJc1 7→ c2K)}

Figure 9. Type-contract correspondence

3.2 Type System

The type system is based on a typed λ-calculus with subtyp-

ing, limited mutable variables, object types, and class types.

The important typing rules are shown in figure 34. The rules

use a judgement Γ |Σ ⊢ e : τ that states that a term e has

type τ assuming free variables are typed in Γ and store loca-

tions in Σ. Store typings are used to type-check operations

on the private fields of objects.

Row abstractions are checked using T-ROWABS. Appli-

cations of abstractions to rows (T-ROWAPP) require that the

provided row matches the absence labels on the abstraction’s

bound variable using the Γ ⊢ ρ\m judgement.

The interesting typing rules are those involving class and

object types. A class is well-typed (T-CLASS) if its super-

class is a valid class and allows extension with the new pub-

lic and override methods. These conditions are ensured by

the judgements that a row lacks a member, Γ ⊢ er\m, and

that a row has a member, Γ ⊢ m ∈ er. If the superclass

type contains a row variable, then all methods must be com-

patible with the absence labels on the variable. Fields and

methods must all be well-typed in the usual sense. Method

bodies are checked under the assumption that the receiver

has type Object RJerK, where RJerK denotes the class’s row

but without the row variable if er contains one.

Object instantiation (T-NEW) requires that the instanti-

ated class has a concrete type, i.e., any type variables have

been instantiated. Method invocation is checked by T-SEND.

Since objects have concrete rows, an object type is a

subtype of another if the corresponding rows are subtypes

via the standard width subtyping rule.5 Meanwhile, there are

no subtyping rules for classes because row polymorphism

replaces subtyping for classes, as detailed in section 2.

We defer rules for interactions between typed and un-

typed code to section 4.3, where we explain the soundness

theorem for mixed type programs.

3.3 Operational Semantics

Our operational semantics uses context-sensitive reduction

rules [7]. Figure 12 presents the evaluation contexts for our

language and lists the reduction rules, which in turn rely

on the metafunctions defined in figure 13. The reflexive-

transitive closure of the reductions determines the evaluation

function.

We first explain the semantics of the base language with-

out contracts and then incrementally introduce the cases for

contract monitoring. The typed language has the exact same

semantics as the untyped one. For some purposes, we as-

sume that the types are first stripped from typed expressions;

in other cases, we assume that the reduction system carries

type information without using it.

The reduction rules in figure 11 define the conventional

behavior of λ-expressions, primitives, and conditionals; we

omit the obvious definition of δ. The semantics of first-class

classes is straightforward as well. The evaluation contexts

ensure that class expressions reduce only after the superclass

expressions are reduced to values. A class successfully re-

duces to a value (CLASS) when all of its override methods

are present in the superclass and its public methods absent.

Method invocation (SEND) triggers only if the given

method m is present in the class hierarchy of the receiving

object. The rule relies on a metafunction to look up the tar-

get method in the class hierarchy of the receiver object. The

Pull function traverses the hierarchy to locate the method.

The rules for state are conventional. Creating a new ob-

ject from a class (NEW) chooses unallocated addresses in

the store and reduces to an object value. Similarly, getting

and setting fields (GET, SET) just involves looking up and

replacing values in the store.

Figure 12 introduces contract monitoring. Since reduc-

tions may result in contract violations, reductions may pro-

duce the error term blamelj that pinpoints the misbehaving

5 Depth subtyping is omitted for simplicity, but we conjecture that its addi-

tion poses no problems.



Γ |Σ ⊢ e : τ

T-ROWABS

Γ, (ρ\m) |Σ ⊢ e : τ

Γ |Σ ⊢ Λ(ρ\m). e : ∀(ρ\m).τ

T-ROWAPP

Γ |Σ ⊢ e : ∀(ρ\m).τ Γ ⊢ r\m

Γ |Σ ⊢ e [r] : [r/ρ] τ

T-SEND

Γ |Σ ⊢ e0 : Object r
(m : τ1 → τ2) ∈ r Γ |Σ ⊢ e1 : τ3 τ3 <: τ1

Γ |Σ ⊢ send(e0, m, e1) : τ2

T-NEW

Γ |Σ ⊢ e : Class r

Γ |Σ ⊢ new(e) : Object r

T-ROOT

Γ |Σ ⊢ object% : Class {}

T-OBJECT

Γ |Σ ⊢ cv : Class r ∀i,Σ(ai) = τi

Γ |Σ ⊢ object/v(cv) {(fi, τi, ai)} : Object r

T-CLASS

Γ |Σ ⊢ es : Class ers Γ ⊢ ers\m
p
i Γ ⊢ mo

i ∈ ers
Γ, this : τobj , x

p
i : τp1if : τf |Σ ⊢ e

p
i : τp2i

Γ, this : τobj , x
o
i : τo1i , f : τf |Σ ⊢ eoi : τo2i

Γ ⊢ vfi : τfi er = ers ⊕ {(mp : τp1 → τp2 )} τobj = Object RJerK

Γ ⊢ class(es) {f : τf := vf mp(xp : τp1 ) : τ
p
2 ep mo(xo : τo1 ) : τ

o
2 eo} : Class er

Figure 10. Selected type rules

E ::= [ ] | (E e) | (v E) | op(E) | if E e e | send(E, m, e) | send(v, m, E) | igetι(f∗, E)

| iset!ι(f∗, E, e) | iset!ι(f∗, e, E) | new(E) | monl,ll (c, E) | class(E) {f := v mx. e mx. e}

〈E[· · · ], S〉 →֒ 〈E[· · · ], S〉

(λx. e v) · [v/x] e BETA

op(v) · δ(op, v) DELTA

if #t e2 e3 · e2 IFTRUE

if #f e2 e3 · e3 IFFALSE

class(cv) {f := v mpxp. ep moxo. eo} . class/vι(cv) {(f, v) mx.e} CLASS

if mp ∩Methods(cv) = ∅ and mo ⊆ Exposed(cv)

and where ι is fresh and mx.e = mpxp. [�/idι] ep ⊕moxo. [�/idι] eo

send(o, m, v) . (
[

this/ eo, a/f
]

e v) SEND

if m ∈ Methods(o)

and where e = Pull(o,m) and (f, a, ι) = ObjectFields(o)

〈E[new(cv)], S〉 · 〈E[object/v(cv) {(f, a, ι)}], [v/a]S〉 NEW

where (f,v,ι) = Fields(cv) with a ∩ dom(S) = ∅
〈E[igetι(a, o)], S〉 · 〈E[v], S〉 GET

if (f, a, ι) ∈ ObjectFields(o) and where v = S(a)
〈E[iset!ι(a, o, v)], S〉 · 〈E[v], S [a/v]〉 SET

if (f, a, ι) ∈ ObjectFields(o)

Figure 11. Reductions for the base language



component l as violating contract j. Blame is propagated

through all evaluation contexts.

Contracts control how monitors behave. Depending on

the kind of contract, monitors reduce to additional moni-

tors or guards, which immediately check the contract or de-

lay checking in higher-order cases. When immediate checks

fail, contracted values reduce to contract errors, blaming a

specific component l for violating some fixed contract j.

The reduction rules for monitors deserve special atten-

tion. Monitoring an immediate contract reduces to a condi-

tional expression (FLATC). If the predicate fails, a contract

error is signalled. A monitor for a function contract reduces

to a wrapped function (FUNC), which monitors argument

and result contracts with appropriate blame [9].

Monitors with class or object contracts reduce to guards

that wrap the appropriate classes or objects for higher-

order contract checking [29]. Since our class contracts are

opaque, they enforce the additional constraint that the con-

tracted methods are the actual methods of the protected class

(CLASSC). This constraint protects against the invocation of

unspecified methods, which would otherwise violate safety

as illustrated with the "typed-editor.rkt" example in sec-

tion 2.3. Similarly, object contracts ensure that the protected

object actually has the contracted methods (OBJECTC).

When monitors create guards, the latter track the con-

tracts that need to be carried along for method invocation.

Thus, the Pull metafunction delivers more than a method

definition. When looking up a method, Pull attaches the ap-

propriate contracts to the method as they are discovered in

the class hierarchy. If Pull succeeds, the call reduces to the

wrapped expression applied to the argument value.

Two other details are necessary to understand method

invocation. The receiver of a method call (i.e., this) is

wrapped in contracts found between the method definition

and the caller by ProtectThis. Doing so ensures that dynam-

ically dispatched calls are protected with the expected con-

tracts. Furthermore, the semantics also ensures that meth-

ods can be invoked only if both the caller and method are in

the same component. This prevents a mixin from invoking

a method without protection, preventing the faulty invoca-

tion from the search-mixin example in section 2.3. In other

words, all method invocation must either be dispatched lo-

cally or through a contract monitor.

The remaining contract forms track sealing and unsealing

of methods in order to ensure sound interactions between

typed and untyped code in the presence of functions that

manipulate classes. Such a function must be monitored by

a parametric contract, which reduces to a parametric guard

(∀C). The guard behaves like a function, but with additional

monitoring (∀G-APP). An application of the guard results in

the generation of a seal key ς. It is crucial, as we demon-

strated through the broken-mixin in subsection 2.3, that ev-

ery application is sealed separately in order to prevent viola-

tions of row parametricity due to state.

The contracts contained in a parametric contract are either

sealing or unsealing contracts. A sealing contract checks that

all of the contracted methods are present in the class and

reduces to a seal guard. Similarly, an unseal contract reduces

to an unsealed class protected with a guard.

The semantics of sealing requires additional side condi-

tions for the class and method invocation cases. For class

expressions, the semantics requires that none of the public

or override methods are sealed in the superclass.

Let us illustrate the operational semantics of sealing with

a sample reduction sequence based on the example in fig-

ure 4b. In that example, a typed program invokes the search
method on an object whose class was constructed by the ap-

plication of an untyped but monitored mixin:

c = mon
u,t
j (ctc, mixin) editor%

e = send(new(c), s , "x")
mixin = λc. class(c){s x. send(this, sf, 0) −})
ctc = ∀

c(ρ\−).(seal/c([−] , ∅, ρ))
7→
unseal/c([s sctc] , ρ)

where

sctc = flat(string?) 7→ flat(void?)

The mon term monitors the module import that embeds the

mixin into its use in the typed component with a contract ctc.

The model encodes the untyped mixin from that example as

a function from class c to an extension with method s—short

for search. The contract ctc corresponds to the type in the

example where sctc is the corresponding contract for s .

The monitored mixin is applied to the editor% class,

meaning the reduction starts from this evaluation context:

send(new([ ] editor%), s , "x")

First the monitor itself reduces to a guarded function that

installs a sealing contract on application. Next we reduce

the application of the guarded mixin to the editor%, sealing

editor% as it is substituted in the mixin’s body.

Here is the result of these first few reduction steps:

mon
u,t
j (unseal/c([s sctc] , ς),

class/v(SGt,uj {editor%, [−] , ∅, ς})
{sc x. send(this, save-file, 0) −})

The superclass of the class value is a sealed version of the

editor% class; the unsealing contract remains.

The unsealing yields a guarded class:

G
u,t
j {class/v(Gu,tj {editor%, [−]}){

sc x. send(this, sf, 0)},
[s sctc]}

Finally, this guarded class is instantiated as an object

containing the class. At this point, the method invocation of

s is evaluated, which sets up the body of s as the redex. The

body, in turn, calls the sf method. This method invocation



〈E[blamekj ], S〉 →֒ 〈blamekj , S〉

〈E[· · · ], S〉 →֒ 〈E[· · · ], S〉

class(cv) {f := v mpxp. ep moxo. eo} . class/vι(cv) {(f, v) mx.e} CLASS

if mp ∩Methods(cv) = ∅, mo ⊆ Exposed(cv), mp ⊆ NotSealed(cv)

and where ι is fresh and mx.e = mpxp. [�/idι] ep ⊕moxo. [�/idι] eo

class(cv) {f := v mpxp. ep moxo. eo} · blamelj CLASSERR

if HasBarrier(cv,m), mp
i ∩Methods(cv) = ∅, mo

i ⊆ Methods(cv)
and where m = mp ⊕mo and (l, j) = LocateBarrier(cv,m)

send(o, m, v) . (
[

this/ eo, a/f
]

e v) SEND

if m ∈ Methods(o) and SameOwner(o,m,⊥,⊥)
and where e = Pull(|o|l,m), eo = ProtectThis(|o|l,m, |o|l),

and (f, a, ι) = ObjectFields(o)
send(o, m, v) . blamekj SENDERR

if m ∈ Methods(o), and not SameOwner(o,m,⊥,⊥)
and where (k, j) = OwnerLimit(o,m,⊥,⊥,⊥)

mon
k,l
j (flat(op), v) · if op(v) v blamekj FLATC

mon
k,l
j (c1 7→ c2, v) · λx.monk,lj (c2, (v mon

l,k
j (c1, x))) FUNC

mon
k,l
j (class/c•([m c1 7→ c2]), cv) · G

k,l
j {cv, [m c1 7→ c2]} CLASSC

if m = Exposed(cv)

mon
k,l
j (class/c•([m c1 7→ c2]), cv) · blamekj CLASSCERR

if m 6= Exposed(cv)

mon
k,l
j (object/c([m c1 7→ c2]), o) · OG

k,l
j {o, [m c1 7→ c2]} OBJECTC

if mi ⊆ Exposed(o)

mon
k,l
j (object/c([m c1 7→ c2]), o) · blamekj OBJECTCERR

if m 6⊆ Exposed(o)

mon
k,l
j (seal/c([m c1 7→ c2],m′, ς), cv) · SG

l,k
j {cv, [m c1 7→ c2],m′, ς} SEALC

if mi ⊆ Exposed(cv) and m′\m ∩ Exposed(cv) = ∅

mon
k,l
j (seal/c([m c1 7→ c2],m′, ς), cv) · blamekj SEALCERR

if mi 6⊆ Exposed(cv) or m′\m ⊆ Exposed(cv)

mon
k,l
j (unseal/c([m c1 7→ c2], ς)ρς, cv) · G

k,l
j {Unseal(cv, ς), [m c1 7→ c2]} UNSEALC

if Sealed(cv, ς) and mi ⊆ Exposed(cv)

mon
k,l
j (unseal/c([m c1 7→ c2], ς)ρς, cv) · blamekj UNSEALCERR

if not Sealed(cv, ς) or mi 6⊆ Exposed(cv)

mon
k,l
j (∀c(ρ\m).(c1 7→ c2), v) · ∀G

k,l
j (ρ\m).(c1 7→ c2){v} ∀C

(e v) · (monk,lj (c1 7→ c2Jρ/ςK, v1) v) ∀G-APP

where e = ∀G
k,l
j (ρ\m).(c1 7→ c2){v1} and ς is fresh.

Figure 12. Reductions for monitored terms



name domain, range / purpose

HasBarrier o or cv, m 7→ #t or #f

checks if some m is inaccessible due to a guard.

LocateBarrier o or cv, m 7→ (l, l)
returns the blame labels for the closest inaccessible m in the object or class hierarchy.

SameOwner o or cv, l or ⊥, l or ⊥ 7→ #t or #f

checks if m is owned by the calling context

OwnerLimit o or cv, l or ⊥, l or ⊥, l or ⊥ 7→ (l, l)
returns the label of the calling context of m and of the contract boundary where ownership of m was lost

Pull cv, m 7→ e

returns m’s implementation as a λ-term wrapped with the necessary contracts

ProtectThis o, m, o 7→ o
traverses the first object and its hierarchy to apply all contracts needed to protect the second object when

it is a receiver of a call to m

Sealed cv, ς 7→ #t or #f

checks if cv contains a seal guard that is locked with ς.

Unseal cv, ς 7→ cv
removes seal guards locked with ς in the class hierarchy.

Notsealed o or cv 7→ m
returns unsealed methods in the hierarchy.

Exposed cv 7→ m
returns all the exposed method names in the hierarchy

Methods o or cv 7→ m
returns method names in the hierarchy.

Fields cv 7→ (f, v, ι)
returns the fields’ initial values in the class hierarchy.

ObjectFields o 7→ (f, a, ι)
returns the object’s field values

Figure 13. Metafunctions are defined inductively on the structure of the first argument

triggers the SameOwner metafunction with the sf method

as an argument. This metafunction fails because the method

lacks a contract between the method’s invocation on this

and the implementation in the editor% class in the hierarchy.

Thus, the final result is blameuj as expected.

4. Type Soundness for Mixed Programs

Type soundness establishes a minimal logical standard for a

programming language. In this section, we use the formal

model to prove that our design meets this criterion. Our

proof of soundness requires two steps. First, we must prove

that the type system is sound with respect to the execution

of typed programs. Second, we must show that mixing in

untyped components does not violate the invariants of the

typed components. That is, the interpretation of types as

contracts at component boundaries must prevent any type-

like runtime error assignable to typed components.

For the proof of soundness, we employ the usual progress

and preservation technique [37]. For the soundness of types

as contracts, we show that the contract system is a complete

monitor [6], meaning components do not export their val-

ues without appropriate contract protection. Based on these

two major steps, we finally show that typed components

of mixed-type programs cannot be blamed for violations of

type invariants.

4.1 Type soundness

The reduction relation we use for typed terms is the relation

for untyped terms in figure 12 except that the reductions

carry along type annotations. Type applications are reduced

analogous to function application, but types do not affect

reductions in any other way.

In this setting, typed programs cannot go wrong, in par-

ticular they cannot call undefined methods.

Lemma 1. (Type Soundness) For all eτ , if ∅ | ∅ ⊢ eτ : τ,

either

• for all e1 such that 〈eτ , ∅〉 →֒∗ 〈e1, S1〉, there exists an

e2 such that 〈e1, S1〉 →֒ 〈e2, S2〉 or,

• 〈eτ , ∅〉 →֒∗ 〈vτ , S〉 where ∅ |Σ ⊢ vτ : τ ′ for some Σ and

∅ |Σ′ ⊢ S′ and τ ′ <: τ.



G; l  e Well formed programs

D; k; l⊲ c Well formed source contracts

K;G;S; l  e Well formed terms

Kk,l;D; k; l ⊲ c Well formed contracts

K  S ∼ S Well formed stores

Figure 14. Relations for Well Formed Programs

Recall from section 3 that Γ |Σ ⊢ S says store S is typable

under Γ and Σ. As mentioned, the theorem requires two con-

ventional lemmas: progress and preservation. The statement

of both calls for a typing judgment applicable to intermedi-

ate states, i.e., states with non-empty stores for private fields.

Other than that, the details are straightforward and omitted.

4.2 Complete monitoring

Complete monitoring [6] is a formal criterion for the correct

design of a contract system. It imposes two conditions on

a correct contract system: complete mediation and correct

blame assignment.

Complete mediation requires that the contract system does

not allow values to pass between components without a

contract check—possibly the always-true contracts—where

contract monitors act as component boundaries. Put differ-

ently, at any point in time every value is owned by one and

only one component. Intuitively, owner denotes the compo-

nent that may affect the flow of the value (e.g., export the

value to another component). If the owner wishes to share a

value with other components, it must do so under the aus-

pices of a monitor or guard. Ownership of terms is formal-

ized via ownership labels. Expressions e are annotated with

an owner label l, e.g., | e |l. We use lo to indicate the implicit

owner of the whole program.

Correct blame assignment requires that upon contract fail-

ure, the contract system blames the contract party responsi-

ble for the breach of the contract. A party is responsible for a

contract failure if a value it owns fails an immediate contract

check and it is obliged to uphold that particular contract.

To indicate responsibility for immediate contract checks, we

use obligation annotations. For instance, flat(op) is anno-

tated with obligation l as ⌊flat(op)⌋l. If a component l has

an immediate contract as an obligation, it must ensure that

when a value crosses the boundary protected by this contract,

the contract is checked appropriately.

Complete monitoring assumes that component bound-

aries agree with ownership annotations and that obligations

match the labels on monitors. To check this relationship, we

define a relation G; l  e that ensures the well-formedness

of e with respect to a label l and environment G. Accord-

ing to the relation’s judgments, ownership can change only

via monitors. When this happens, the ownership annotation

on the guarded expression must match the positive label of

the monitor while the negative label should coincide with

the owner of the context. The judgment does not allow any

other ownership annotations that may change the owner of a

term. The environment G records the owner of each binding

encountered by the judgments.

The relation for well-formed programs relies on the def-

inition of an additional judgment D; k; l ⊲ c that checks

that contracts are well-formed. It picks up the positive and

negative labels of each monitor and ensures they coincide

with the obligation annotations on the positive and negative

pieces of the contract of the monitor. After all, the client

(negative label) of a guarded component is responsible for

the values it consumes while the server (positive label) is

responsible for the values it produces.

Unfortunately, this strict distinction between negative and

positive parties does not hold for classes and methods. The

receiver of a method invocation is an object that, via sub-

stitution, traverses the class hierarchy from the call site to

the method implementation. Depending on the direction of

this migration, the roles of clients and servers on the con-

tract boundaries reverse. Thus, for each method contract the

server and the client share responsibility for all pieces of

the contract. We account for this codependence by allowing

obligation annotations to have sets of labels and by adjusting

the judgments accordingly.

Sealing and unsealing contracts pose further challenges

for proving the correctness of the contract system. We guar-

antee that sealing contracts show up only in negative posi-

tions with respect to the corresponding row variable ρ by

marking sealing contracts with the annotation, ρ = −. Sim-

ilar annotations, ρ = +, decorate unsealing contracts. The

environment D tracks the bound row variables and their po-

larity, + or −. The well-formed source contracts relation en-

sures that sealing contracts appear in the right places.

The judgments for well-formed programs and contracts

provide the foundation for complete monitoring. Complete

monitoring aims to establish that if each term in a program

has a single owner initially, then each term has a single

owner throughout the evaluation of the program. Embedded

foreign terms can exist inside a host component, but only

if they are wrapped with a contract monitor. Accordingly,

we change the reduction semantics to propagate ownership

annotations as values flow through the program. This change

is independent of the contract system and does not affect

the meaning of the program. Host components assimilate

values only when the values are primitive and satisfy their

contracts. In any other case, values accumulate more owners

as they flow from one component to another.

If a contract system is a complete monitor, then all anno-

tations in a value’s stack of ownership labels must be iden-

tical. Otherwise, the contract system would allow values to



cross component boundaries without appropriate protection.

We make redexes that involve values with stacks of non-

identical owners stuck states, which makes violations of the

single-owner policy manifest. To differentiate between the

latter stuck states and stuck states due to type errors we in-

troduce errork, dynamic type errors. Thus, a contract sys-

tem that is a complete monitor renders states unreachable if

they are stuck due to a value having multiple owners.

Definition 1. (Complete monitoring) A reduction relation

→ for TFCC is a complete monitor if ∅; l0  e0 implies:

• 〈e0, ∅〉 →∗ 〈v, S〉 or,

• 〈e0, ∅〉 →∗ 〈errork, S〉 or,

• for all e1 such that 〈e0, ∅〉 →∗ 〈e1, S1〉, there exists e2
such that 〈e1, S1〉 → 〈e2, S2〉 or,

• if 〈e0, ∅〉 →∗ 〈e1, S1〉 →∗ 〈blamekj , S2〉, there exists

e1 = mon
k,l
j (⌊flat(op)⌋k, v) and for all such e1,

v = |v1|k and k ∈ k,

e1 = mon
k,l
j (⌊class/c•([m c1 7→ c2])⌋k, v) and for

all such e1, v = |v1|k and k ∈ k or,

e1 = mon
k,l
j (⌊object/c([m c1 7→ c2])⌋k, v) and for

all such e1, v = |v1|k and k ∈ k or,

e1 = mon
k,l
j (⌊

ρ=+

unseal/c([m c1 7→ c2], ς)⌋k, v) and

for all such e1, v = |cv|k and k ∈ k or,

e1 = mon
k,l
j (⌊

ρ=−

seal/c(m′, [m c1 7→ c2], ς)⌋k, v) and

for all such e1, v = |cv|k and k ∈ k or,

e1 = send(o, m, v) where

OwnerLimit(o,m,⊥,⊥,⊥) = (k, j) or,

e1 = class(cv) {fi := vi mpxp. ep moxo. eo}
and where LocateBarrier(cv,m) = (k, j), and m =
mp ⊕mo.

In addition to eliminating stuck states, the definition of

complete monitoring requires that the system blames a com-

ponent only when a violation is due to one of the compo-

nent’s unmet obligations. Thus, our definition includes cases

for all immediate checks that the contract system makes and,

furthermore, includes cases that ensure sealing and unseal-

ing are handled properly.

Lemma 2. →֒ is a complete monitor for TFCC.

To prove that →֒ is a complete monitor for TFCC we

employ subject reduction. The proof combines a progress

and a preservation lemma which establish that reduction

preserves the subject and does not lead to stuck states:

Progress. If K;G;S; l0  e0 and K  S ∼ S0 then

〈e0, S0〉 →֒ 〈e1, S1〉 or e0 = v or e0 = errork or e0 =
blamekj .

Preservation. If K; ∅;S; l0  e0, K  S ∼ S0 and

〈e0, S0〉 →֒ 〈e1, S1〉 then there exist K′,S ′ such that K ⊆ K′,

S ⊆ S ′, K′; ∅;S ′; l0  e1 and K′  S ′ ∼ S1.

The two lemmas use a subject different than the judgment

for well-formed programs. Even though the latter guarantees

the absence of stuck states and correct blame, it is not gen-

eral enough to handle terms produced during evaluation. The

judgment for well-formed terms, K;G;S; l  e, is an exten-

sion of the relation for well-formed programs that can ac-

commodate intermediate terms such as objects, class, values

and guards.

Proposition 1. If ∅; l0  e0 then ∅; ∅; ∅; l0  e0.

The new relation uses two additional environments,S and

K. The first, store coloring, records the owner of the contents

of each store location. Its function is similar to that of store

typing in type soundness proofs. The relation K  S ∼ S
ensures that store coloring is synchronized with the contents

of the store.

The second, key coloring, records the owner of each seal-

ing/unsealing key. Components obtain keys as they generate

them and each component should only seal and unseal val-

ues with keys it owns. The environment K guarantees that

the keys stored in sealing guards have the appropriate owner.

In addition, key coloring checks whether contracts remain

well-formed after row variables are replaced by keys. We

specify this constraint with an extension of the relation for

well-formed contracts, Kk,l;D; k; l ⊲ c. It refers to the key

coloring when it checks sealing and unsealing contracts. In

these cases, the owner of the seal must match the party

that performs the sealing or the unsealing. We determine

this party by picking up the labels from monitors, decorate

key coloring with them, and swapping their position when

we go from positive to negative position as we traverse

contracts. If a sealing contract is in a positive position, the

owner of the key should be the server of the monitor since

it is the component that must protect the sealed value from

its context. Similar constraints apply to the other cases for

sealing and unsealing contracts.

4.3 The Blame Theorem

Now that we have established complete monitoring for

TFCC, we can prove type soundness for programs that mix

typed and untyped code.

From type soundness for typed code, we know that purely

typed components are safe from type errors. In mixed pro-

grams, typed and untyped components interact by passing

values through contract monitors. A monitor mon
u,t
j (c, e)

embeds an untyped value into a typed context because

u is the server and t is the client. Similarly, a monitor

mon
t,u
j (c, eτ ) embeds a typed value into an untyped con-

text. Since the boundaries between untyped and typed com-

ponents are monitored by the contract system, we need the

contract system to protect values that flow across the bound-

aries as strongly as the type system. For that reason we im-

pose contracts on the interfaces between typed and untyped

components to simulate the types that the typed components

expect. Of course, untyped components may not live up to



K |Γ |Σ ⊢ e : τ Well typed mixed terms

K |Γ |Σ ⊢ e Well formed mixed terms

K |Γ |Σ⊢u cv ∼ r Well typed mixed class values

K |Γ |Σ⊢u o ∼ r Well typed mixed objects

Figure 15. Relations for Well Typed Mixed Programs

the expectations that types express, but the contracts catch

such impedance mismatches.

In a sound system, since typed code always respects the

type discipline, a typed component should never break any

contract used to mediate values between typed and untyped

code. Intuitively, soundness for mixed programs means that

the contract system never blames a typed component.

The first step to formalize soundness is to extend the no-

tion of well-typed terms to include mixed programs. The first

two relations in figure 15 jointly express these roles. The first

one type-checks typed components using the contracts-to-

types correspondence to create a type for embedded untyped

components. The second relation traverses untyped compo-

nents and delegates type-checking of embedded typed com-

ponents to the first relation. Again we use the contract on the

interface between an untyped and a typed component and the

contracts to types correspondence from figure 9 to construct

a type to check against the typed code.

Blame Theorem. If ∅ |∅ |∅ ⊢ e, then 〈e, ∅〉 6֒→∗ 〈errort, S〉
and 〈e, ∅〉 6֒→∗ 〈blametj , S〉.

The cornerstone for proving the blame theorem is a

preservation lemma for mixed terms. According to complete

monitoring the only source of blame for typed components

is a violation of a first-order contract check on a typed value.

Due to type soundness for typed code, however, if all first-

order contracts that guard typed values correspond to the

type of the values, the checks never fail. Indeed, the preser-

vation lemma for mixed programs guarantees that reduction

always results in well-typed mixed terms. This implies that

all first-order checks have the desired property.

Lemma 3. (Mixed Preservation) If K0 |∅ |Σ0 ⊢ e0, ∅ |Σ0 ⊢
S0 and 〈e0, S0〉 →֒ 〈e1, S1〉 then there exist K1,Σ1 such that

K0 ⊆ K1, Σ0 ⊆ Σ1, K0 |∅ |Σ1 ⊢ e1 and ∅ |Σ1 ⊢ S1.

The proof of mixed preservation demands an extension of

the top two relations of figure 15 to intermediate terms. Seal-

ing and unsealing contracts make this extension challenging.

As explained, in section 3, sealing is a mechanism for hid-

ing details of a class provided to a component. Unsealing

makes the hidden details available again to the owner of the

class after the component returns its result. Thus when we

seal a typed class the contracts on the sealing interface do

not fully reflect the type of the sealed class but only its visi-

ble parts. We overcome this obstacle and prove preservation

even in the presence of sealing using the K environment,

which maps keys to row types and we update it upon mixin

application. For uses of untyped mixins from typed code,

we map the newly created key to the row provided with row

application. In the reverse case we map the new key to the

empty row.

Recall that after unsealing a class value that contains

a sealed superclass, the sealed methods become reachable

again. However the contracts in the class hierarchy do not

reflect the types of the now available methods. The last two

relations of figure 15 reconstruct these types via a traversal

of the class hierarchy that propagates the types of typed

methods appropriately.

Constructing the types of untyped code is not the only

difficulty of proving preservation. In fact, it is even more

crucial to establish that typed and untyped code do not in-

termingle in an unprotected manner. Fortunately, complete

monitoring solves this problem and guarantees that a mon-

itor or a guard always mediates the interaction between a

typed and an untyped component. This insight significantly

reduces the effort of proving preservation as we just have to

ensure that the contract we attach to a migrating typed value

corresponds to the value’s type. Put differently, the proof of

the blame theorem is reduced to showing that monitors and

guards related reductions of well-typed mixed terms result

in well-typed mixed terms.

5. Related Work

The body of related work consists of research on combining

typed and untyped languages, polymorphic contracts, and

types for extensible objects or records.

Gradual typing Gray et al. [16] present a multi-language

system that integrates Scheme and Java, using contracts and

mirrors to mediate interactions between the two languages.

Their system does not handle dynamic class composition

because class values cannot flow from Scheme to Java. In

subsequent work, Gray [14] models interoperation between

Java and Scheme with cross-language inheritance, but does

not address dynamic class composition mechanisms such as

mixins or first-class classes. Closer to our work, Gray [15]

also models interoperation between Java and JavaScript, al-

lowing JavaScript code to use Java classes as prototypes.

While her model describes dynamic class composition, strin-

gent restrictions are placed on inheritance to make com-

position safe. In particular, Java classes cannot dispatch to

Javascript extensions.

Siek and Taha [28] use an object calculus for the for-

mulation of their gradual typing system for OO program-

ming. Their system handles subtyping for objects, but since

their language contains neither classes nor extensible ob-

jects, there is no treatment of inheritance between untyped

and typed code.



Another approach to combining untyped and typed code

is applying type reconstruction to an untyped language.

DRuby [12] is such a system for a subset of Ruby. While

Ruby supports dynamic class composition via a mixin fea-

ture called modules, DRuby’s type system is unable to sup-

port the runtime composition of classes that Ruby allows.

Bierman et al. [2] formalize the dynamic type that is

available in C♯4.0. The latter’s dynamic types make no pro-

vision for higher-order data, however.

Runtime sealing Morris [24] proposed sealing in 1973 as

a linguistic mechanism to prevent access to private pieces

of code. More recently, sealing has been used to protect

datatype abstraction [25].

Guha et al. [17] investigate parametricity guarantees in

untyped languages via a combination of contracts and seal-

ing They use so-called coffers—an opaque datatype for

sealing—to wrap arguments to contracted parametric func-

tions. Matthews and Ahmed [21] provide a formal validation

of this approach in a multi-language system combining the

untyped λ-calculus and System F, in which sealing is ap-

plied at language boundaries to ensure parametricity. Ahmed

et al. [1] present a finer-grained sealing mechanism that as-

sociates seals with type abstractions. Our approach extends

this line of work by adding partial seals that allow code to

see some aspects of classes rather than blocking out all class

features. Notice, however, that our proof technique for type

soundness differs significantly. Instead of the logical relation

of Matthews and Ahmed or the subtyping-based simulation

of Ahmed et al., we base our proof on complete monitor-

ing. This enables a modular proof structure and the use of

standard subject reduction for establishing type soundness.

Types for dynamic class composition Row polymorphism

originated as a mechanism to enable type inference for ob-

jects. Wand [36] proposes a type inference algorithm for a

simple object-oriented language based on recursive records.

These ideas were also adopted into type systems for extensi-

ble records [4, 13, 18].

Closely related is ML-ART [26], which is capable of en-

coding first-class classes, but does not provide classes as

a primitive concept. ML-ART does not allow subsumption

on objects, thus disallowing the familiar polymorphism over

objects. In the same vein, Fisher [10] presents a calculus

with typed extensible objects using row polymorphism. Her

calculus also enables an encoding of class-based program-

ming, but does not support them as primitive features. Bono

et al. [3] build on this line of work, and include classes and

mixins as primitives in their calculus. Their calculus cov-

ers the use cases of mixins, but their classes do not support

other dynamic uses of first-class classes. None of these mod-

els were designed for a gradually-typed setting.

6. Status and Outlook

This paper presents the first design for a gradual typing sys-

tem that accommodates class composition across compo-

nents with distinct type disciplines. On the typed side, a

novel use of row polymorphism allows for specifying in-

terface types for mixins, traits, and other manipulations of

first-class classes. On the untyped side, the introduction of

sealing contracts allows the system to seal off portions of

the specialization interface of classes; this sealing ensures

the safety of first-class classes as they flow from the typed

world to the untyped one and back. Finally, the paper also

includes a new, easy-to-use proof technique for the proof of

blame theorems in the presence of polymorphism.

Our work puts us in a position from where we can explore

the pragmatics of gradual typing for first-class classes. In the

near future, we intend to implement this type system and use

it to equip a significant portion of our code base with types.
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ÖSTLUND, J., AND VITEK, J. Integrating typed and

untyped code in a scripting language. In Symposium on

Principles of Programming Languages (2010), pp. 377–388.



A. Appendix

This appendix for the interested reviewer gives more details

about our formal model and the proofs of our theorems. It is

not part of our submission but we provide it as evidence for

the correctness of our claims.

Definition 1. (Complete monitoring) A reduction relation

→ for TFCC is a complete monitor if given ∅; l0  e0 the

following hold:

• 〈e0, ∅〉 →∗ 〈v, S〉 or,

• 〈e0, ∅〉 →∗ 〈errork, S〉 or,

• for all e1 such that 〈e0, ∅〉 →∗ 〈e1, S1〉, there exists

〈e1, S1〉 → 〈e2, S2〉 or,

• if 〈e0, ∅〉 →∗ 〈e1, S1〉 →∗ 〈blamekj , S2〉 then

there exists e1 = mon
k,l
j (⌊flat(op)⌋k, v) and for all

such e1, v = |v1|
k and k ∈ k,

there exists

e1 = mon
k,l
j (⌊class/c•([m c1 7→ c2])⌋k, v) and for

all such e1, v = |v1|k and k ∈ k or,

there exists

e1 = mon
k,l
j (⌊object/c([m c1 7→ c2])⌋k, v) and for

all such e1, v = |v1|k and k ∈ k or,

there exists

e1 = mon
k,l
j (⌊

ρ=+

unseal/c([m c1 7→ c2], ς)⌋k, v) and

for all such e1, v = |cv|k and k ∈ k or,

there exists

e1 = mon
k,l
j (⌊

ρ=−

seal/c(m′, [m c1 7→ c2], ς)⌋k, v) and

for all such e1, v = |cv|k and k ∈ k or,

there exists e1 = send(o, m, v) where

OwnerLimit(o,m,⊥,⊥,⊥) = (k, j).

there exists

e1 = class(cv) {fi := vi mpxp. ep moxo. eo}
and where LocateBarrier(cv,m) = (k, j), and m =
mp ⊕mo

Theorem 1. →֒ is a complete monitor for TFCC.

PROOF SKETCH. Direct consequence of progress and preser-

vation together with an inspection of the reduction sequence

for each sub-case of the last case.

Proposition 1. If ∅; l0  e0 then ∅; ∅; ∅; l0  e0.

PROOF SKETCH. By induction on the size of e0.

Main Lemma 1. (Progress) If K;G;S; l0  e0 and K 

S ∼ S0 then 〈e0, S0〉 →֒ 〈e1, S1〉 or e0 = v or e0 = errork

or e0 = blamekj .

PROOF SKETCH. By case analysis on the form of e0. From

lemma 4, we conclude that we only need to consider cases

that match the conclusion of lemma 4.

Main Lemma 2. (Preservation) If K; ∅;S; l0  e0, K 

S ∼ S0 and 〈e0, S0〉 →֒ 〈e1, S1〉 then there exist K′,S ′ such

that K ⊆ K′, S ⊆ S ′, K′; ∅;S ′; l0  e1 and K′  S ′ ∼ S1.

PROOF SKETCH. By case analysis on the shape of

〈e0, S0〉 →֒ 〈e1, S1〉.

Each case employs lemma 5 to focus in the redex of e0. Then

it applies the reduction, reasons about the well-formedness

of the result of the reduction step on the redex using the well-

formed rules and lemmas 9 to 16 as necessary and finally

derives the desired conclusion by plugging the result of the

reduction back in the evaluation context using lemma 10 or

lemma 8.

Lemma 4. (Unique Decomposition) For all terms e there

exist unique El and e′ such that e = El[e′] or e = v or

e = errork or e = blamekj .

PROOF SKETCH. By induction on the size of e.

Lemma 5. If K; ∅;S; l0  e and e = El[e′] then

K; ∅;S; l  e′ .

PROOF SKETCH. By induction on the size of with the help

of lemma 6 for the inductive case.

Lemma 6. If K; ∅;S; l0  e and e = El[e′] then

K; ∅;S; l  e′ .

PROOF SKETCH. By induction on the size of e.

Lemma 7. If K; ∅;S; lo  El[e], K; ∅;S; l  e′ and not

K; ∅;S; l |= e then

K; ∅;S; l  El[e′].

PROOF SKETCH. By induction on the size of El .

Lemma 8. If K; ∅;S; lo  El[e], K; ∅;S; l  e′ and

K; ∅;S; l |= e then

K; ∅;S; l  El[| e′ |l].

PROOF SKETCH. By induction on the size of El .

Lemma 9. If K; {x : l};S; l  e and K; ∅;S; l  v then

K; ∅;S; l  [x/v] e .

PROOF SKETCH. By induction on the size of e.

Lemma 10. If K; ∅;S; l  El[e] and K; ∅;S; l  e then

K; ∅;S; l  El[e′].

PROOF SKETCH. By induction on the size of El .

Lemma 11. If K;G;S; l  e and G′ ∩ FV (e) then

K;G ∪ G′;S; l  e .

PROOF SKETCH. By induction on the size of E.

Lemma 12. If K;G;S; l  e then K;G ∩ FV (e);S; l  e .



Source Syntax

Terms e ::= v | x | (e e) | op(e) | if e e e

| send(e, m, e) | igetι
∗

(f∗, e)

| iset!ι
∗

(f∗, e, e) | new(e) | monl,ll (c, e)

| class(e) {f := v mpx. e mox. e}
Values v ::= cv | #t | #f | n | λx. e

Class Values cv ::= object%

Pr. Operations op ::= num? | bool?
Contracts c ::= flat(op) | c 7→ c | ∀c(ρ\m).(c 7→ c)

| class/c•([m c 7→ c])

| object/c([m c 7→ c])

| seal/c([m c 7→ c],m, γ)

| unseal/c([m c 7→ c], γ)
Key Terms γ ::= ρ
Field Terms f∗ ::= f
ClassPreIds ι∗ ::= �

RowVariables ρ ∈ RV

Variables x ∈ V

Method Names m ∈ M

Labels l, k, j ∈ L

Syntax for Ownership and Obligations

Terms e ::= ... | | e |l

Values v ::= ... | |v|l

Class Values cv ::= ... | |cv|l

Contracts c ::= ⌊flat(op)⌋l̄ | c 7→ c | ∀c(ρ\m).(c 7→ c)

| ⌊class/c•([m c 7→ c])⌋l̄

| ⌊object/c([m c 7→ c])⌋l̄

| ⌊
ρ=−

seal/c([m c 7→ c],m, γ)⌋l̄

| ⌊
ρ=+

unseal/c([m c 7→ c], γ)⌋l̄

||e||l = |...| e |l...|l where forallk, e′ e 6= | e′ |k

Figure 16. Source Syntax and Syntax for Ownership and Obligations

PROOF SKETCH. By induction on the size of E.

Lemma 13. If Kk,l; {ρ : (+,m}; k; l ⊲ c1 7→ c2 and

ς 6∈ dom(K) then K ⊎ {ς : k}k,l; ∅; k; l⊲ [ρ/ς] (c1 7→ c2)

PROOF SKETCH. By induction on the height of c1 7→ c2.

For the base case that occurs when the contract is first-order

we use the rules for well-formed flat target contracts.

Lemma 14. If K; ∅;S; l  o, SameOwner(o,m,⊥,⊥) and

m ∈ Methods(o) then K; {this : k};S; l  Pull(|o|l,m)
where ProtectThis(|o|l,m, |o|l) = |o′|k.

PROOF SKETCH. By induction on the distance in the hierar-

chy between the entry point of o and the implementation of

m.

Lemma 15. If K; ∅;S; l  o, SameOwner(o,m,⊥,⊥) and

m ∈ Methods(o) then there exists k such that

K; ∅;S; k  ProtectThis(|o|k,m, |o|l).

PROOF SKETCH. By induction on the distance in the hierar-

chy between the entry point of o and the implementation of

m.

Lemma 16. If K; ∅;S; l  cv and Sealed(cv, ς) then

K; ∅;S; l  Unseal(cv, ς).



G; l  e

G; l  n G; l  #t G; l  #f

G ⊎ {x : l}; l  e

G; l  λx. e

G(x) = l

G; l  x

G; l  e

G; l  op(e)

G; l  e1 G; l  e2

G; l  (e1 e2)

G; l  e1 G; l  e2 G; l  e3

G; l  if e1 e2 e3

G; l  e1 G; l  e2

G; l  send(e1, m, e2)

G; l  e

G; l  iget�(f∗, e)

G; l  e1 G; l  e2

G; l  iset!�(f∗, e1, e2) G; l  object%

G; l  vi
G ⊎ {f : l,mp : l,mo : l, this : l, xpi

: l}; l  epi
G ⊎ {f : l,mp : l,mo : l, this : l, xoi} : l; l  eoi

G; l  class(e) {f := v mpxp. ep moxo. eo}

G; l  e

G; l  | e |l
G; k  e ∅; {k}; {l}⊲ c k 6= l

G; l  mon
k,l
j (c, | e |k)

D; k; l ⊲ c

D; k; l ⊲ ⌊flat(op)⌋k

Negate(D); l; k ⊲ c1 D; k; l ⊲ c2

D; k; l ⊲ c1 7→ c2

D; kl; kl ⊲ c1i 7→ c2i

D; k; l ⊲ ⌊class/c•([m c1 7→ c2])⌋k

D; kl; kl⊲ c1i 7→ c2i

D; k; l ⊲ ⌊object/c([m c1 7→ c2])⌋k

D ⊎ {ρ : (+,m)}; k; l ⊲ c1i 7→ c2i

D; k; l ⊲ ∀
c(ρ\m).(c1 7→ c2)

D; kl; kl ⊲ c1i 7→ c2i D(ρ) = (+,m′) m ⊆ m′

D; k; l ⊲ ⌊
ρ=+

unseal/c([m c1 7→ c2], ρ)⌋k

D; kl; kl ⊲ c1i 7→ c2i D(ρ) = (−,m′) m ⊆ m′

D; k; l⊲ ⌊
ρ=−

seal/c([m c1 7→ c2],m′, ρ)⌋k

Figure 17. Well Formed Source Terms and Contracts

Terms e ::= ... | blamell | errorl

Values v ::= ... | o | ∀Gl,ll (ρ\m).(c 7→ c){v}

Class Values cv ::= ... | class/vι(cv) {(f, v) mx. e} | Gl,ll {cv, [m c 7→ c]}

| SG
l,l
l {cv, [m c 7→ c],m, ς}

Objects o ::= ... | |o|l | object/v(cv) {(f, ι, a)} | OGl,ll {o, [m c 7→ c]}
Class PreIds ι∗ ::= ... | ι
KeyTerms γ ::= ς | ρ
Field Terms f∗ ::= f | a
Class Ids ι ∈ I

Keys ς ∈ K

Figure 18. Full Syntax



E.Contexts Elo ::= [ ] | (Elo e) | (v Elo ) | op(Elo ) | if Elo e e

| send(Elo , m, e) | send(v, m, Elo ) | iget(f, Elo )

| iset!(f, Elo , e) | iset!(f, e, Elo ) | new(Elo )

| class(Elo ) {f := v mx. e mx. e}
El ::= [ ] | (El e) | (v El) | op(El) | if El e e

| send(El , m, e) | send(v, m, El) | iget(f, El)

| iset!(f, El , e) | iset!(f, e, El) | new(El)

| class(El) {f := v mx. e mx. e} | monk,lj (c, Elo )

| mon
k,l′

j (c, El) | |Elo |l | |El |l
′

Figure 19. Evaluation Contexts

Top Rules

〈El[errork], S〉 →֒ 〈errork, S〉
〈El[blamekj ], S〉 →֒ 〈blamekj , S〉

Functional Rules

〈El[· · · ], S〉 →֒ 〈El[· · · ], S〉

(||λx. e||l ||v||l) .
[

|v|l/x
]

| e |l

op(||v||l) . δ(op, v)

if ||#t||l e2 e3 . e2

if ||#f||l e2 e3 . e3

Classes Rules

〈El[· · · ], S〉 →֒ 〈El[· · · ], S〉

class(cv) {f := v mpxp. ep moxo. eo} . class/vι(cv) {(f, v) mx.e}
if mp ∩Methods(cv) = ∅, mo ⊆ Exposed(cv), mp ⊆ NotSealed(cv)

and where ι is fresh and mx.e = mpxp. [�/idι] ep ⊕moxo. [�/idι] eo

class(cv) {f := v mpxp. ep moxo. eo} . blamelj
if HasBarrier(cv,m), mp ∩Methods(cv) = ∅, mo ⊆ Methods(cv)
and where m = mp ⊕mo and (l, j) = LocateBarrier(cv,m)

send(||o||l , m, ||v||l) . (
[

this/ eo, a/f
]

e |v|l)

if m ∈ Methods(o) and SameOwner(o,m,⊥,⊥)
and where e = Pull(|o|l,m) and eo = ProtectThis(|o|l,m, |o|l)

and (f, a, ι) = ObjectFields(o)

send(||o||l , m, ||v||l) . blamekj
if m ∈ Methods(o), and not SameOwner(o,m,⊥,⊥)
and where (k, j) = OwnerLimit(o,m,⊥,⊥,⊥)

Figure 20. Top, Functional and Classes Reduction Rules



Contracts and Guards Rules

〈El[· · · ], S〉 →֒ 〈El[· · · ], S〉

mon
k,l
j (⌊flat(op)⌋l, ||v||k) . if op(v) v blamekj

mon
k,l
j (c1 7→ c2, v) . λx.monk,lj (c2, (v mon

l,k
j (c1, x)))

mon
k,l
j (⌊class/c•([m c1 7→ c2])⌋l, cv) . G

k,l
j {cv, [m c1 7→ c2]}

if m = Exposed(cv)

mon
k,l
j (⌊class/c•([m c1 7→ c2])⌋l, cv) . blamekj

if m 6= Exposed(cv)

mon
k,l
j (⌊

ρ=−ς′

seal/c([m c1 7→ c2],m′, ς)⌋l, cv) . SG
l,k
j {cv, [m c1 7→ c2],m′, ς}

if m ⊆ Exposed(cv) and m′\m ∩ Exposed(cv) = ∅

mon
k,l
j (⌊

ρ=−ς′

seal/c([m c1 7→ c2],m′, ς)⌋l, cv) . blamekj
if m 6⊆ Exposed(cv) or m′\mi ⊆ Exposed(cv)

mon
k,l
j (⌊

ρ=+ς′

unseal/c([m c1 7→ c2], ς)⌋l, cv) . G
k,l
j {Unseal(cv, ς), [m c1 7→ c2]}

if Sealed(cv, ς) and m ⊆ Exposed(cv)

mon
k,l
j (⌊

ρ=+ς′

unseal/c([m c1 7→ c2], ς)⌋l, cv) . blamekj
if not Sealed(cv, ς) or m 6⊆ Exposed(cv)

mon
k,l
j (⌊object/c([m c1 7→ c2])⌋l, o) . OG

k,l
j {o, [m c1 7→ c2]}

if m ⊆ Exposed(o)

mon
k,l
j (⌊object/c([m c1 7→ c2])⌋l, o) . blamekj

if m 6⊆ Exposed(o)

mon
k,l
j (∀c(ρ\m).(c1 7→ c2), v) . ∀G

k,l
j (ρ\m).(c1 7→ c2){v}

(e v) . (monk,lj (c1 7→ c2Jρ/ςK, v1) v)

where e = ∀G
k,l
j (ρ\m).(c1 7→ c2){v1} and ς is fresh.

Objects Rules

〈El[new(cv)], S〉 →֒ 〈El[object/v(cv) {(f, a, ι)}], [v/a]S〉

where (f,v,ι) = Fields(cv) with a ∩ dom(S) = ∅
〈El[igetι(a, o)], S〉 →֒ 〈El[v], S〉

if (f, a, ι) ∈ ObjectFields(o) and where v = S(a)
〈El[iset!ι(a, o, v)], S〉 →֒ 〈El[v], S [a/v]〉

if (f, a, ι) ∈ ObjectFields(o)

Type Error Rule

〈El[e], S〉 →֒ 〈El[errorl], S〉
if e is a redex not covered by any other case except for

reasons of ownership or obligations mismatches

Figure 21. Contracts, Guards, Objects and Type Error Reduction Rules



name domain, range / purpose

HasBarrier o or cv, m 7→ #t or #f

checks if some m is inaccessible due to a guard.

LocateBarrier o or cv, m 7→ (l, l)
returns the blame labels for the closest inaccessible m in the object or class hierarchy.

SameOwner o or cv, l or ⊥, l or ⊥ 7→ #t or #f

checks if m is owned by the calling context

OwnerLimit o or cv, l or ⊥, l or ⊥, l or ⊥ 7→ (l, l)
returns the label of the calling context of m and of the contract boundary where ownership of m was lost

Pull cv, m 7→ e

returns m’s implementation as a λ-term wrapped with the necessary contracts

ProtectThis o, m, o 7→ o
traverses the first object and its hierarchy to apply all contracts needed to protect the second object when

it is a receiver of a call to m

Sealed cv, ς 7→ #t or #f

checks if cv contains a seal guard that is locked with ς.

Unseal cv, ς 7→ cv
removes seal guards locked with ς in the class hierarchy.

Notsealed o or cv 7→ m
returns unsealed methods in the hierarchy.

Exposed cv 7→ m
returns all the exposed method names in the hierarchy

Methods o or cv 7→ m
returns method names in the hierarchy.

Fields cv 7→ (f, v, ι)
returns the fields’ initial values in the class hierarchy.

ObjectFields o 7→ (f, a, ι)
returns the object’s field values

Figure 22. Metafunctions

PROOF SKETCH. By induction on the distance in the hierar-

chy between the entry point of cv and the superclass sealed

with ς.

Theorem 2. (Blame Theorem) If ∅ |∅ |∅ ⊢ e, 〈e, ∅〉 6 →֒∗

〈errort, S〉 and 〈e, ∅〉 6֒→∗ 〈blametj , S〉.

PROOF SKETCH. Direct consequence of mixed preservation.

The main lemma sates that mixed programs remain well-

typed thorough out evaluation. From complete monitoring,

we conclude that the typed and untyped code communicate

only via contracts. Thus

1. errortt occurs only due to type errors in the typed por-

tion of the code,

2. blametj occurs only from first-order contract failures on

typed values.

However the first point is not possible since the typed portion

of the code is well-typed and the second point is not possible

due to the contract-type correspondence imposed by the

judgment for well-typed mixed terms.

Main Lemma 3. (Mixed Preservation) If K0 |∅ |Σ0 ⊢ e0,

∅ |Σ0 ⊢ S0 and 〈e0, S0〉 →֒ 〈e1, S1〉 then there exist K1,Σ1

such that K0 ⊆ K1, Σ0 ⊆ Σ1, K0 |∅ |Σ1 ⊢ e1 and

∅ |Σ1 ⊢ S1.

PROOF SKETCH. By case analysis on the shape of

〈e0, S0〉 →֒ 〈e1, S1〉.

We extend the keys to types map upon mixin application.

When a typed code uses an untyped mixin we map the newly

generated key to the row provided with type application. In

the reverse case we map the key to the empty row.

Cases that do not involve monitors or guards are trivial:

when they involve untyped redexes the subject is preserved

in any case, while when they involve typed redexes type

soundness guarantees that types are preserved. For each case

involving monitors or guards we consider two sub-cases,

one where the positive label is t and the negative label is u
and the reverse. Most of these cases are straightforward and

can be concluded using the judgments for well-typed mixed

terms. The method invocation cases are more involved and



HasBarrier(||o||l ,m) = HasBarrier(cv,m) where o = object/v(cv) {(f, a, ι)}

HasBarrier(||o||l
′

,m′) = HasBarrier(os,m′) where o = OG
k,l
j {os, [m c 7→ c]}

HasBarrier(||object%||l ,m) = #f

HasBarrier(||cv||l ,m′) = HasBarrier(cvs,m′/m) where cv = class/vι(cvs) {(f, v) mx. e}

HasBarrier(||cv||l
′

,m′) = #t where cv = SG
k,l
j {cvs, [m c1 7→ c2],m, ς}

if m′ ∩m 6= ∅

HasBarrier(||cv||l
′

,m′) = HasBarrier(cvs,m′) where cv = SG
k,l
j {cvs, [m c1 7→ c2],m, ς}

if m′ ∩m = ∅

HasBarrier(cv,m′) = HasBarrier(cv,m) where cv = G
ς,k
l {cvs, [m c1 7→ c2]}j

LocateBarrier(||o||l ,m) = LocateBarrier(cv,m) where o = object/v(cv) {(f, a, ι)}

LocateBarrier(||o||l
′

,m′) = LocateBarrier(os,m′) where o = OG
k,l
j {os, [m c 7→ c]}

LocateBarrier(||cv||l ,m′) = LocateBarrier(cvs,m′/m) where cv = class/vι(cvs) {(f, v) mx. e}

LocateBarrier(||cv||l
′

,m′) = (l, j) where cv = SG
k,l
j {cvs, [m c1 7→ c2],m, ς}

if m′ ∩m 6= ∅

LocateBarrier(||cv||l
′

,m′) = LocateBarrier(cvs,m′) where cv = SG
k,l
j {cvs, [m c1 7→ c2],m, ς}

if m′ ∩m = ∅

LocateBarrier(cv,m′) = LocateBarrier(cv,m) where cv = G
ς,k
l {cvs, [m c1 7→ c2]}j

Figure 23. The HasBarrier and LocateBarrier Metafunctions

SameOwner(||o||l ,m,⊥,⊥) = SameOwner(cv,m,⊥,⊥) where o = object/v(cv) {(f, a, ι)}

SameOwner(||o||l
′

,m, k, l) = SameOwner(cv,m, k, l) where o = object/v(cv) {(f, a, ι)}

SameOwner(||o||l
′

,m,⊥,⊥) = SameOwner(os,m, k, k) where o = OG
k,l
j {os, [m c 7→ c]}

if m ∈ m

SameOwner(||o||l
′

,m,⊥,⊥) = SameOwner(os,m, k, l) where o = OG
k,l
j {os, [m c 7→ c]}

if m 6∈ m

SameOwner(||o||l
′

,m, l, k) = SameOwner(os,m, k, k) where o = OG
k,l
j {os, [m c 7→ c]}

if m ∈ m

SameOwner(||o||l
′

,m, l, k′) = SameOwner(||o||l
′

,m, l, k′) where o = OG
k,l
j {os, [m c 7→ c]}

if m 6∈ m and k′ 6= k

SameOwner(||o||l
′

,m, l, k′) = SameOwner(||o||l
′

,m, l, k′) where o = OG
k,l
j {os, [m c 7→ c]}

if m 6∈ m and k′ 6= k

SameOwner(||o||l
′

,m, l, k′) = #f where o = OG
k,l
j {os, [m c 7→ c]}

if m ∈ m and k′ 6= k

Figure 24. The SameOwner Metafunction for Objects



SameOwner(||cv||l ,m,⊥,⊥) = #t where cv = class/vι(cvs) {(f, v) mx. e}
if m ∈ m

SameOwner(||cv||l ,m, l, l) = #t where cv = class/vι(cvs) {(f, v) mx. e}
if m ∈ m

SameOwner(||cv||l ,m, k, l) = #f where cv = class/vι(cvs) {(f, v) mx. e}
if m ∈ m and k 6= l

SameOwner(||cv||l ,m,⊥,⊥) = SameOwner(cvs,m,−,−) where cv = class/vι(cvs) {(f, v) mx. e}
if m 6∈ m

SameOwner(||cv||l ,m, k, l) = SameOwner(cvs,m, k, l) where cv = class/vι(cvs) {(f, v) mx. e}
if m 6∈ m

SameOwner(||cv||l
′

,m, l, k′) = #f where cv = G
k,l
j {cvs, [m c 7→ c]}

if m ∈ m and k′ 6= k

SameOwner(||cv||l
′

,m,⊥,⊥) = SameOwner(cvs,m, k, k) where cv = G
k,l
j {cvs, [m c 7→ c]}

if m ∈ m

SameOwner(||cv||l
′

,m,⊥,⊥) = SameOwner(os,m, k, l) where cv = G
k,l
j {cvs, [m c 7→ c]}

if m 6∈ m

SameOwner(||cv||l
′

,m, l, k) = SameOwner(cvs,m, k, k) where cv = G
k,l
j {cvs, [m c 7→ c]}

if m ∈ m

SameOwner(||cv||l
′

,m, l, k′) = SameOwner(||cv||l
′

,m, l, k′) where cv = G
k,l
j {cvs, [m c 7→ c]}

if m 6∈ m and k′ 6= k

SameOwner(||cv||l
′

,m, l, k′) = SameOwner(||cv||l
′

,m, l, k′) where cv = G
k,l
j {cvs, [m c 7→ c]}

if m 6∈ m and k′ 6= k

SameOwner(||cv||l
′

,m,⊥,⊥) = #f where cv = SG
k,l
j {cvs, [m c 7→ c],m′, ς}

if m 6∈ m

SameOwner(||cv||l
′

,m, k′, l′) = #f where cv = SG
k,l
j {cvs, [m c 7→ c],m′, ς}

if m 6∈ m

SameOwner(||cv||l
′

,m, l, k′) = #f where cv = SG
k,l
j {cvs, [m c 7→ c],m′, ς}

if m ∈ m and k′ 6= k

SameOwner(||cv||l
′

,m,⊥,⊥) = SameOwner(cvs,m, k, k) where cv = SG
k,l
j {cvs, [m c 7→ c],m′, ς}

if m ∈ m

SameOwner(||cv||l
′

,m, l, k) = SameOwner(cvs,m, k, k) where cv = SG
k,l
j {cvs, [m c 7→ c],m′, ς}

if m ∈ m

Figure 25. The SameOwner Metafunction for Class Values

there we employ lemmas 17 and 18 to obtain the desired

result.

Lemma 17. If K |Γ |Σ ⊢ send(o, m, v) : τ and

send(o, m, v) →֒ ([eo /this] e |v|l)

where e = Pull(|o|l,m), eo = ProtectThis(|o|l,m, |o|l)
then K |Γ |Σ ⊢ ([eo /this] e |v|l) : τ.

PROOF SKETCH. By induction on the distance in the hierar-

chy between the entry point of o and the implementation of

m.

Lemma 18. If K |Γ |Σ ⊢ send(o, m, v) and

send(o, m, v) →֒ ([eo /this] e |v|l)

where e = Pull(|o|l,m), eo = ProtectThis(|o|l,m, |o|l)
then K |Γ |Σ ⊢ ([eo /this] e |v|l).

PROOF SKETCH. By induction on the distance in the hierar-

chy between the entry point of o and the implementation of

m.



OwnerLimit(||o||l ,m,⊥,⊥,⊥) = OwnerLimit(cv,m,⊥,⊥,⊥) where o = object/v(cv) {(f, a, ι)}

OwnerLimit(||o||l
′

,m, k, l, j) = OwnerLimit(cv,m, k, l, j) where o = object/v(cv) {(f, a, ι)}

OwnerLimit(||o||l
′

,m,⊥,⊥,⊥) = OwnerLimit(os,m, k, k, j) where o = OG
k,l
j {os, [m c 7→ c]}

if m ∈ m

OwnerLimit(||o||l
′

,m,⊥,⊥,⊥) = OwnerLimit(os,m, k, l, j) where o = OG
k,l
j {os, [m c 7→ c]}

if m 6∈ m

OwnerLimit(||o||l
′

,m, l, k, j′) = OwnerLimit(os,m, k, k, j) where o = OG
k,l
j {os, [m c 7→ c]}

if m ∈ m

OwnerLimit(||o||l
′

,m, l, k′, j′) = OwnerLimit(||o||l
′

,m, l, k′, j) where o = OG
k,l
j {os, [m c 7→ c]}

if m 6∈ m and k′ 6= k

OwnerLimit(||o||l
′

,m, l, k′, j′) = OwnerLimit(||o||l
′

,m, l, k′, j) where o = OG
k,l
j {os, [m c 7→ c]}

if m 6∈ m and k′ 6= k

OwnerLimit(||o||l
′

,m, l, k′, j′) = (k′, j) where o = OG
k,l
j {os, [m c 7→ c]}

if m ∈ m and k′ 6= k

Figure 26. The OwnerLimit Metafunction for Objects



OwnerLimit(||cv||l ,m,⊥,⊥,⊥) = #t where cv = class/vι(cvs) {(f, v) mx. e}
if m ∈ m

OwnerLimit(||cv||l ,m, l, l, j) = #t where cv = class/vι(cvs) {(f, v) mx. e}
if m ∈ m

OwnerLimit(||cv||l ,m, k, l, j) = (l, j) where cv = class/vι(cvs) {(f, v) mx. e}
if m ∈ m and k 6= l

OwnerLimit(||cv||l ,m,⊥,⊥,⊥) = OwnerLimit(cvs,m,⊥,⊥,⊥) where cv = class/vι(cvs) {(f, v) mx. e}
if m 6∈ m

OwnerLimit(||cv||l ,m, k, l, j) = OwnerLimit(cvs,m, k, l, j) where cv = class/vι(cvs) {(f, v) mx. e}
if m 6∈ m

OwnerLimit(||cv||l
′

,m, l, k′, j′) = (k′, j) where cv = G
k,l
j {cvs, [m c 7→ c]}

if m ∈ m and k′ 6= k

OwnerLimit(||cv||l
′

,m,⊥,⊥,⊥) = OwnerLimit(cvs,m, k, k, j) where cv = G
k,l
j {cvs, [m c 7→ c]}

if m ∈ m

OwnerLimit(||cv||l
′

,m,⊥,⊥,⊥) = OwnerLimit(os,m, k, l, j) where cv = G
k,l
j {cvs, [m c 7→ c]}

if m 6∈ m

OwnerLimit(||cv||l
′

,m, l, k, j′) = OwnerLimit(cvs,m, k, k, j) where cv = G
k,l
j {cvs, [m c 7→ c]}

if m ∈ m

OwnerLimit(||cv||l
′

,m, l, k′, j′) = OwnerLimit(||cv||l
′

,m, l, k′, j) where cv = G
k,l
j {cvs, [m c 7→ c]}

if m 6∈ m and k′ 6= k

OwnerLimit(||cv||l
′

,m, l, k′, j′) = OwnerLimit(||cv||l
′

,m, l, k′, j) where cv = G
k,l
j {cvs, [m c 7→ c]}

if m 6∈ m and k′ 6= k

OwnerLimit(||cv||l
′

,m,⊥,⊥,⊥) = (l, j) where cv = SG
k,l
j {cvs, [m c 7→ c],m′, ς}

if m 6∈ m

OwnerLimit(||cv||l
′

,m, k′, l′, j′) = (l′, j) where cv = SG
k,l
j {cvs, [m c 7→ c],m′, ς}

if m 6∈ m

OwnerLimit(||cv||l
′

,m, l, k′, j′) = (k′, j) where cv = SG
k,l
j {cvs, [m c 7→ c],m′, ς}

if m ∈ m and k′ 6= k

OwnerLimit(||cv||l
′

,m,⊥,⊥,⊥) = OwnerLimit(cvs,m, k, k, j) where cv = SG
k,l
j {cvs, [m c 7→ c],m′, ς}

if m ∈ m

OwnerLimit(||cv||l
′

,m, l, k, j′) = OwnerLimit(cvs,m, k, k, j) where cv = SG
k,l
j {cvs, [m c 7→ c],m′, ς}

if m ∈ m

Figure 27. The OwnerLimit Metafunction for Class Values



Pull(||o||l ,m) = ||Pull(cv,m)||l where o = object/v(cv) {(f, a, ι)}

Pull(||o||l
′

,m) =
∣

∣

∣

∣

∣

∣
mon

k,l
j (c1 7→ c2, Pull(os,m))

∣

∣

∣

∣

∣

∣

l′

where o = OG
k,l
j {os, [m c1 7→ c2]}

and m c1 7→ c2 ∈ [m c1 7→ c2]

Pull(||o||l
′

,m) = Pull(o,m) where o = OG
k,l
j {o, [m c1 7→ c2]}

and m 6∈ m

Pull(||cv||l ,m) = ||λx. e||l where cv = class/vι(cvs) {(f, v) mx. e}
and if mx. e ∈ mx. e

Pull(||cv||l ,m) = ||Pull(cvs,m)||l where cv = class/vι(cvs) {(f, v) mx. e}
and if m 6∈ m

Pull(||cv||l
′

,m) =
∣

∣

∣

∣

∣

∣
mon

k,l
j (c1 7→ c2, Pull(cvs,m))

∣

∣

∣

∣

∣

∣

l′

where cv = SG
k,l
j {cvs, [m c1 7→ c2],m′, ς}

and m c1 7→ c2 ∈ [m c 7→ c]

Pull(||cv||l
′

,m) = Pull(cvs,m) where cv = SG
k,l
j {cvs, [m c1 7→ c2],m′, ς}

and m 6∈ m

Pull(||cv||l
′

,m) =
∣

∣

∣

∣

∣

∣
mon

k,l
j (c1 7→ c2, Pull(cv,m))

∣

∣

∣

∣

∣

∣

l′

where cv = G
k,l
j {cvs, [m c1 7→ c2]}

and m c1 7→ c2 ∈ [m c1 7→ c2]

Pull(||cv||l
′

,m) = Pull(cvs,m) where cv = G
k,l
j {cvs, [m c1 7→ c2]}

and m 6∈ m

ProtectThis(||o||l ,m, v) = ProtectThis(||cv||l ,m, e) where o = object/v(cv) {(f, a, ι)}

ProtectThis(||o||l
′

,m, v0) = ProtectThis(os,m, v1) where o = OG
k,l
j {os, [m c1 7→ c2]}

and v1 =
∣

∣

∣

∣

∣

∣
OG

l,k
j {v0, [m c1 7→ c2]}

∣

∣

∣

∣

∣

∣

l′

ProtectThis(||cv||l ,m, v) = ||v||l where cv = class/vι(cvs) {(f, v) mx. e}
and if m ∈ m

ProtectThis(||cv||l ,m, v) = ProtectThis(cvs,m, ||v||l) where cv = class/vι(cvs) {(f, v) mx. e}
and if m 6∈ m

ProtectThis(||cv||l
′

,m, v0) = ProtectThis(cvs,m, v1) where cv = SG
k,l
j {cvs, [m c1 7→ c2],m′, ς}

and v1 =
∣

∣

∣

∣

∣

∣
OG

l,k
j {v0, [m c1 7→ c2]}

∣

∣

∣

∣

∣

∣

l′

ProtectThis(||cv||l
′

,m, v0) = ProtectThis(cvs,m, v1) where cv = G
k,l
j {cvs, [m c1 7→ c2]}

and v1 =
∣

∣

∣

∣

∣

∣
OG

l,k
j {v0, [m c1 7→ c2]}

∣

∣

∣

∣

∣

∣

l′

Figure 28. The Pull and ProtectThis Metafunctions



Unseal(||cv||l , ς) =
∣

∣

∣

∣

∣

∣
class/vι(Unseal(cvs, ς)) {(f, v) mx. e}

∣

∣

∣

∣

∣

∣

l

where cv = class/vι(cvs) {(f, v) mx. e}

Unseal(||cv||l
′

, ς) =
∣

∣

∣

∣

∣

∣
G
k,l
j {cvs, [m c1 7→ c2]}

∣

∣

∣

∣

∣

∣

l′

where cv = SG
k,l
j {cvs, [m c1 7→ c2],m′, ς}

Unseal(||cv||l
′

, ς) =
∣

∣

∣

∣

∣

∣
SG

k,l
j {Unseal(cvs, ς), [m c1 7→ c2],m′, ς ′}

∣

∣

∣

∣

∣

∣

l′

where cv = SG
k,l
j {cvs, [m c1 7→ c2],m′, ς ′}

Unseal(||cv||l
′

, ς) =
∣

∣

∣

∣

∣

∣
G
k,l
j {Unseal(cvs, ς), [m c1 7→ c2]}

∣

∣

∣

∣

∣

∣

l′

where cv = G
k,l
j {cvs, [m c1 7→ c2]}

Exposed(||o||l) = Exposed(cv) where o = object/v(cv) {(f, a, ι)}

Exposed(||o||l
′

) = Exposed(os) where o = OG
k,l
j {os, [m c1 7→ c2]}

Exposed(||object%||l) = ∅

Exposed(||cv||l) = m ∪ Exposed(cvs) where cv = class/vι(cvs) {(f, v) mx. e}

Exposed(||cv||l
′

) = m where cv = SG
k,l
j {cvs, [m c1 7→ c2],m′, ς}

Exposed(||cv||l
′

) = Exposed(cvs) where cv = G
k,l
j {cvs, [m c1 7→ c2]}

NotSealed(||object%||l) = ∅

NotSealed(||cv||l) = m ∪ NotSealed(cvs) where cv = class/vι(cvs) {(f, v) mx. e}

NotSealed(||cv||l
′

) = m′ where cv = SG
k,l
j {cvs, [m c1 7→ c2],m′, ς}

NotSealed(||cv||l
′

) = NotSealed(cvs) where cv = G
k,l
j {cvs, [m c1 7→ c2]}

Figure 29. The Unseal, Unsealed and Exposed Metafunctions



K;G;S; l  e

K;G;S; l  n K;G;S; l  #t K;G;S; l  #f

K;G ⊎ {x : l};S; l  e

K;G;S; l  λx. e

G(x) = l

K;G;S; l  x

K;G;S; l  e

K;G;S; l  op(e)

K;G;S; l  e1 K;G;S; l  e2

K;G;S; l  (e1 e2)

K;G;S; l  e1 K;G;S; l  e2 K;G;S; l  e3

K;G;S; l  if e1 e2 e3

K;G;S; l  e1 K;G;S; l  e2

K;G;S; l  send(e1, m, e2)

K;G;S; l  e

∀a s.t. (a, ι∗) ∈ dom(S), S(a, ι∗) = l

K;G;S; l  igetι
∗

(f∗, e)

K;G;S; l  e1 K;G;S; l  e2
∀a s.t. (a, ι∗) ∈ dom(S), S(a, ι∗) = l

K;G;S; l  iset!ι
∗

(f∗, e1, e2) K;G;S; l  object%

K;G;S; l  vi
K;G ⊎ {f : l,mp : l,mo : l, this : l, xpi

: l};S; l  epi
K;G ⊎ {f : l,mp : l,mo : l, this : l, xoi : l};S; l  eoi

K;G;S; l  es

K;G;S; l  class(es) {f := v mpxp. ep moxo. eo}

K;G;S; l  e

K;G;S; l  | e |l
K;G;S; k |= e Kk,l; ∅; {k}; {l}⊲ c k 6= l

K;G;S; l  mon
k,l
j (c, | e |k)

K;G;S; l  blamekj K;G;S; l  errork

K;G;S; l  vi
K;G ⊎ {f : l,m : l, this : l, xi : l};S; l  ei

K;G;S; l  cvs

K;G;S; l  class/vι(cvs) {f := v mx. e}

Kk,l; ∅; {k, l}; {k, l}⊲ c1i 7→ c2i K;G;S; k  cv

K;G;S; l  G
k,l
j {||cv||k , [m c1 7→ c2]}

Kk,l; ∅; {kl}; {kl}⊲ c1i 7→ c2i K;G;S; k  cv K(s) = k

K;G;S; l  SG
k,l
j {||cv||k , [m c1 7→ c2],m

′, ς}

K;G;S; l  cv

K;G;S; l  object/v(cv) {(f, a, ι)}

Kk,l; ∅; {kl}; {kl}⊲ c1i 7→ c2i K;G;S; k  o

K;G;S; l  OG
k,l
j {||o||k , [m c1 7→ c2]}

Kk,l; {ρ : (+, ⋆,m′)}; {k}; {l}⊲ c1i 7→ c2i K;G;S; k  cv

K;G;S; l  ∀G
k,l
j (ρ\m′).(||v||k){c1 7→ c2}

K;G;S; l |= e

K;G;S; l |= e1 K;G;S; l |= e2

K;G;S; l |= (| e1 |
l e2)

G(x) = l

K;G;S; l |= x

K;G;S; l |= e

K;G;S; l |= | e |l

Figure 30. Well Formed Terms



Kk,l;D; k; l⊲ c

k ⊆ k′

Kk,l;D; k; l⊲ ⌊flat(op)⌋k
′

Kl,k;Negate(D); l; k ⊲ c1 Kk,l;D; k; l ⊲ c2

D; k; l⊲ c1 7→ c2

Kk,l;D; kl; kl⊲ c1i 7→ c2i k ⊆ k′

Kk,l;D; k; l⊲ ⌊class/c•([m c1 7→ c2])⌋k
′

Kk,l;D; kl; kl ⊲ c1i 7→ c2i k ⊆ k′

Kk,l;D; k; l ⊲ ⌊object/c([m c1 7→ c2])⌋k
′

Kk,l;D ⊎ {ρ : (+,m)}; k; l ⊲ c1 7→ c2

Kk,l;D; k; l⊲ ∀
c(ρ\m).(c1 7→ c2)

Kk,l;D; kl; kl ⊲ c1i 7→ c2i D(ρ) = (+,m′) k ⊆ k′

Kk,l; k; l; ⌊
ρ=+

unseal/c([m c1 7→ c2], ρ)⌋k
′

⊲

Kk,l;D; kl; kl ⊲ c1i 7→ c2i D(ρ) = (−,m′) k ⊆ k′

Kk,l;D; k; l ⊲ ⌊
ρ=−

seal/c([m c1 7→ c2],m′, ρ)⌋k

Kk,l;D; kl; kl ⊲ c1i 7→ c2i k ⊆ k′ K(ς) = l

Kk,l; k; l; ⌊
ρ=+

unseal/c([m c1 7→ c2], ς)⌋k
′

⊲

Kk,l;D; kl; kl⊲ c1i 7→ c2i k ⊆ k′ K(ς) = k

Kk,l;D; k; l⊲ ⌊
ρ=−

seal/c([m c1 7→ c2],m′, ς)⌋k

K  S ∼ S

∀a ∈ dom(S). ∃ !(f, ι) s.t. (f, a, ι) ∈ dom(S) and K; ∅;S;S(f, a, ι)  S(a)

K  S ∼ S

Figure 31. Well Formed Contracts and Well Formed Stores

TJ⌊flat(int?)⌋kKK = Int

TJ⌊flat(bool?)⌋kKK = Bool

TJc1 7→ c2K
K = TJc1K

K → TJc2K
K

TJ∀c(ρ\m).(c1 7→ c2)K
K = ∀ρ\m.TJc1 7→ c2K

K

TJ⌊class/c•([m c1 7→ c2])⌋
kKK = Class {(m : TJc1 7→ c2KK)}

TJ⌊
ρ=−

seal/c([m c 7→ c],m′, ρ)⌋kKK = Class {(m : TJc1 7→ c2KK) | ρ}

TJ⌊
ρ=−

seal/c([m c 7→ c],m′, ς)⌋kKK = Class {(m : TJc1 7→ c2KK)⊕K(ς)/m}

TJ⌊
ρ=+

unseal/c([m c 7→ c], ρ)⌋kKK = Class {(m : TJc1 7→ c2KK) | ρ}

TJ⌊
ρ=+

unseal/c([m c 7→ c], ς)⌋kKK = Class {(m : TJc1 7→ c2KK)⊕K(ς)/m}

TJ⌊object/c([m c1 7→ c2])⌋
kKK = Object {(m : TJc1 7→ c2KK)}

Figure 32. The Contracts-Types Correspondence



K |Γ |Σ ⊢ e : τ

K |Γ |Σ ⊢ e

K |Γ |Σ ⊢ mon
u,t
j (c, e) : TJcKK

K |Γ |Σ⊢u cv ∼ r

K |Γ |Σ ⊢ G
u,t
j {cv, [m c1 7→ c2]} : Class {(m : TJc1 7→ c2KK)⊕ r/m}

K |Γ |Σ ⊢ cv

K |Γ |Σ ⊢ SG
u,t
j {cv, [m c1 7→ c2],m

′, ς} : Class {(m : TJc1 7→ c2KK)⊕K(ς)/m}

K |Γ |Σ⊢u o ∼ r

K |Γ |Σ ⊢ OG
u,t
j {o, [m c1 7→ c2]} : Object {(m : TJc1 7→ c2KK)⊕ r/m}

K |Γ |Σ ⊢ v

K |Γ |Σ ⊢ ∀G
u,t
j (ρ\m).(v){c1 7→ c2} : ∀ρ\m.TJc1 7→ c2K

K

K |Γ |Σ ⊢ e

K |Γ |Σ ⊢ e : TJcKK

K |Γ |Σ ⊢ mon
t,u
j (c, e)

K |Γ |Σ ⊢ cv : Class {(m : TJc1 7→ c2KK)⊕ r}

K |Γ |Σ ⊢ G
t,u
j {cv, [m c1 7→ c2]}

K |Γ |Σ ⊢ cv : Class {(m : TJc1 7→ c2KK)⊕K(ς)/m}

K |Γ |Σ ⊢ SG
t,u
j {cv, [m c1 7→ c2],m

′, ς}

K |Γ |Σ ⊢ o : Object{(m : TJc1 7→ c2KK)⊕ r}

K |Γ |Σ ⊢ OG
t,u
j {o, [m c1 7→ c2]}

K |Γ |Σ ⊢ v : ∀ρ\m.TJc1 7→ c2K
K

K |Γ |Σ ⊢ ∀G
t,u
j (ρ\m).(v){c1 7→ c2}

K |Γ |Σ⊢u cv ∼ r

K |Γ |Σ ⊢ cv : Class {(m : TJc1 7→ c2KK)⊕ r}

K |Γ |Σ⊢u G
t,u
j {cv, [m c1 7→ c2]} ∼ r

K |Γ |Σ ⊢ cv : Class {(m : TJc1 7→ c2KK)⊕K(ς)/m}

K |Γ |Σ⊢u SG
t,u
j {cv, [m c1 7→ c2],m

′, ς} ∼ K(ς)/m

K |Γ |Σ⊢u object% ∼ ∅

K |Γ |Σ⊢u cv ∼ r

K |Γ |Σ⊢u class(cv) {f := v mpxp. ep moxo. eo} ∼ r

K |Γ |Σ⊢u o ∼ r

K |Γ |Σ⊢u cv ∼ r

K |Σ |Γ⊢u object/v(cv) {(f, a, ι)} ∼ r

K |Γ |Σ ⊢ o : Object {(m : TJc1 7→ c2KK)⊕ r}

K |Γ |Σ⊢u OG
t,u
j {o, [m c1 7→ c2]} ∼ r

Figure 33. Well Typed Mixed Programs



Γ |Σ ⊢ e : τ

T-INT

Γ |Σ ⊢ n : Int

T-TRUE

Γ |Σ ⊢ #t : Bool

T-FALSE

Γ |Σ ⊢ #f : Bool

T-VAR

x : τ ∈ Γ

Γ |Σ ⊢ x : τ

T-LOC

a : τ ∈ Σ

Γ |Σ ⊢ a : τ

T-ABS

Γ, x : τ1 |Σ ⊢ e : τ2

Γ |Σ ⊢ λ(x : τ1) e : τ1 → τ2

T-APP

Γ |Σ ⊢ e0 : τ1 → τ2 Γ |Σ ⊢ e1 : τ3 τ3 <: τ1

Γ |Σ ⊢ (e0 e1) : τ2

T-IF

Γ |Σ ⊢ e0 : Bool Γ |Σ ⊢ e0 : τ Γ |Σ ⊢ e1 : τ

Γ |Σ ⊢ if e0 e1 e2 : τ

T-ROWABS

Γ, (ρ\m) |Σ ⊢ e : τ

Γ |Σ ⊢ Λ(ρ\m). e : ∀(ρ\m).τ

T-ROWAPP

Γ |Σ ⊢ e : ∀(ρ\m).τ Γ ⊢ r\m

Γ |Σ ⊢ e [r] : [r/ρ] τ

T-SEND

Γ |Σ ⊢ e0 : Object r
(m : τ1 → τ2) ∈ r Γ |Σ ⊢ e1 : τ3 τ3 <: τ1

Γ |Σ ⊢ send(e0, m, e1) : τ2

T-NEW

Γ |Σ ⊢ e : Class r

Γ |Σ ⊢ new(e) : Object r

T-GET

Γ |Σ ⊢ f∗ : τ Γ |Σ ⊢ o : Object r

Γ |Σ ⊢ igetι(f∗, o) : τ

T-SET

Γ |Σ ⊢ o : Object r
Γ |Σ ⊢ f∗ : τ Γ |Σ ⊢ v : τ

Γ |Σ ⊢ iset!ι(f∗, o, v) : τ

T-ROOT

Γ |Σ ⊢ object% : Class {}

T-OBJECT

Γ |Σ ⊢ cv : Class r ∀i,Σ(ai) = τi

Γ |Σ ⊢ object/v(cv) {(fi, τi, ai)} : Object r

T-CLASS

Γ |Σ ⊢ es : Class ers Γ ⊢ ers\m
p
i Γ ⊢ mo

i ∈ ers
Γ, this : τobj , x

p
i : τp1if : τf |Σ ⊢ e

p
i : τp2i

Γ, this : τobj , x
o
i : τo1i , f : τf |Σ ⊢ eoi : τo2i

Γ ⊢ vfi : τfi er = ers ⊕ {(mp : τp1 → τp2 )} τobj = Object RJerK

Γ ⊢ class(es) {f : τf := vf mp(xp : τp1 ) : τ
p
2 ep mo(xo : τo1 ) : τ

o
2 eo} : Class er

T-CLASSV
Γ |Σ ⊢ es : Class ers Γ ⊢ ers\m

p
i Γ ⊢ mo

i ∈ ers
Γ, this : τobj , x

p
i : τp1if : τf |Σ ⊢ e

p
i : τp2i

Γ, this : τobj , x
o
i : τo1i , f : τf |Σ ⊢ eoi : τo2i

Γ ⊢ vfi : τfi er = ers ⊕ {(mp : τp1 → τp2 )} τobj = Object RJerK

Γ |Σ ⊢ class/vι(cv) {(f, τf , v) mp(xp : τp1 ) : τ
p
2 ep mo(xo : τo1 ) : τ

o
2 eo} : Class er

Figure 34. Well Typed Programs
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