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Abstract

A crucial element of distributed cryptographic file systems
are key management solutions that allow for flexible but
secure data sharing. We consider efficient key management
schemes for cryptographic file systems using lazy revoca-
tion. We give rigorous security definitions for three cryp-
tographic schemes used in such systems, namely symmet-
ric encryption, message-authentication codes and signa-
ture schemes. Additionally, we provide generic construc-
tions for symmetric encryption and message-authentication
codes with lazy revocation using key-updating schemes for
lazy revocation, which have been introduced recently. We
also give a construction of signature schemes with lazy
revocation from identity-based signatures. Finally, we
describe how our constructions improve the key rotation
mechanism in the Plutus file system.

1. Introduction

Networked storage solutions, such as Network-Attached
Storage (NAS) and Storage Area Networks (SAN), have
emerged recently as an alternative to direct-attached stor-
age. It is desirable that clients have similar security guar-
antees in these environments to those offered by traditional
storage. However, the storage servers in a networked stor-
age system are more exposed than direct-attached disks.
Clients need to protect the confidentiality and integrity of
the stored data themselves and can not rely on the storage
servers for security guarantees. Cryptographic file systems
have been designed for this task.

Sharing of information among clients is an impor-
tant feature offered by file systems. Protecting data in
non-cryptographic file systems relies on an access control
mechanism, like the access control model of the Unix file
system. Data sharing in cryptographic file systems is com-
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plicated by the problem of key management. While early
cryptographic file systems did not address key manage-
ment, recent systems offer diverse solutions. They range
from fully centralized key distribution using a trusted key
server [12] to completely decentralized key distribution
done by the file system users [20, 19].

Access control granularity in a cryptographic file system
affects the number of keys that need to be managed and the
complexity of user revocation. Traditionally, access con-
trol is performed at the granularity of files and every file is
protected by its own cryptographic keys. Another method,
proposed in the Plutus file system [19], is to group files into
filegroups with the same access control permissions and the
same owner and to use the same cryptographic keys for all
files in a filegroup. This method reduces the number of
keys that need to be managed and distributed to users. In
the rest of the paper, we assume that access control and key
management are done for filegroups, but, nevertheless, our
model can also be applied to the case in which keys are
managed for each file individually.

Assuming that multiple users have access permissions
for a filegroup, they need to share the keys of the filegroup.
A trusted entity, which might either be a trusted key server
or the owner of the filegroup, distributes the cryptographic
keys for the filegroup. The users that have access rights to
the filegroup might change over time. New users might be
granted access to the filegroup, and existing users’ access
rights might be revoked. Initially, the same cryptographic
keys can be used for all files in the filegroup, but once a
revocation occurs, the keys need to be changed so that re-
voked users can not further perform cryptographic opera-
tions on files. It is thus necessary that the trusted entity
changes the filegroup keys and distributes fresh keys to the
users after every revocation. In addition, the cryptographic
information computed with these keys (either ciphertext or
integrity protection information for files) has to be recom-
puted.

There are two revocation models, depending on when
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the cryptographic information is updated. In an active revo-
cation model, all cryptographic information is immediately
recomputed after a revocation takes place. This is expen-
sive and might cause disruptions in the normal operation of
the file system. In the alternative model of lazy revocation,
the information for each file is recomputed only when the
file is modified for the first time after a revocation [12].
Lazy revocation is more efficient than active revocation,
and, in addition, revoked users do not get access to new
information. But in systems with lazy revocation, key man-
agement becomes more difficult than in systems with active
revocation because multiple keys might be used simultane-
ously for the files in the filegroup. These keys have to be
stored and distributed to users upon request. Cryptosys-
tems with efficient key management for file systems using
lazy revocation are the focus of our work.

Contributions. This paper provides a comprehensive
formalization of the cryptographic primitives used in a file
system with lazy revocation. In our model, the crypto-
graphic keys needed for operations on files are updated ev-
ery time the trusted entity revokes a user. A user that has
access rights to a filegroup receives from the trusted entity
a user key that can be used to extract all keys needed for the
cryptographic operations on the files. We define variations
of symmetric encryption schemes, message-authentication
codes and signature schemes with lazy revocation.

We give rigorous security definitions for the three cryp-
tographic primitives. We also give generic constructions of
symmetric encryption schemes and message-authentication
codes with lazy revocation using the abstraction of key-
updating schemes for lazy revocation, defined in a compan-
ion paper [2]. In addition, we give a generic transformation
of identity-based signatures [27] to signature schemes with
lazy revocation. Finally, we show how our primitives can
be used in cryptographic file systems adopting lazy revoca-
tion.

Our lazy revocation model generalizes key rotation, a
mechanism used previously for key management in the Plu-
tus file system [19]. Using our constructions, we improve
the key management scheme of the Plutus file system in
two ways: first, the extraction of encryption keys for previ-
ous time intervals can be done more efficiently than key ro-
tation in Plutus, using only symmetric-key operations, and,
secondly, using signature schemes with lazy revocation, the
storage space taken by the signature verification keys can
be reduced from linear in the number of revocations to a
constant.

Related work. Riedel et al. [26] survey the security of
existing storage systems, in particular cryptographic file
systems. Here we focus on key management schemes
in these systems. The first cryptographic file systems

(CFS [7, 8] and TCFS [10]) include simple key man-
agement schemes, not suitable for sharing large amounts
of data. Cepheus [12] considers data sharing and uses
a trusted key server for distributing cryptographic keys.
Cepheus introduces the idea of lazy revocation, and im-
plements it by storing all previous cryptographic keys for a
filegroup on the trusted server.

Plutus [19] also adopts lazy revocation and introduces a
sophisticated scheme for the derivation of previous crypto-
graphic keys from the latest keys, called key rotation. Key
rotation is applied to both the encryption keys and the sig-
nature keys for a filegroup. These keys are rotated forward
by the owner applying the RSA permutation to the current
key, using knowledge of the trapdoor information. Keys
are rotated backward by users themselves using the public
RSA permutation. Differentiation of readers and writers is
done by distributing the file-signing key only to writers and
the file-signature verification key only to readers.

The key rotation mechanism in the Plutus file system
has been improved by several recent papers [13, 25, 2].
Fu et al. [13] formalize key-regression, a primitive equiv-
alent to the model of key-updating schemes by Backes
et al. [2]. Key-regression and key-updating schemes are
cryptographic abstractions for key management in crypto-
graphic file systems using lazy revocation. Fu et al. [13]
also propose two more efficient constructions than the con-
struction based on the RSA permutation from the Plutus file
system. They use hash chains of symmetric-cryptographic
primitives (either hash functions or block ciphers) for key
updating. However, in these constructions the setup time is
linear in the total number of revocations supported, as all
the keys have to be generated in the initialization phase.
Naor et al. [25] propose more efficient hash chains for
the derivation of keys. By applying the fractal hash chain
traversal method of Jakobsson [18], the time to update the
cryptographic keys is decreased to at most a logarithmic
number of hash computations at the expense of increasing
the storage space to logarithmic in the total number of revo-
cations. However, in both these proposals, the setup time
and the time to extract previous keys are still linear. The
binary-tree construction [2] achieves logarithmic cost for
key updating and extraction of previous keys in the total
number of revocations, logarithmic key storage in the num-
ber of revocations, and constant setup time.

In file systems such as Farsite [1], SNAD [24] and SiR-
iUS [14] the file data is protected by a unique file encryp-
tion key and/or a unique file signature key. The meta-data
information for a file includes an encryption under the pub-
lic key of each user with access rights to the file of these
file keys. To perform a file operation, a user retrieves the
encrypted meta-data information from the untrusted stor-
age servers. While this scheme simplifies key management,
it requires additional space on the storage servers propor-
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tional to the number of users accessing a file. To our knowl-
edge, neither of these file systems addresses the problem of
efficient revocation of users.

SUNDR [21] only provides data integrity, but not confi-
dentiality. Every user signs files with its own signing key.
A user checking the integrity of a file also needs to check
that the user that signed the file still has write access to
the file. SUNDR assumes a public-key infrastructure and a
mechanism for distributing individual users’ public keys to
all users in the system.

2. Modeling Lazy Revocation

In systems adopting lazy revocation, the cryptographic
keys used to perform operations on files need to be changed
after every user revocation. We define a time interval to be
the period between two user revocations. The total number
of time intervals can be large. The trusted entity that is
responsible for the cryptographic keys must change them at
the beginning of each time interval and distribute the fresh
keys to users having access to files.

Before providing the formal definition of our crypto-
graphic primitives with lazy revocation, we recall the def-
inition of key-updating schemes for lazy revocation, given
in a companion paper [2]. Key-updating schemes for lazy
revocation are an abstraction to manage the keys used
for symmetric encryption and authentication algorithms for
data storage systems with lazy revocation.

We do not consider here public-key encryption schemes
with lazy revocation, as they do not have direct applica-
tions to storage systems. If needed in other applications,
public-key encryption schemes with lazy revocations can
be defined using our lazy revocation model. A construction
similar to that of a forward-secure encryption scheme can
be obtained from binary tree encryption schemes defined
by Canetti, Halevi and Katz [9].

Key-updating schemes for lazy revocation. The model
of key-updating schemes for lazy revocation consists of a
trusted entity (called center in [2]) that manages the keys
for a filegroup, and users that have access permissions to
the filegroup. The trusted entity generates an initial state
that is updated at the beginning of each time interval (cor-
responding to a revocation) and from which it can derive
user keys upon request. A user can extract from a user key
for a particular time interval the symmetric keys for all pre-
vious time intervals. We review the formal definition of
key-updating schemes here.

Definition 1 (Key-Updating Schemes for Lazy Revoca-
tion [2]). A key-updating scheme consists of four deter-
ministic polynomial-time algorithms KU = (Init, Update,
Derive, Extract) with the following properties:

— The initialization algorithm, Init, takes as input a secu-
rity parameter 1%, a number of time intervals T, and a
random seed s of length polynomial in x and outputs
an initial trusted state Sy.

— The key update algorithm, Update, takes as input the
current time interval t, the current trusted state S;, and
outputs a trusted state S;41 for the next time interval.

— The user key derivation algorithm, Derive, is given as
input a time interval t, and the trusted state S;, and
outputs a user key M;. The user key can be used to
derive all keys k; of previous time intervals, for 1 <
i<t

— The key extraction algorithm, Extract, is executed by
the user and takes as input a time interval t, the user
key M; for that time interval received from the trusted
entity, and a target time interval 1 < i <t. The algo-
rithm outputs the key k; for target time interval i.

We define the Init algorithm of a key-updating scheme
to be deterministic because we can compose efficiently
schemes with deterministic initialization algorithms. The
additive and multiplicative composition methods [2] com-
bine two key-updating schemes into a new scheme with the
number of time interval either the sum or the product of the
number of intervals of the two schemes. These methods
are useful in building schemes with a large number of time
intervals.

Security of key-updating schemes for lazy revocation.
Informally, a key-updating scheme is secure if an adver-
sary given the user keys for all consecutive time intervals
up to some time ¢ that is chosen adaptively, has no advan-
tage in distinguishing the key for time interval # + 1 from a
randomly generated key. Formally, consider a probabilistic
polynomial-time adversary <7 that participates in the fol-
lowing experiment:

Initialization: Given a random seed, the initial trusted
state is generated with the Init algorithm.

Key compromise: The adversary adaptively picks a time
interval 7 such that 0 <t < T as follows. Starting with
t =0,1,..., the adversary is given the user keys M,
for all consecutive time intervals until <7 decides to
output stop or t becomes equal to 7 — 1.

Challenge: A challenge for the adversary is generated,
which is either the key for time interval ¢ + 1 gener-
ated with the algorithms of the key-updating scheme,
or a random bit string of the appropriate length.

Guess: <7 outputs a bit b.

The key-updating scheme KU is secure if the advantage of
the adversary of distinguishing between the key generated
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by KU for interval # + 1 and the random key is only negli-
gibly larger than % For an adversary .2/ and a scheme KU
we denote Advg} (<) its advantage. We denote Adviy) the
maximum advantage of all adversaries.

Remark 1. Since we allow T to be exponential in the
security parameter, we require that .7, a probabilistic
polynomial-time algorithm, outputs stop at least once be-
fore halting. This requirement is placed on all crypto-
graphic primitives for lazy revocation defined in this sec-
tion, but is omitted in subsequent definitions for brevity.

Remark 2. This definition of security is equivalent to a
definition in which the adversary can choose the challenge
time interval #* in which it has to distinguish between the
keys, as long as t* >t and ¢* is polynomial in the security
parameter. We consider a game in which the adversary is
challenged at time interval ¢ + 1 in all security definitions
of cryptographic primitives for lazy revocation given in this

paper.

Implementation. Three key-updating schemes are intro-
duced in [2]: a chaining construction based on hash chains,
a trapdoor permutation scheme derived from the key rota-
tion method in Plutus [19], and a novel tree construction,
which is the most efficient one among them.

3. Symmetric Encryption Schemes with Lazy
Revocation (SE-LR)

In a cryptographic file system adopting lazy revocation,
the file encryption keys must be updated by the trusted en-
tity (e.g., the owner of the filegroup) as described above.
Users might need to encrypt files using the encryption key
of the current time interval or to decrypt files using any key
of a previous time interval. Upon sending a corresponding
request to the trusted entity, authorized users receive the
user key of the current time interval from the trusted en-
tity. Both the encryption and decryption algorithms take as
input the user key, and the decryption algorithm addition-
ally takes as input the index of the time interval for which
decryption is performed.

3.1. Security Definitions

Before defining formally symmetric encryption schemes
with lazy revocation, we first define symmetric encryption
schemes and security against chosen-plaintext attacks (or
CPA-security). We are interested in CPA-security as stan-
dard randomized modes of operation (e.g., cipher-block
chaining) used with a block cipher modeled as a pseudo-
random permutation satisfy this notion of security [4], but

not stronger notions like security against chosen-ciphertext
attacks.

Symmetric encryption schemes. A symmetric encryp-
tion scheme & consists of three algorithms: a key gener-
ation algorithm Gen(-) that outputs a key (taking as input
the security parameter), an encryption algorithm Ency(m)
that outputs the encryption of a given message m with key
k, and a decryption algorithm Decy(c) that decrypts a ci-
phertext ¢ with key k. The first two algorithms might be
probabilistic, but Dec is deterministic.

The correctness property requires that Decy (Ency (m)) =
m, for all keys k generated by Gen and all messages m from
the encryption domain.

CPA-security of a symmetric encryption scheme & =
(Gen, Enc, Dec) requires that any polynomial-time adver-
sary .o/ with access to an encryption oracle Enc(-) is unable
to distinguish between encryption of two messages n and
my of its choice. If o/ produces two messages whose en-
cryptions it can distinguish with non-negligible probability,
we say that &/ succeeds in breaking the CPA-security of
scheme &. We refer the reader to the paper by Bellare et
al. [4] for formal definitions of CPA-security. For an adver-
sary 7 and a symmetric encryption scheme & we denote
Advi}? (<) its advantage. W.Lo.g., we can relate the suc-
cess probability of .7 and its advantage as

Pr[« succeeds|= % [1+AdvF (). (1)

Definition of SE-LR. Symmetric encryption schemes
with lazy revocation include Init, Update and Derive al-
gorithms for key generation that are similar to the corre-
sponding algorithms of key-updating schemes, and secret-
key encryption and decryption algorithms.

Definition 2 (Symmetric Encryption with Lazy Revoca-
tion). A symmetric encryption scheme with lazy revoca-
tion consists of a tuple of five polynomial-time algorithms
(Init, Update, Derive, Enc, Dec) with the following prop-
erties:

— The Init, Update and Derive deterministic algorithms
have the same specification as the corresponding algo-
rithms of a key-updating scheme.

— The probabilistic encryption algorithm, Enc, takes as
input a time interval t, the user key M; of the current
time interval and a message m, and outputs a cipher-
text c.

— The deterministic decryption algorithm, Dec, takes as
input a time interval t, the user key M, of the current
time interval, the time interval i for which decryption
is performed, and a ciphertext c, and outputs a plain-
text m.
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Correctness of SE-LR. Suppose that Sy < Init(1%,T,s)
is the initial trusted state computed from a random seed s,
S; < Update(i,Update(i—1,...,Update(0,Sp) ... )) is the
trusted state for time interval i < T and M; < Derive(i, S;) is
the user key for time interval i. The correctness property re-
quires that Dec(¢,M;,i,Enc(i,M;,m)) = m, for all messages
m from the encryption domain and all i,z withi <t <T.

CPA-security of SE-LR. The definition of CPA-security
for SE-LR schemes requires that any polynomial-time ad-
versary with access to the user key for a time interval ¢ that
it may choose adaptively (and, thus, with knowledge of all
keys for time intervals prior to ¢), and with access to an
encryption oracle for time interval # 4 1 is not able to dis-
tinguish encryptions of two messages of its choice for time
interval ¢ 4 1.

Formally, consider a probabilistic polynomial-time ad-
versary .o/ that participates in the following experiment:

Initialization: Given a random seed, the initial trusted
state Sp is generated with the Init algorithm.

Key compromise: The adversary adaptively picks a time
interval ¢ such that 0 <t < T as follows. Starting with
t =0,1,..., the adversary is given the user keys M;
for all consecutive time intervals until 2/ decides to
output stop or f becomes equal to 7 — 1.

Challenge: When </ outputs stop, it also outputs two
messages, mo and m;. A random bit b is selected
and 7 is given a challenge ¢ = Enc(t + 1,M;1,my),
where M, is the user key for time interval  + 1 gen-
erated with the Init, Update and Derive algorithms.

Guess: o/ has access to an encryption oracle Enc(z +
1,M;41,-) for time interval 7 + 1. At the end of this
phase, <7 outputs a bit b’ and succeeds if b =1'.

The SE-LR scheme is CPA-secure if the adversary succeeds
in this game with probability only negligibly larger than %
For an adversary & and a SE-LR scheme £** we denote
Adv?’lar'lr(ﬂ{ ) its advantage. W.l.o.g., we can relate the
success probability of .o/ and its advantage as

|

Pr[« succeeds|= 3 [1+AdvE ()], )

£Llr

Tweakable ciphers. A tweakable block cipher [22, 17]
is similar to a symmetric encryption scheme with the dif-
ference that it is deterministic and both the encryption and
decryption algorithms take an additional parameter, called
tweak. Such ciphers must be length-preserving and require
that encryptions are indistinguishable as long as they are
produced with different tweaks. We do not define tweak-
able ciphers here, but the interested reader can consult [17]

for formal definitions. Tweakable ciphers with lazy revo-
cation can be defined and implemented in a similar way as
symmetric encryption schemes with lazy revocation. We
omit here the details.

3.2. Generic Construction

Let KU = (Init, Update, Derive, Extract) be a secure
key-updating scheme and & = (Gen, Enc, Dec) a CPA-
secure symmetric encryption scheme such that the keys
generated by KU have the same length as those generated
by &. We construct a symmetric encryption scheme with
lazy revocation & = (Init'*, Update!*, Derivel*, Encl®,
Dec'*) as follows:

— The Init'*, Update'*, and Derivel* algorithms of &*
are the same as the corresponding algorithms of KU.

— The Enc'*(t,M;,m) algorithm runs k <«
Extract(r,M;,t) and outputs ¢ < Ency, (m).

— The Dec'*(t,M,,i,m) algorithm tuns k; <«
Extract(r, M;,i) and outputs m — Decy, (c).

Theorem 1. Suppose that KU is a secure key-updating
scheme for lazy revocation and & is a CPA-secure sym-
metric encryption scheme. Then & is a CPA-secure sym-
metric encryption scheme with lazy revocation.

Proof. Correctness is easy to see. To prove CPA-security
of &7, let &/** be a polynomial-time adversary algorithm
successful in breaking the CPA-security of &*. We con-
struct an adversary <7 that breaks the CPA-security of &

— 4/ is given access to an encryption oracle Enc(+).

— of generates a random seed s and uses this to generate
an instance of the scheme KU.

— o/ gives to 2/ * the user keys M, from the instance of
scheme KU generated in the step above.

— When &/** outputs stop at time interval ¢ and two
messages, mg and m, <7 also outputs mg and m; .

— o is given challenge ¢ and it gives this challenge to
o,
— When &/** makes a query to the encryption oracle for

time interval 7 4 1, &7 replies to this query using the
encryption oracle Enc(-).

— & outputs the same bit as .o7**.

From the construction of the simulation it follows that
Pr[«/ succeeds|= Pr[&/*" succeeds |E],

where E is the event that .27* does not distinguish the sim-
ulation done by 7 from the CPA game defined in Section
3. The only difference between the simulation and the CPA
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game is that o/ uses in the simulation the encryption ora-
cle with a randomly generated key to reply to encryption
queries for time interval ¢ 4 1, whereas in the CPA game
the encryption is done with key k4 generated with the
Update, Derive and Extract algorithms of scheme KU. By
the definition of E, we have Pr[E] < Adv).

We can bound the probability of success of 271 as:

Pr[a/'" succeeds|] =

)

r[/** succeeds |E|Pr[E]+
r[.«/** succeeds |E]|Pr[E]
r[@/™* succeeds |E]+Pr[E]
r[.«/ succeeds |+AdVES. (3)

o

P
P

IN A

Using (1), (2), and (3) we obtain

Adv BT ('7) < AdvE® () + 2Advi.
The CPA-security of & and the security of the key-updating
scheme KU imply that Adv¥* () and Advi) are negligi-
ble. It follows that Adv?ﬁ_h(ﬁ% Ir) is negligible, which
proves the statement of the theorem. O

Implementation. In practice, we can instantiate the
CPA-secure symmetric-encryption scheme with a block ci-
pher (such as AES) in one of the CPA-secure modes of op-
eration [23] (e.g., cipher-block chaining). The most effi-
cient key-updating scheme is our binary tree construction
proposed in [2], which only performs symmetric-key op-
erations (more specifically, pseudo-random function appli-
cations implemented again by a block cipher). Its Update,
Derive and Extract algorithms have logarithmic complex-
ity and its trusted state and user key sizes are logarithmic
in the total number of time intervals.

Suppose that AES with 128-bit key size is used for the
derivation of the keys. In a system that supports up to 1000
revocations, at most 10 AES computations need to be done
for the Update, Derive and Extract algorithms. The center
state and user keys consist of up to 10 AES keys or 160
bytes each. This adds a very small overhead to the cost of
file data encryption. Details of the binary-tree construction
are given in a companion paper [2].

4. Message-Authentication Codes with Lazy
Revocation (MAC-LR)

If message-authentication codes are used for providing
integrity in a cryptographic file system, then a secret key
for computing and verifying authentication tags needs to
be distributed to all authorized users. The users generate
a tag using the key of the current time interval and may
verify tags for any of the previous time intervals with the
corresponding keys. Similar to symmetric-key encryption

with lazy revocation, both the tagging and verification al-
gorithms need to take as input the current user key, and the
verification algorithm additionally takes as input the index
of the time interval at which the tag was generated.

4.1. Security Definitions

Before defining message-authentication codes with lazy
revocation, we recall the definitions of message authentica-
tion codes and their security under chosen-message attacks
(or CMA-security).

Message-authentication codes. A message-authentica-
tion code (MAC) consists of three algorithms: a key gen-
eration algorithm Gen(-) that outputs a key (taking as input
a security parameter K), a tagging algorithm Tagy(m) that
outputs the authentication tag 7 of a given message m with
key k, and a verification algorithm Very(m, T) that outputs
a bit. A tag 7 is said to be valid on a message m for a
key k if Veri(m,7) = 1. The first two algorithms might be
probabilistic, but Ver is deterministic.

The correctness property requires that
Very(m, Tag,(m)) = 1, for all keys k generated with
the Gen algorithm and all messages m from the message
space.

CMA-security for a message-authentication code [5] re-
quires that any polynomial-time adversary with access to a
tagging oracle Tag(-) is not able to generate a message and
a valid tag for which it did not query the tagging oracle.

Definition of MAC-LR. Message-authentication codes
with lazy revocation include Init, Update and Derive al-
gorithms for key generation that are similar to the corre-
sponding algorithms of key-updating schemes, and secret-
key tagging and verification algorithms.

Definition 3 (Message-Authentication Codes with Lazy
Revocation). A message-authentication code with lazy re-
vocation consists of a tuple of five polynomial-time algo-
rithms (Init, Update, Derive, Tag, Ver) with the following
properties:

— The Init, Update and Derive deterministic algorithms
have the same specification as the corresponding algo-
rithms of a key-updating scheme.

— The probabilistic tagging algorithm, Tag, takes as in-
put a time interval t, the user key M, of the current
time interval and a message m, and outputs an authen-
tication fag 7.

— The deterministic verification algorithm, Ver, takes as
input a time interval t, the user key M, of the current
time interval, the time interval i for which verification
is performed, a message m, and a tag T, and outputs a
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bit. A tag T computed at time interval i is said to be
valid on message m if Ver(t,M;,i,m, Tag(i,M;,m)) =
1 for some ¢ > i.

Correctness of MAC-LR. Suppose that Sy «—
Init(1%,T,s) is the initial trusted state computed
from a random seed s, S; < Update(i,Update(i —
1,...,Update(0,Sp)...)) is the trusted state for time
interval i < T and M; < Derive(i,S;) is the user key for
time interval i. The correctness property requires that
Ver(t,M,,i,m, Tag(i,M;,m)) = 1, for all messages m from
the message space and all i,7 withi <7 <T.

CMA-security of MAC-LR. The definition of security
for MAC-LR schemes requires that any polynomial-time
adversary with access to the user key for a time interval ¢
that it may choose adaptively (and, thus, with knowledge
of all keys for time intervals prior to ), and with access to
a tagging oracle for time interval 7 + 1 is not able to create
a valid tag on a message not queried to the tagging oracle.
Formally, consider a probabilistic polynomial-time ad-
versary <7 that participates in the following experiment:

Initialization: Given a random seed, the initial trusted
state Sy is generated with the Init algorithm.

Key compromise: The adversary adaptively picks a time
interval t such that 0 <t < T as follows. Starting with
t =0,1,..., the adversary is given the user keys M;
for all consecutive time intervals until ./ decides to
output stop or # becomes equal to 7 — 1.

Tag generation: < has access to a tagging oracle Tag(r +
1,M,41,-) for time interval ¢ + 1 and outputs a mes-
sage m and a tag T.

The adversary is successful in breaking the CMA-security
of the MAC if m was not a query to the tagging oracle and 7
is a valid tag on m for interval r + 1. The MAC-LR scheme
is CMA-secure if the adversary succeeds in this game only
with negligible probability.

4.2. Generic Construction

Let KU = (Init, Update, Derive, Extract) be a secure
key-updating scheme and MA = (Gen, Tag, Ver) a CMA-
secure message-authentication code such that the keys gen-
erated by KU have the same length as those generated by
MA. We construct a message-authentication code with lazy
revocation MA' = (Init!*, Update'®, Derivel”, Tag!T,
Ver') as follows:

— The Init!*, Update!®, and Derive!* algorithms of
scheme MA?'* are the same as the corresponding al-
gorithms of KU.

— The Tag'*(t,M,,m) algorithm runs k <«
Extract(z,M;,t) and outputs ¢ < Tag,, (m).

— The Ver'*(t,M,,i,m,7) algorithm runs k; <«
Extract(t,M;,i) and outputs the value returned
by Very, (m, 7).

Theorem 2. Suppose that KU is a secure key-updating
scheme for lazy revocation and MA is a CMA-secure
message-authentication code. Then MA'Y is a secure
message-authentication code with lazy revocation.

Proof. Correctness is easy to see. To prove CMA-security
for MA'*, let o/ be a polynomial-time adversary algo-
rithm successfully in breaking the security of MA'*. We
construct an adversary </ that breaks the security of MA:

— & is given access to a tagging oracle Tag(-).

— of generates a random seed s and uses this to generate
an instance of scheme KU.

& gives to /1" the user keys M, from the instance of
scheme KU generated in the step above.

— When <71 makes a query to the tagging oracle for
time interval ¢ + 1, <7 replies to this query using the
tagging oracle Tag(+).

4/ outputs the same message and tag pair as .&/1%.

From the construction of the simulation it follows that
Pr[«/ succeeds|= Pr[&/*" succeeds |E],

where E is the event that 7** does not distinguish between
the simulation done by <7 and the MAC game from Section
4. Using a similar argument as in the proof of Theorem 1,
we can bound Pr[E] < Adv}. Tt is immediate, as in the
proof of Theorem 1 that

Pr[a/'" succeeds | < Pr[«/ succeeds |+AdVi,

and the security of schemes KU and MA implies the con-
clusion of the theorem. O

Implementation. In practice, there are many efficient
MAC schemes, such as CBC-MAC [23] or HMAC [3].
They can be combined with key-updating schemes and
achieve the same complexities as the implementation of
symmetric encryption schemes with lazy revocation.

5. Signature Schemes with Lazy Revocation
(S5-LR)

Signature schemes can be used for providing integrity of
files. When differentiation of readers and writers is desired,
a MAC is not sufficient because it is a symmetric primitive,
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and an asymmetric signature scheme is needed. The group
signing key is distributed only to writers, but the group ver-
ification key is given to all readers for the filegroup. Writers
may modify files and recompute signatures using the sign-
ing key of the current time interval. Readers may check
signatures on files generated at previous time intervals. We
consider a model for signature schemes with lazy revoca-
tion in which the public key remains constant over time and
only the signing keys change at the beginning of every time
interval.

5.1. Security Definitions

Before defining signature schemes with lazy revocation,
we recall the definition of signature schemes and their se-
curity under chosen-message attacks (or CMA-security).

Signature schemes. A signature scheme consists of three
algorithms: a key generation algorithm Gen(+) that outputs
a public key/secret key pair (PK, SK) (taking as input a se-
curity parameter k), a signing algorithm ¢ «— Signgy (m)
that outputs a signature of a given message m using the
signing key SK, and a verification algorithm Verpg (m, o)
that outputs a bit. A signature o is valid on a message m if
Verpk(m,o) = 1. The first two algorithms might be prob-
abilistic, but Ver is deterministic.

The correctness property requires that
Verpk (m,Signgi (m)) = 1, for all key pairs (PK,SK)
generated with the Gen algorithm and all messages m from
the signature domain.

CMA-security for a signature scheme [15] requires that
a polynomial-time adversary with access to a signing or-
acle Sign(-) is not able to generate a message and a valid
signature for which it did not query the signing oracle.

Definition of SS-LR. Signature schemes with lazy revo-
cation include Init, Update and Derive algorithms similar
to those of key-updating schemes, but with the following
differences: the Init outputs also the public key of the sig-
nature scheme, and the Derive algorithm outputs directly
the signing key for the time interval given as input. User
keys in this case are the same as signing keys, as users per-
form operations only with the signing keys of the current
time interval. SS-LR schemes also include signing and ver-
ification algorithms.

Definition 4 (Signature Schemes with Lazy Revocation).
A signature scheme with lazy revocation consists of a tuple
of five polynomial-time algorithms (Init, Update, Derive,
Sign, Ver) with the following properties:

— The deterministic initialization algorithm, Init, takes
as input the security parameter 1%, the number of time

intervals T, and a random seed s, and outputs an initial
trusted state So and the public key PK.

— The deterministic key update algorithm, Update,
takes as input the current time interval t and the cur-
rent trusted state S;, and outputs a trusted state S;|
for the next time interval.

— The deterministic key derivation algorithm, Derive,
takes as input a time interval t and the trusted state
S, and outputs a signing key SK; for time interval .

— The probabilistic signing algorithm, Sign, takes as in-
put the secret key SK; for time interval ¢ and a message
m, and outputs a signature ©.

— The deterministic verification algorithm, Ver, takes as
input the public key PK, a time interval t, a message
m and a signature o and outputs a bit. A signature &
generated at time ¢ is said to be valid on a message m
if Ver(PK,t,m,0) = 1.

Correctness of SS-LR. Suppose that (Sp,PK) «
Init(1%,7,s) are the public key and the initial
trusted state computed from a random seed s,
S; < Update(i,Update(i—1,...,Update(0,Sp) .. .)) is the
trusted state for interval i < T and SK; < Derive(i,S;) is
the signing key for interval i. The correctness property
requires that Ver(PK,z,m,Sign(SK;,m)) = 1, for all
messages m and all intervals r < 7.

Security of SS-LR. The definition of security for SS-LR
requires that any polynomial-time adversary with access to
the signing keys SK; for 1 <i <t¢, with ¢ adaptively chosen,
and a signing oracle for time interval ¢ + 1 is not able to
generate a message and a valid signature for time interval
t + 1 that was not obtained from the signing oracle.
Formally, consider a probabilistic polynomial-time ad-
versary .o/ that participates in the following experiment:

Initialization: Given a random seed, the initial trusted
state Sp and the public key PK are generated with the
Init algorithm. PK is given to <7

Key compromise: The adversary adaptively picks a time
interval 7 such that 0 <t < T as follows. Starting with
t=0,1,..., the adversary is given the signing keys M;
for all consecutive time intervals until </ decides to
output stop or ¢ becomes equal to 7 — 1.

Signature generation: < is given access to a signing or-
acle Sign(SK;41,-) for time interval 7 + 1 and outputs
a message m and signature ©.

The adversary is successful in breaking the CMA-security
of the signature scheme if m was not a query to the sign-
ing oracle and o is a valid signature on m for time interval
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t+ 1. The SS-LR scheme is CMA-secure if the adversary
succeeds in this game with negligible probability.

5.2. Generic Construction from Identity-Based
Signatures

We present a generic transformation of identity-based
signature schemes to signature schemes with lazy revoca-
tion. We first recall identity-based signatures and their se-
curity definition, then we describe the transformation and,
finally, we prove that the transformation constructs a secure
signature scheme with lazy revocation.

Identity-based signatures (IBS). Identity-based signa-
tures have been introduced by Shamir [27]. A trusted entity
initially generates a master secret key and a master public
key. Later the trusted entity can generate the signing key
for a user from the master secret key and the user’s iden-
tity, which is an arbitrary bit string. In order to verify a
signature, it is enough to know the master public key and
the signer’s identity, which is a public string.

Definition 5 (Identity-Based Signatures). An identity-
based signature scheme consists of a tuple of four prob-
abilistic polynomial-time algorithms (MKGen, UKGen,
Sign, Ver) with the following properties:

— The master key generation algorithm, MKGen, takes
as input the security parameter 1%, and outputs the
master public key MPK and master secret key MSK of
the scheme.

— The user key generation algorithm, UKGen, takes as
input the master secret key MSK and the user’s iden-
tity ID, and outputs the secret key SK|p for the user.

— The signing algorithm, Sign, takes as input the user’s
secret key SK|p and a message m, and outputs a signa-
ture O.

— The verification algorithm, Ver, takes as input the
master public key MPK, the signer’s identity ID,
a message m and a signature o and outputs a
bit. The signature o generated by the user with
identity ID is said to be valid on message m if
Ver(MPK,ID,m,0) = 1.

Correctness of IBS. The correctness property requires
that, if (MPK,MSK) «— MKGen(1¥) is a pair of mas-
ter public and secret keys for the scheme, SKjp «
UKGen(MSK;,ID) is the signing key for the user with iden-
tity 1D, then Ver(MPK,ID,m,Sign(SK|p,m)) = 1, for all
messages m and all identities ID.

Security of IBS. Consider a probabilistic polynomial-
time adversary 7 that participates in the following experi-
ment:

Initialization: The master public key MPK and master
secret key MSK are generated with MKGen. MPK is
given to 7.

Oracle queries: The adversary has access to three ora-
cles: InitID(-) that allows it to generate the secret key
for a new identity, Corrupt(-) that gives the adver-
sary the secret key for an identity of its choice, and
Sign(-,-) that generates the signature on a particular
message and identity.

Output: The adversary outputs the identity of an uncor-
rupted user, a message and a signature.

The adversary succeeds in breaking the security of the IBS
scheme if the signature it outputs is valid and the adver-
sary didn’t query the message to the signing oracle. The
IBS scheme is secure if the adversary succeeds in this game
only with negligible probability.

The transformation. We construct a signature scheme
with lazy revocation from an identity-based signature
scheme by letting every time interval define a different
identity. Let . = (MKGen, UKGen, Sign, Ver) be a secure
identity-based signature scheme. We construct a signa-
ture scheme with lazy revocation .#** = (Init'*, Derive'*,
Update'®, Sign'*, Ver'*) as follows:

— Init**(1%,T) runs (MSK,MPK) < MKGen(1¥) and
outputs the initial trusted state So = MSK and the pub-
lic key MPK for the signature scheme.

— Update®*(¢,S;) outputs S;.1 < S,.

— Derive*(t,S;) runs SK; «+ UKGen(Sp,?) and outputs
SK:.

— Sign'*(SK,,m) runs ¢ < Sign(SK;,m) and outputs ©.

— Ver'*(MPK,t,m, o)
Ver(MPK,t,m, o).

outputs the same as

Theorem 3. Suppose that . is a secure identity-based sig-
nature scheme. Then ./** is a secure signature scheme
with lazy revocation.

Proof. Correctness is easy to see. To prove security of
S let &/** be a polynomial-time adversary successful
in breaking .”**. We construct an adversary & for .

— & is given the public key MPK of scheme .. </
gives MPK to &/1*.

— When &/** requests the secret key M;, &7 runs SK; «
Corrupt(t) and gives SK; to @/1*.
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— When «/* makes a query m to the signing oracle for
interval 7+ 1, o runs ¢ < Sign(¢ + 1,m) and returns
o to 1T,

— Finally, &' outputs a message m and a signature &
for time interval £ 4 1. Then, <7 outputs (t + 1,m, ).

It is immediate that the probability of success of & is the
same as the probability of success of 7% and the security
of . implies the security of . O

Implementation. Generic constructions of identity-
based schemes from a certain class of standard identifica-
tion schemes, called convertible, are given by Bellare et.
al. [6]. The most efficient construction of an IBS scheme is
the Guillou-Quisquater scheme [16] that needs two expo-
nentiations modulo an RSA modulus N for both generating
and verifying a signature. The size of a signature is two
elements of Zy,.

Relation to key-insulated signature schemes. A signa-
ture scheme with lazy revocation that has T time intervals
can be used to construct a perfect (T — 1,T) key-insulated
signature scheme, as defined by Dodis et al. [11]. However,
the two notions are not equivalent since the attack model
for key-insulated signatures is stronger. An adversary for
a (T —1,T) key-insulated signature scheme is allowed to
compromise the signing keys for any 7 — 1 intervals out
of the total T intervals. Further differences between key-
insulated signatures and SS-LR are that both the trusted en-
tity and the user update their internal state at the beginning
of every interval and that both parties jointly generate the
signing keys for each interval.

6. Applications

In this section, we show how our cryptographic algo-
rithms with lazy revocation can be applied to distributed
cryptographic file systems, using the Plutus file system as
an example. This also leads to an efficiency improvement
for the revocation mechanism in Plutus.

Plutus [19] is a secure file system that uses an innova-
tive decentralized key management scheme. In Plutus, files
are divided into filegroups, each of them managed by the
owner of its files. Blocks in a file are each encrypted with
a different symmetric file-block key. The encryptions of the
file-block keys for all blocks in a file are stored in a lockbox,
which is encrypted with a file-lockbox key. The hash of the
file is signed with a file-signing key for integrity protection
and the signature can be verified with a file-verification key.
The file-lockbox, file-signing and file-verification keys are
the same for all files in a filegroup. Differentiation of read-
ers and writers is done by distributing the appropriate keys
to the users. In particular, the group owner distributes the

file-lockbox and file-verification keys only to readers, and
the file-lockbox and file-signing keys only to writers.

Plutus uses lazy revocation and a mechanism called key
rotation for efficient key management. The file-lockbox
and file-verification keys for previous time intervals can
be derived from the most recent keys. Our cryptographic
primitives with lazy revocation generalize the key rotation
mechanism because we allow previous keys to be derived
from our user key, which may be different from the actual
key used for cryptographic operations at the current time
interval. This allows more flexibility in constructing key-
updating schemes.

We now recall the Plutus key rotation mechanisms for
encryption and signing keys and demonstrate in both cases
how our cryptographic primitives with lazy revocation lead
to more efficient solutions.

For encryption, the group manager as the trusted entity
uses the inverse of the RSA trapdoor permutation to update
the file-lockbox encryption key after every user revocation.
Users derive file-lockbox keys of previous time intervals
using the public RSA trapdoor permutation. The construc-
tion does not have a cryptographic security proof and can-
not be generalized to arbitrary trapdoor permutations be-
cause the output of the trapdoor permutation is not neces-
sarily uniformly distributed. But it could be fixed by ap-
plying a hash function to the output of the trapdoor permu-
tation for deriving the key, which makes the construction
provably secure in the random oracle model [2]. Indeed,
this is our trapdoor permutation key-updating scheme [2].

However, the binary-tree key-updating scheme [2] is
more efficient because it uses only symmetric-key opera-
tions (e.g., a block cipher). Used in a symmetric encryption
scheme with lazy revocation according to Section 3, it im-
proves the time for updating and deriving file-lockbox keys
by several orders of magnitude.

For signatures, Plutus uses RSA in a slightly different
method than for encryption. A different public-key/secret-
key pair is generated by the group owner after every revoca-
tion, and hence the RSA moduli differ for all time intervals
and need to be stored with the file meta-data. The public
verification exponent can be derived from the file-lockbox
key by readers. An alternative solution based on our signa-
ture schemes with lazy revocation according to Section 5
uses only one verification key and achieves two distinct
advantages: first, the storage space for the public keys is
reduced to a constant from linear in the number of revo-
cations and, secondly, the expensive operation of deriving
the public verification exponent in Plutus does not need to
be performed. For example, using the Guillou-Quisquater
IBS scheme, deriving the public key of a time interval dur-
ing verification takes only a few hash function applications.
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