## Boosting uniformity in quasirandom groups: fast and simple

October 2024

**Emanuele Viola** 

NEU

Joint work with Harm Derksen and Chin Ho Lee

#### Book ad

# Mathematics of the impossible

#### MATHEMATICS OF THE IMPOSSIBLE

THE UNCHARTED COMPLEXITY OF COMPUTATION

Compiled on October 9, 2024

Emanuele "Manu" Viola



Draft on my homepage

## Now the talk



Decide if a<sub>1</sub> b<sub>1</sub> a<sub>2</sub> b<sub>2</sub> · · · a<sub>1</sub> b<sub>1</sub> = 1<sub>G</sub> or = h

G abelian ⇒

how much communication ??



- Decide if  $a_1 b_1 a_2 b_2 \cdot \cdot \cdot a_1 b_1 = 1_G$  or = h
- G abelian ⇒ constant

(reduce to equality)

■ G simple ⇒ ?? (Hint: encode inner product)



- Decide if  $a_1 b_1 a_2 b_2 \cdot \cdot \cdot a_1 b_1 = 1_G$  or = h
- G abelian ⇒ constant

(reduce to equality)

• G simple  $\Rightarrow$  ct

(encode inner product)

Question [Miles V]: c t log |G| for some G? (crypto app.)



- Decide if  $a_1 b_1 a_2 b_2 \cdot \cdot \cdot a_1 b_1 = 1_C$  or = h
- )G abelian ⇒ constant

(reduce to equality)

• G simple  $\Rightarrow$  ct

(encode inner product)

- Question [Miles V]: c t log |G| for some G? (crypto app.)
- [Gowers V] Yes for G = SL(2,q) = 2x2 matrices over  $F_a$

Alice: a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>t</sub> ∈ group G
 Bob: b<sub>1</sub>, b<sub>2</sub>, ..., b<sub>t</sub> ∈ G



- Decide if  $a_1 b_1 a_2 b_2 \cdot \cdot \cdot a_1 b_1 = 1_G$  or = h
- G abelian ⇒ constant

(reduce to equality)

• G simple  $\Rightarrow$  ct

- (encode inner product)
- Question [Miles V]: c t log |G| for some G? (crypto app.)
- [Gowers V] Yes for G = SL(2,q) = 2x2 matrices over  $F_a$
- [Shalev] refines bounds for other groups

Alice: a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>t</sub> ∈ group G
 Bob: b<sub>1</sub>, b<sub>2</sub>, ..., b<sub>t</sub> ∈ G



- Decide if  $a_1 b_1 a_2 b_2 \cdot \cdot \cdot a_1 b_1 = 1_G$  or = h
- G abelian ⇒ constant

(encode inner product)

(reduce to equality)

- G simple  $\Rightarrow$  ct
- Question [Miles V]: c t log |G| for some G? (crypto app.)
- [Gowers V] Yes for G = SL(2,q) = 2x2 matrices over  $F_a$
- [Shalev] refines bounds for other groups
- [Derksen V] Quasirandom G, 3-line "book proof" Generalizes, simplifies, improves all above

- Alice: a₁ , a₂ , ..., a₁ ∈ G
  - Bob:  $b_1, b_2, ..., b_t \in G$
  - Clio:  $c_1^{'}, c_2^{'}, ..., c_t^{'} \in G$



- Decide if  $\mathbf{a}_1 \mathbf{b}_1 \mathbf{c}_1 \mathbf{a}_2 \mathbf{b}_2 \mathbf{c}_2 \cdot \cdot \cdot \mathbf{a}_t \mathbf{b}_t \mathbf{c}_t = \mathbf{1}_G$  or  $= \mathbf{h}$
- Note: Candidate or solving major open questions:
  - Separating deterministic, randomized communication
    Simplify/improve [Kelley Lovett Meka '23] ?
  - Hard even for k >> log n parties ?

- Alice: a₁ , a₂ , ..., a₁ ∈ G
  - Bob:  $b_1, b_2, ..., b_t \in G$
  - Clio:  $c_1, c_2, ..., c_t \in G$



- Decide if  $\mathbf{a}_1 \mathbf{b}_1 \mathbf{c}_1 \mathbf{a}_2 \mathbf{b}_2 \mathbf{c}_2 \cdot \cdot \cdot \mathbf{a}_t \mathbf{b}_t \mathbf{c}_t = \mathbf{1}_G$  or  $= \mathbf{h}$
- G abelian ⇒??

- Alice: a₁ , a₂ , ..., a₁ ∈ G
  - Bob:  $b_1, b_2, ..., b_t \in G$
  - Clio:  $c_1, c_2, ..., c_t \in G$



- Decide if  $\mathbf{a}_1 \mathbf{b}_1 \mathbf{c}_1 \mathbf{a}_2 \mathbf{b}_2 \mathbf{c}_2 \cdot \cdot \cdot \mathbf{a}_t \mathbf{b}_t \mathbf{c}_t = \mathbf{1}_G$  or  $= \mathbf{h}$
- G abelian ⇒ constant

(reduce to equality)

• G simple  $\Rightarrow$  ??

- Alice: a₁ , a₂ , ..., a₁ ∈ G
  - Bob:  $b_1, b_2, ..., b_t \in G$
  - Clio:  $c_1, c_2, ..., c_t \in G$



- Decide if a<sub>1</sub> b<sub>1</sub> c<sub>1</sub> a<sub>2</sub> b<sub>2</sub> c<sub>2</sub> • a<sub>1</sub> b<sub>1</sub> c<sub>1</sub> = 1<sub>G</sub> or = h
- G abelian ⇒ constant

(reduce to equality)

• G simple  $\Rightarrow$  t  $c^{-k}$  (encode generalized inner product)

• Question [Miles V]: t  $c^{-k}$  log |G| for some G? (crypto app.)

- Alice: a₁ , a₂ , ..., a₁ ∈ G
  - Bob:  $b_1, b_2, ..., b_t \in G$
  - Clio:  $c_1, c_2, ..., c_t \in G$



- Decide if a<sub>1</sub> b<sub>1</sub> c<sub>1</sub> a<sub>2</sub> b<sub>2</sub> c<sub>2</sub> • a<sub>1</sub> b<sub>1</sub> c<sub>1</sub> = 1<sub>G</sub> or = h
- G abelian ⇒ constant

(reduce to equality)

- G simple  $\Rightarrow$  t  $c^{-k}$  (encode generalized inner product)
- Question [Miles V]: t  $c^{-k}$  log |G| for some G? (crypto app.)
- [Gowers V] t 2<sup>-c<sup>k</sup></sup> log |G|, G = SL(2,q)

- Alice: a₁ , a₂ , ..., a₁ ∈ G
  - Bob:  $b_1, b_2, ..., b_t \in G$
  - Clio:  $c_1, c_2, ..., c_t \in G$



- Decide if  $\mathbf{a}_1 \mathbf{b}_1 \mathbf{c}_1 \mathbf{a}_2 \mathbf{b}_2 \mathbf{c}_2 \cdot \cdot \cdot \mathbf{a}_1 \mathbf{b}_1 \mathbf{c}_1 = \mathbf{1}_G$  or  $= \mathbf{h}$
- G abelian ⇒ constant

(reduce to equality)

- G simple  $\Rightarrow$  t  $c^{-k}$  (encode generalized inner product)
- Question [Miles V]: t  $c^{-k}$  log |G| for some G? (crypto app.)
- [Gowers V] t 2<sup>-c<sup>k</sup></sup> log |G|, G = SL(2,q)
- [this work] t  $c^{-k}$  log |G|, quasirandom G

Generalizes, simplifies\*, improves all above

- Alice: a₁ , a₂ , ..., a₁ ∈ G
  - Bob:  $b_1, b_2, ..., b_t \in G$
  - Clio:  $C_1$ ,  $C_2$ , ...,  $C_t \in G$



- Decide if a<sub>1</sub> b<sub>1</sub> c<sub>1</sub> a<sub>2</sub> b<sub>2</sub> c
- G abelian ⇒ constal
- G simple  $\Rightarrow$  t  $c^{-k}$
- Question [Miles V]: t c<sup>-k</sup> log |G|.
  [Gowers V] t 2<sup>-ck</sup> log |G|, G = SL(
- [this work] t  $c^{-k} \log |G|$ , quasirand m G Generalizes, simplifies\*, improves all above

Simpler for groups like SL(2,q), others need [Gowers V] as first step

(crypto app.)

## Proof technique: Boosting independence

- G = SL(2,q). D distribution on G<sup>m</sup>
- Lemma [Gowers V]:
  D h-uniform ⇒ D<sub>1</sub> D<sub>2</sub> • D<sub>100</sub> close to (h+1)-uniform
- Proof: Technical reduction to 2-party case

- Lemma [this work]: D h-uniform  $\Rightarrow$  D<sub>1</sub> • D<sub>2</sub> • • • D<sub>100</sub> close to (2h)-uniform
- Proof: Representation analysis

- Lemma [this work]: D distribution on G<sup>m</sup>
- D h-uniform  $\Rightarrow$  D<sub>1</sub> D<sub>2</sub> • D<sub>100</sub> close to (2h)-uniform
- High-level proof steps:

Write distributions in representation basis

Representation dimensions

G abelian ⇔ dimensions = 1

G quasirandom  $\Leftrightarrow$  dimensions are large ( $|G|^c$  for SL(2,q))

- (1) D h-uniform ⇒ degree-h representations vanish
- (2) Representation dimensions multiply with degree
- $(1) + (2) \Rightarrow D \cdot D$  "mixes" or "flattens" at rate about (representation dimension of G)<sup>h</sup> QED

#### Message

- Representation theory convenient framework
- Another example: any almost h-uniform distribution is close to (exactly) h-uniform distribution
- [Alon Goldreich Mansour 2003]  $G = \mathbb{Z}_2^m$
- [Rubinfeld Xie 2013] G = H<sup>m</sup> H abelian
  Work in ad hoc basis
- [This work] Any  $G = H^m$ Representation basis, simpler even for abelian H

## The end

#### MATHEMATICS OF THE IMPOSSIBLE

#### THE UNCHARTED COMPLEXITY OF COMPUTATION

Compiled on October 9, 2024

Emanuele "Manu" Viola

