On the Grand Challenge

Emanuele "Manu" Viola

Northeastern University

2025 04 22



Book ad

Mathematics of the impossible

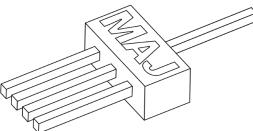
Draft on my homepage

MATHEMATICS OF THE IMPOSSIBLE

THE UNCHARTED COMPLEXITY OF COMPUTATION

Compiled on October 9, 2024

Emanuele "Manu" Viola



1

Outline

- The grand challenge, some historical highlights
- Correlation bounds against polynomials
- Why do known bounds stop "right before" major results?
- A case study: data structures and circuits

The Grand Challenge (1930 – present)

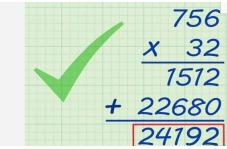
 Prove impossibility results in computational models, a.k.a. "lower bounds"

- P vs NP is young, prominent special case
- Sometimes we say P vs NP to mean the grand challenge

Multiplication of n-digit integers

 Feeling: "As regards number systems and calculation techniques, it seems that the final and best solutions were found in science long ago"

• In 1950's, Kolmogorov conjectured time $\Omega(n^2)$ Started a seminar with the goal of proving it

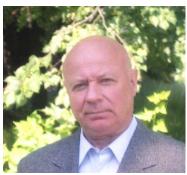


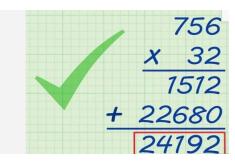
Multiplication of n-digit integers

 Feeling: "As regards number systems and calculation techniques, it seems that the final and best solutions were found in science long ago"

- In 1950's, Kolmogorov conjectured time $\Omega(n^2)$ Started a seminar with the goal of proving it
- One week later, O(n^{1.59}) time by Karatsuba

• [..., 2019] Harvey & van der Hoeven $O(n \cdot log(n))$



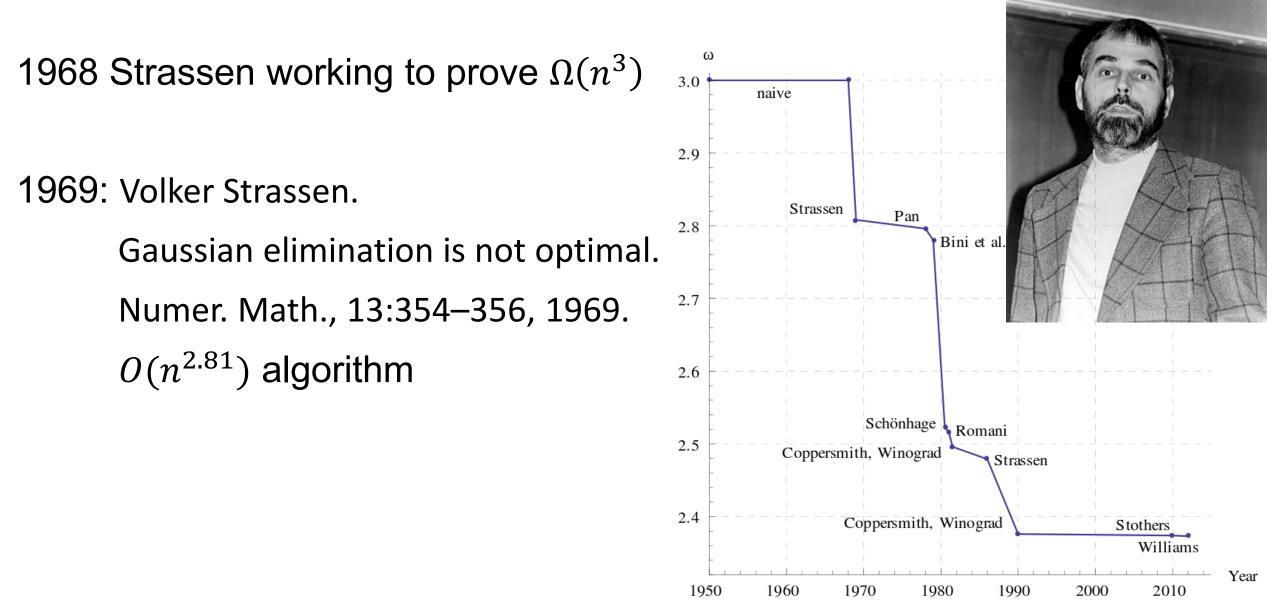


Multiplication of nxn matrices

1968 Strassen working to prove $\Omega(n^3)$



Multiplication of nxn matrices



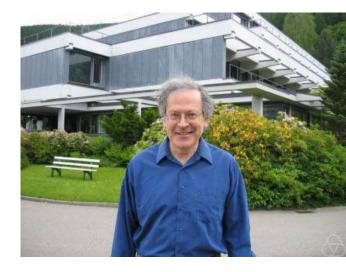
Proving lower bounds for linear transformations

Problem: Give explicit $n \times n$ matrix such that linear transformation requires $\omega(n)$ size circuits

1970 Valiant:

Fourier transform matrix is a **super-concentrator**

Conjecture: Super-concentrators require $\omega(n)$ wires



Proving lower bounds for linear transformations

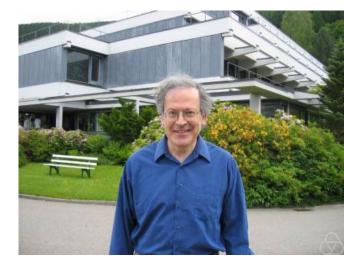
Problem: Give explicit $n \times n$ matrix such that linear transformation requires $\omega(n)$ size circuits

1970 Valiant:

Fourier transform matrix is a **super-concentrator**

Conjecture: Super-concentrators require $\omega(n)$ wires

Later, Valiant: Super-concentrators with O(n) wires exist



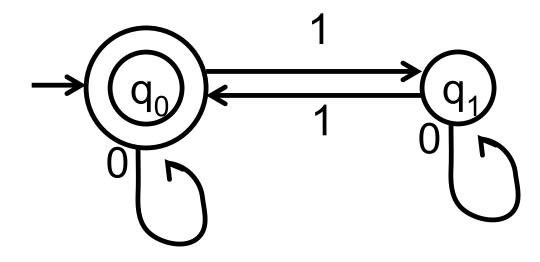
Space-bounded

Finite-state automata read input left to right

Theorem: Can't recognize palindromes

Let's allow them to read bits multiple times

Conjecture 1983 [Borodin, Dolev, Fich, Paul] Can't compute majority efficiently



Space-bounded

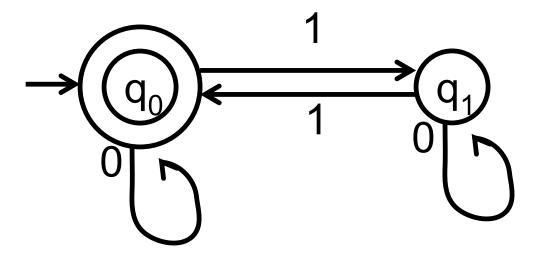
Finite-state automata read input left to right

Theorem: Can't recognize palindromes

Let's allow them to read bits multiple times

Conjecture 1983 [Borodin, Dolev, Fich, Paul] Can't compute majority efficiently

Barrington 1989: Can compute Majority (and *NC*¹)



Boolean circuits

Universal hash functions [Carter Wegman 79]

Conjecture 1990 [Mansour Nisan Tiwari] Require super-linear size circuits

Boolean circuits

Universal hash functions [Carter Wegman 79]

Conjecture 1990 [Mansour Nisan Tiwari]

Require super-linear size circuits

Theorem 2008 [Ishai Kushilevitz Ostrovsky Sahai] Linear-size suffices ... many more such examples (see my book)

Next: A "bottleneck" for making progress

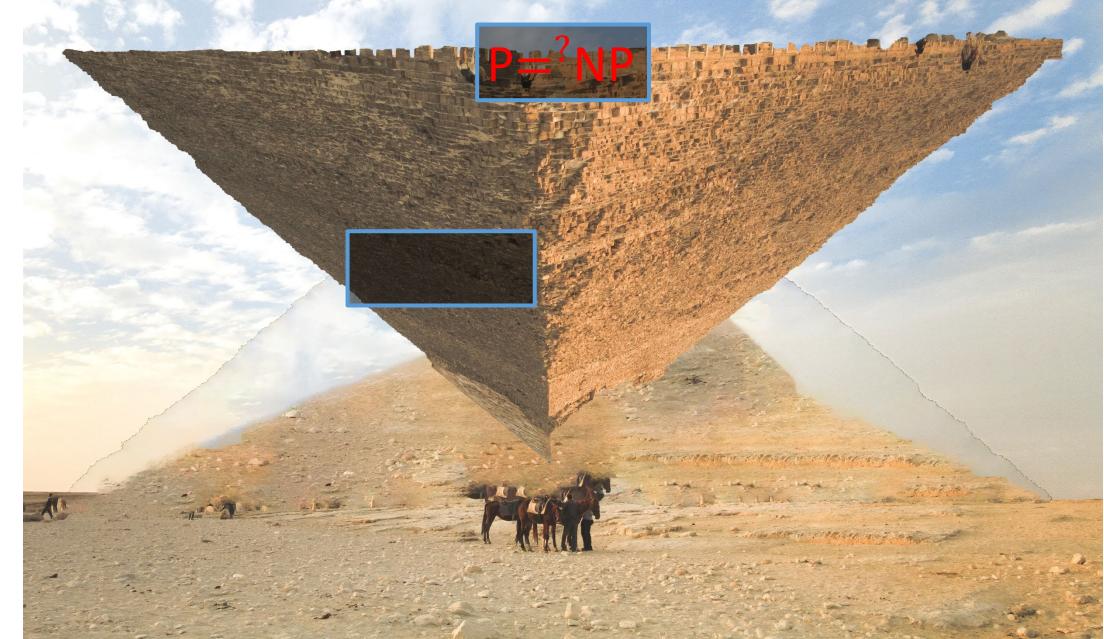
- The grand challenge, some historical highlights
- Correlation bounds against polynomials
- Why do known bounds stop "right before" major results?
- A case study: data structures and circuits

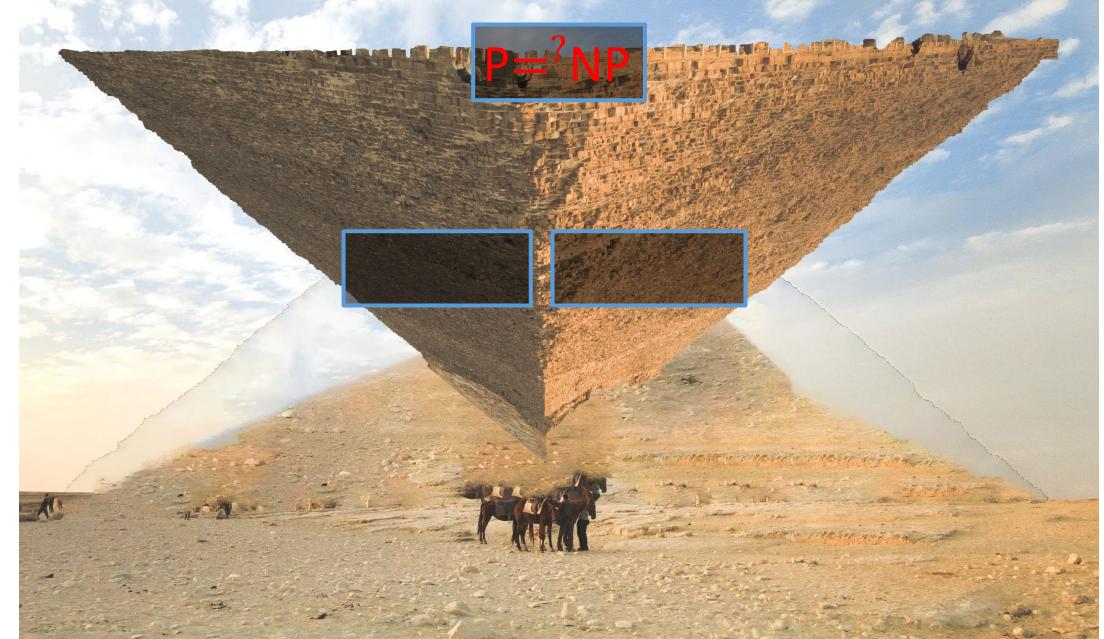
ALL DILLE MALDER

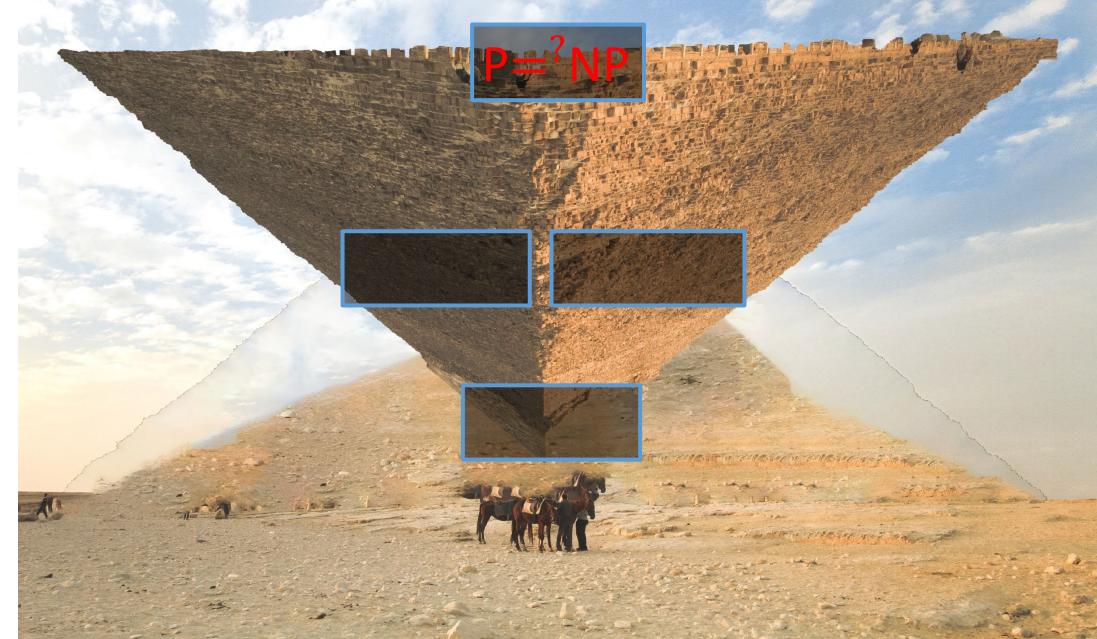
BICI

ALL DELLA DEL MALTINE DE DE DE TATI

ALL DELLE MELSER







Circuit lower bounds

Circuit lower bounds Matrix rigidity

Circuit lower bounds

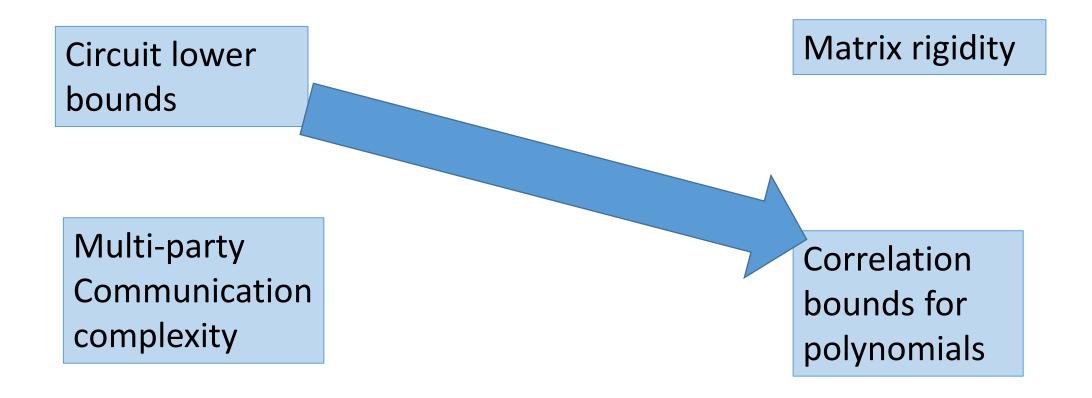
Matrix rigidity

Correlation bounds for polynomials

Circuit lower bounds

Multi-party Communication complexity Matrix rigidity

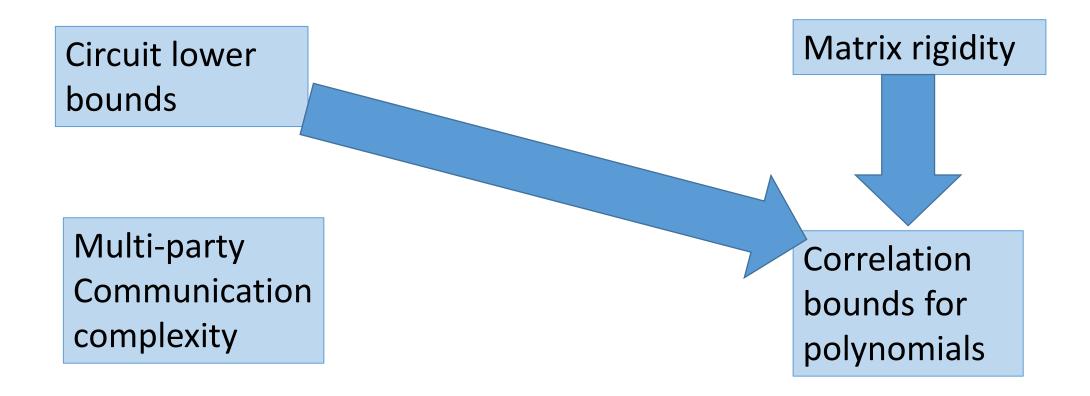
Correlation bounds for polynomials



means progress on A requires progress on B

A

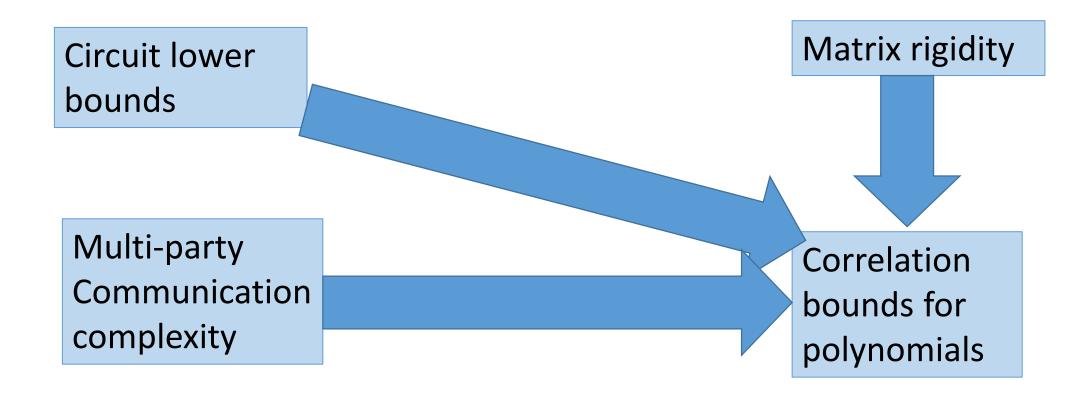
В



means progress on A requires progress on B

A

В

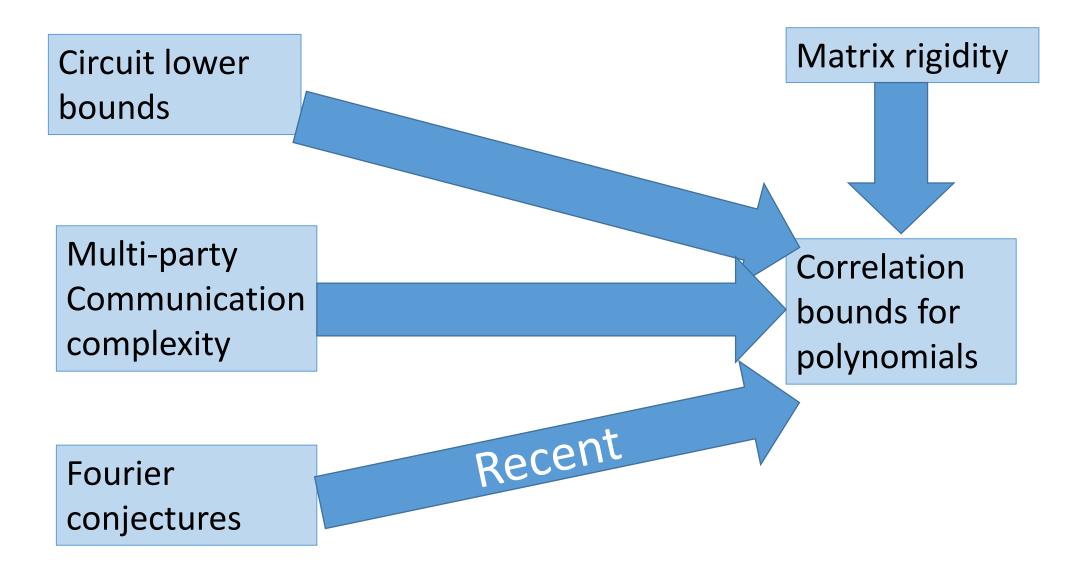


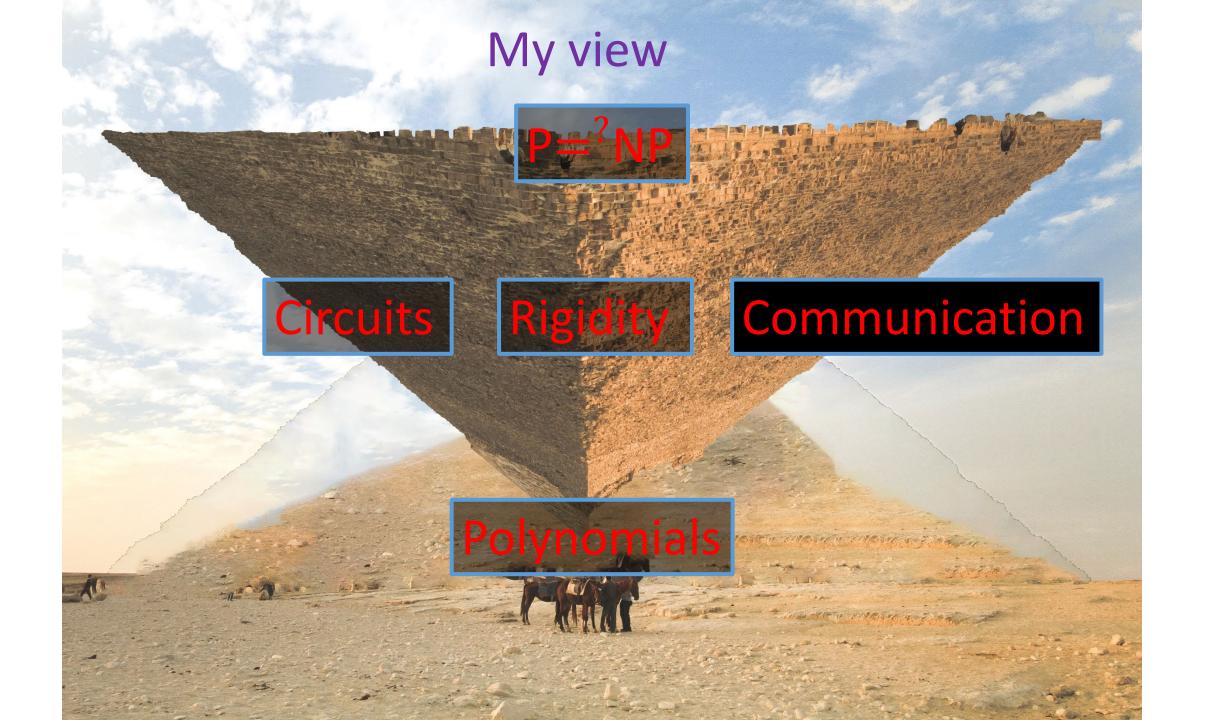
means progress on A requires progress on B

A

В

Frontier of P vs. NP





Correlation bounds for polynomials Survey on my homepage 2008, updated 2022

• Challenge: Find explicit $f: \{0,1\}^n \to \{0,1\}$ and distribution X such that for every polynomial p of degree d over F_2 (or R)

$$Correlation(f,p) := \Pr[f(X) = p(X)] \le 1/2 + \epsilon$$

• Razborov, Smolenky, 80's: f = Majority, X = uniform, $\epsilon = O\left(\frac{d}{\sqrt{n}}\right)$

• Babai Nisan Szegedy 90's: f = GIP/Mod₃, $\epsilon = 2^{-\Omega(\frac{n}{2^d})}$

• Open: $\epsilon = 1/\sqrt{n}$ for $d = \log(n)$; required to solve any problem on previous slide

Next on polynomials

• Some recent results on correlation and pseudorandom generators

[Chattopadhyay Hatami Hosseini Lovett Zuckerman] STOC 2020

• **Def**: Local correlation:
$$\Delta_S(F) \coloneqq \mathbf{E}_{x-S} \left[\mathbf{E}_{x_S} \left[F(x) \right] - E[F] \right]^2$$

• Thm : $\forall degree - d F \quad \exists S : |S| \leq 2^{poly(d)} : \Delta_S(F)$ small

 \Rightarrow new correlation bounds for small degrees

• Conjecture : $|S| \le poly(d)$ suffices

would imply dream correlation bounds for large degrees

[Ivanov Pavlovic V]

- Counterexample to CHHLZ conjecture
- Rules out even weak form, shows what they prove is best possible
- Proof sketch:

Start with TRIBES DNF For any S of size about $n/\log n : E_{x-S}$ [TRIBES = 1] $\geq \Omega(1)$ $\Rightarrow \left[E_{x_S} [F(x)] - E[F] \right]^2$ large Approximate TRIBES by log(n)-degree polynomial F

Oed

- Conjecture: Symmetric polynomials maximize correlation with mod 3; would imply dream correlation bounds
- Prove the conjecture for degree 2 by "slowly opening directions"
- Prove the conjecture for special classes of degree 3

Pseudorandom generators

- Explicit, low-entropy distributions that "look random" to polynomials
- Equivalent to correlation bounds for small error
- Case of large error remains unclear
- State-of-the-art [Bogdanov V 2007, Lovett, V]: To fool degree-d polynomials sum d independent generators for degree 1
- Can analyze up to d < 0.01 log n. Beyond that is unknown...??

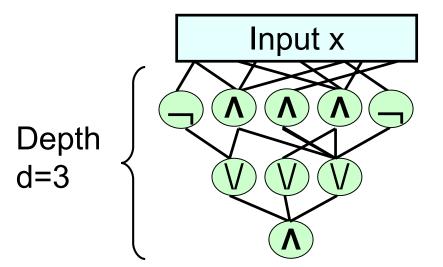
Pseudorandom generators

- Explicit, low-entropy distributions that "look random" to polynomials
- Equivalent to correlation bounds for small error
- Case of large error remains unclear
- State-of-the-art [Bogdanov V 2007, Lovett, V]: To fool degree-d polynomials sum d independent generators for degree 1
- Can analyze up to d < 0.01 log n. Beyond that is unknown...
 ...over F₂, but recent work covers any d for large fields [Derksen V 2022]

- The grand challenge, some historical highlights
- Correlation bounds against polynomials
- Why do known bounds stop "right before" major results?
- A case study: data structures and circuits

AC⁰ circuits

• Depth-d, And-Or-Not circuits (AC^0)

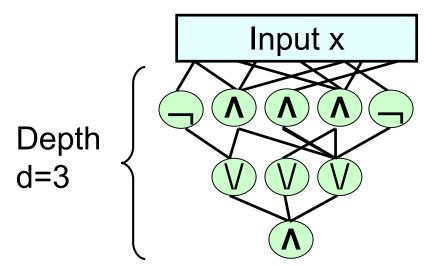


• $2^{n^{\Omega(\frac{1}{d})}}$ lower bounds [80's: Furst Saxe Sipser, Ajtai, Yao, Hastad,...]

• Why not stronger bounds?

AC⁰ circuits

• Depth-d, And-Or-Not circuits (AC^0)



• $2^{n^{\Omega(\frac{1}{d})}}$ lower bounds [80's: Furst Saxe Sipser, Ajtai, Yao, Hastad,...]

- Why not stronger bounds?
- Logarithmic space (L) has circuits of size $2^{n^{O(\frac{1}{d})}}$

 \Rightarrow 80's bounds are best without proving **major result** ($P \neq L$)

• Improvement for d = 3 already implies new results for space

Similar phenomenon

• Similar situation in many other models, for example:

• Threshold circuits:

[90's Impagliazzo Paturi Saks] $n^{1+c^{-a}}$ lower bounds [Allender Koucky, 2018 Chen Tell]: best without **major result** ($NC^1 \neq TC^0$)

• Algebraic complexity

[2013 Gupta Kamath Kayal Saha Saptharishi] $n^{\Omega(\sqrt{n})}$ lower bounds for depth-4 homogeneous circuits [Agrawal Vinay, Koiran, Tavenas] best without **major result** ($VP \neq VNP$)

1. No reason, it's coincidence

I would find this "strange" because same bounds proved with seemingly different techniques

1. No reason, it's coincidence

I would find this "strange" because same bounds proved with seemingly different techniques

2. Current techniques are X, for major results need Y

1. No reason, it's coincidence

I would find this "strange" because same bounds proved with seemingly different techniques

2. Current techniques are X, for major results need Y

3. Major results are false

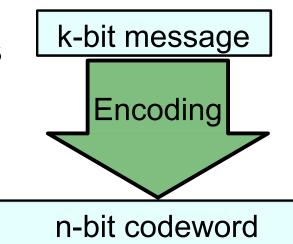
Outline

- The grand challenge, some historical highlights
- Correlation bounds against polynomials
- Why do known bounds stop "right before" major results?
- A case study: data structures and circuits

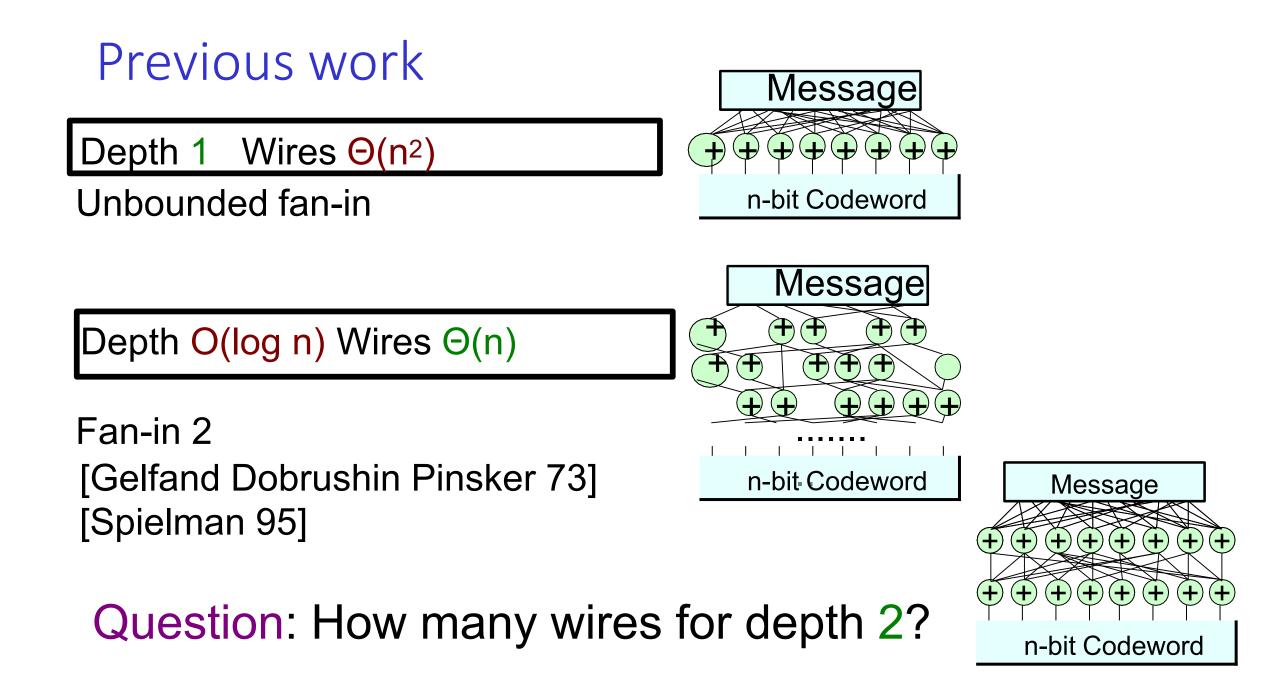
Complexity of error-correction encoding

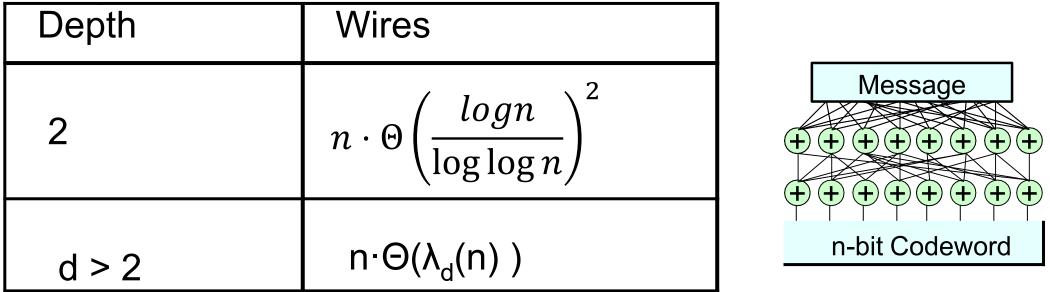
• Asymptotically good code over {0,1}: $C \subseteq \{0,1\}^n$ rate $\Omega(1)$: $|C| = 2^k$, $k = \Omega(n)$ distance $\Omega(n)$: $\forall x \neq y \in C$, x and y differ in $\Omega(n)$ bits

• Consider encoding function $f: \{0,1\}^k \to \{0,1\}^n$



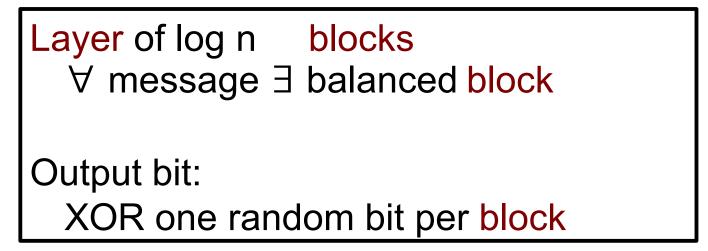
 Want to compute *f* with circuits with arbitrary gates; only count number of wires

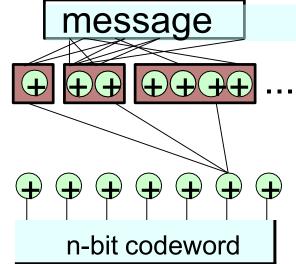




- λ inverse Ackermann: $\lambda_3(n) = \log \log n$, $\lambda_4(n) = \log^* n$, ...
- Best-known bound for linear function in NP

Probabilistic construction





- i-th block balanced for message weight w = $\Theta(n/2^i)$ Can do with wires (n/w) log $\binom{n_w}{v}$ < n i
- Total wires = $\Sigma_{i < \log n}$ (n i) + n log n = $n \cdot O(\log^2 n)$

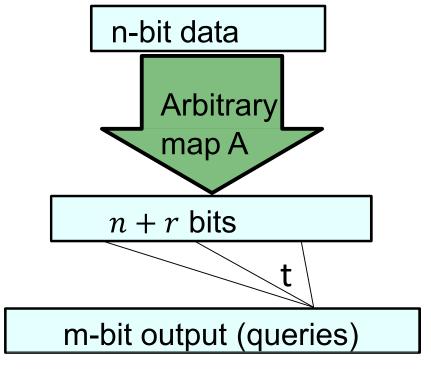
Static data structures

• Store n bits $x \in \{0,1\}^n$ into n + r bits so that each of m queries can be answered reading t bits

• Trivial:
$$r = m - n, t = 1 \text{ or } r = 0, t = n$$

• This talk: Think r = o(n), m = O(n)

• Best lower bound: $t = \Omega\left(\frac{n}{r}\right)$ for Encoding ['07 Gal Miltersen]



From circuits to data structures [V 2018]

• Theorem:

If $f: \{0,1\}^n \to \{0,1\}^m$ computable with *w* wires in depth *d* then *f* has data structure with space n + r time $t = \left(\frac{w}{r}\right)^d$ for any *r*

- Corollaries:
 - $f = \text{encoding} \Rightarrow t = 0\left(\frac{n}{r}\right)\log^3 n$ [GHKPV], matches [Gal Miltersen] $\Omega\left(\frac{n}{r}\right)$ • $t > \left(\frac{n}{r}\right)^5$ implies new circuit lower bounds
 - [Gal Miltersen] stops "right before" proving major result

From circuits to data structures [V 2018]

• Theorem:

If $f: \{0,1\}^n \to \{0,1\}^m$ computable with *w* wires in depth *d* then *f* has data structure with space n + r time $t = \left(\frac{w}{r}\right)^d$ for any *r*

• Proof:

Store *n*-bit input and values of gates with fan-in > w/rNumber of such gates is $\le r$ To compute any gate: either you have it, or it depends on $\le w/r$ gates

(Jed

at next layer, repeat.

Open

• Data structures lower bounds for $r = n^2$, $m = r^3$ imply anything?

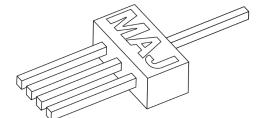
Thanks!

MATHEMATICS OF THE IMPOSSIBLE

THE UNCHARTED COMPLEXITY OF COMPUTATION

Compiled on October 9, 2024

Emanuele "Manu" Viola



1

