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• The grand challenge, some historical highlights

• Correlation bounds against polynomials

• Why do known bounds stop “right before” major results?

• A case study: data structures and circuits



The Grand Challenge
(1930 – present)

• Prove impossibility results
in computational models,
a.k.a. “lower bounds” 

• P vs NP is young, prominent special case

• Sometimes we say P vs NP to mean the grand challenge



Multiplication of n-digit integers

• Feeling: “As regards number systems and calculation techniques,
it seems that the final and best solutions were found in science long ago”

• In 1950’s, Kolmogorov conjectured time Ω 𝑛𝑛2

Started a seminar with the goal of proving it



Multiplication of n-digit integers

• Feeling: “As regards number systems and calculation techniques,
it seems that the final and best solutions were found in science long ago”

• In 1950’s, Kolmogorov conjectured time Ω 𝑛𝑛2

Started a seminar with the goal of proving it

• One week later, O(n1.59) time by Karatsuba

• […, 2019] Harvey & van der Hoeven 𝑂𝑂(𝑛𝑛 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 )



Multiplication of nxn matrices  

1968 Strassen working to prove Ω 𝑛𝑛3



Multiplication of nxn matrices  

1968 Strassen working to prove Ω 𝑛𝑛3

1969: Volker Strassen.

Gaussian elimination is not optimal.

Numer. Math., 13:354–356, 1969.

𝑂𝑂(𝑛𝑛2.81) algorithm



Proving lower bounds for linear transformations

Problem: Give explicit  𝑛𝑛 × 𝑛𝑛 matrix such that
linear transformation requires 𝜔𝜔 𝑛𝑛 size circuits

1970 Valiant:
Fourier transform matrix is a super-concentrator

Conjecture: Super-concentrators require 𝜔𝜔 𝑛𝑛 wires



Proving lower bounds for linear transformations

Problem: Give explicit  𝑛𝑛 × 𝑛𝑛 matrix such that
linear transformation requires 𝜔𝜔 𝑛𝑛 size circuits

1970 Valiant:
Fourier transform matrix is a super-concentrator

Conjecture: Super-concentrators require 𝜔𝜔 𝑛𝑛 wires

Later, Valiant: Super-concentrators with 𝑂𝑂 𝑛𝑛 wires exist



Space-bounded

Finite-state automata read input left to right

Theorem: Can’t recognize palindromes

Let’s allow them to read bits multiple times

Conjecture 1983 [Borodin, Dolev, Fich, Paul]  Can’t compute majority efficiently
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Space-bounded

Finite-state automata read input left to right

Theorem: Can’t recognize palindromes

Let’s allow them to read bits multiple times

Conjecture 1983 [Borodin, Dolev, Fich, Paul]  Can’t compute majority efficiently

Barrington 1989: Can compute Majority (and 𝑁𝑁𝐶𝐶1)

q0 q11
0 0

1



Boolean circuits

Universal hash functions [Carter Wegman 79]

Conjecture 1990 [Mansour Nisan Tiwari]

Require super-linear size circuits



Boolean circuits

Universal hash functions [Carter Wegman 79]

Conjecture 1990 [Mansour Nisan Tiwari]

Require super-linear size circuits

Theorem 2008  [Ishai Kushilevitz Ostrovsky Sahai]

Linear-size suffices



… many more such examples (see my book)

Next: A “bottleneck” for making progress
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One possible view

Circuits Polynomials
RigidityCommunication



P=?NP

A different view



P=?NP

A different view



P=?NP

A different view



P=?NP

A different view



P=?NP

What goes 
here?

A different view
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Frontier of P vs. NP

Circuit lower 
bounds

Matrix rigidity

Multi-party
Communication 
complexity

Correlation 
bounds for 
polynomials

Fourier 
conjectures



P=?NP

My view

Circuits

Polynomials

Rigidity Communication



Correlation bounds for polynomials
Survey on my homepage 2008, updated 2022

• Challenge: Find explicit 𝑓𝑓: 0,1 𝑛𝑛 → {0,1} and distribution X such that
for every polynomial p of degree d over 𝐹𝐹2 (or R)

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓,𝑝𝑝 : = 𝑃𝑃𝑃𝑃[𝑓𝑓 𝑋𝑋 = 𝑝𝑝(𝑋𝑋)] ≤ 1/2 + 𝜖𝜖

• Razborov, Smolenky, 80’s: f = Majority, X = uniform, 𝜖𝜖 = 𝑂𝑂 𝑑𝑑
𝑛𝑛

• Babai Nisan Szegedy 90’s: f = GIP/𝑀𝑀𝑀𝑀𝑑𝑑3, 𝜖𝜖 = 2−Ω( 𝑛𝑛
2𝑑𝑑

)

• Open: 𝜖𝜖 = 1/√𝑛𝑛 for 𝑑𝑑 = log 𝑛𝑛 ;
required to solve any problem on previous slide



Next on polynomials

• Some recent results on correlation and pseudorandom generators



[Chattopadhyay Hatami Hosseini Lovett Zuckerman ]     STOC 2020

• Def: Local correlation: ∆𝑆𝑆 𝐹𝐹 ≔ 𝑬𝑬𝑥𝑥−𝑆𝑆 𝑬𝑬𝑥𝑥𝑆𝑆 𝐹𝐹 𝑥𝑥 − 𝐸𝐸 𝐹𝐹
2

• Thm : ∀ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑 𝐹𝐹 ∃ 𝑆𝑆 ∶ 𝑆𝑆 ≤ 2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑 ∶ ∆𝑆𝑆 𝐹𝐹 small 

⇒ new correlation bounds for small degrees

• Conjecture : 𝑆𝑆 ≤ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑 suffices

would imply dream correlation bounds for large degrees



[Ivanov Pavlovic V]

• Counterexample to CHHLZ conjecture

• Rules out even weak form, shows what they prove is best possible

• Proof sketch:
Start with TRIBES DNF
For any S of size about 𝑛𝑛/ log𝑛𝑛 ∶ 𝑬𝑬𝑥𝑥−𝑆𝑆 [TRIBES = 1] ≥ Ω(1)

⇒ 𝑬𝑬𝑥𝑥𝑆𝑆 𝐹𝐹 𝑥𝑥 − 𝐸𝐸 𝐹𝐹
2

large
Approximate TRIBES by log(n)-degree polynomial F                             Qed



[Ivanov Pavlovic V]

• Conjecture: Symmetric polynomials maximize correlation with mod 3;
would imply dream correlation bounds

• Prove the conjecture for degree 2 by “slowly opening directions”

• Prove the conjecture for special classes of degree 3



Pseudorandom generators
• Explicit, low-entropy distributions that “look random” to polynomials

• Equivalent to correlation bounds for small error

• Case of large error remains unclear

• State-of-the-art [Bogdanov V 2007, Lovett, V]:
To fool degree-d polynomials sum d independent generators for degree 1

• Can analyze up to d < 0.01 log n.  Beyond that is unknown…??



Pseudorandom generators
• Explicit, low-entropy distributions that “look random” to polynomials

• Equivalent to correlation bounds for small error

• Case of large error remains unclear

• State-of-the-art [Bogdanov V 2007, Lovett, V]:
To fool degree-d polynomials sum d independent generators for degree 1

• Can analyze up to d < 0.01 log n.  Beyond that is unknown…
…over 𝐹𝐹2, but recent work covers any d for large fields [Derksen V 2022] 
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• Depth-d, And-Or-Not circuits (𝐴𝐴𝐶𝐶0)

• 2𝑛𝑛
Ω(1𝑑𝑑)

lower bounds     [80’s: Furst Saxe Sipser, Ajtai, Yao, Hastad,…]

• Why not stronger bounds?

𝐴𝐴𝐶𝐶0 circuits
¬

V V V

/\ /\ /\

Input x

V

¬
Depth
d=3



• Depth-d, And-Or-Not circuits (𝐴𝐴𝐶𝐶0)

• 2𝑛𝑛
Ω(1𝑑𝑑)

lower bounds     [80’s: Furst Saxe Sipser, Ajtai, Yao, Hastad,…]

• Why not stronger bounds?

• Logarithmic space (L) has circuits of size 2𝑛𝑛
O(1𝑑𝑑)

⇒ 80’s bounds are best without proving major result (𝑃𝑃 ≠ 𝐿𝐿)

• Improvement for 𝑑𝑑 = 3 already implies new results for space

𝐴𝐴𝐶𝐶0 circuits
¬

V V V

/\ /\ /\

Input x

V

¬
Depth
d=3



• Similar situation in many other models, for example:

• Threshold circuits:
[90’s Impagliazzo Paturi Saks]  𝑛𝑛1+𝑐𝑐−𝑑𝑑 lower bounds
[Allender Koucky, 2018 Chen Tell]: best without major result (𝑁𝑁𝐶𝐶1 ≠ 𝑇𝑇𝐶𝐶0)

• Algebraic complexity
[2013 Gupta Kamath Kayal Saha Saptharishi]

𝑛𝑛Ω 𝑛𝑛 lower bounds for depth-4 homogeneous circuits
[Agrawal Vinay, Koiran, Tavenas]      best without major result (𝑉𝑉𝑉𝑉 ≠ 𝑉𝑉𝑉𝑉𝑉𝑉)

Similar phenomenon



Why do current bounds stop “just before” 
proving major results?
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I would find this “strange” because same bounds          
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1. No reason, it’s coincidence                                                               
I would find this “strange” because same bounds          
proved with seemingly different techniques

2. Current techniques are X, for major results need Y

3. Major results are false

Why do current bounds stop “just before” 
proving major results?
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• Asymptotically good code over {0,1}: C ⊆ {0,1}n

rate Ω(1): |C| =2k, k = Ω(n)
distance Ω(n): ∀ x ≠ y ∈ C, x and y differ in Ω(n) bits

• Consider encoding function 𝑓𝑓: 0,1 𝑘𝑘 → 0,1 𝑛𝑛

• Want to compute 𝑓𝑓 with circuits with arbitrary gates; 
only count number of wires

Complexity of error-correction encoding

k-bit message

n-bit codeword

Encoding



.......

..

Previous work
Depth 1 Wires Θ(n2)
Unbounded fan-in

Depth O(log n) Wires Θ(n)

Fan-in 2
[Gelfand Dobrushin Pinsker 73]  
[Spielman 95]

Question: How many wires for depth 2?

Message
+ + + + + + + +

n-bit Codeword

Message

n-bit Codeword

+ + + + +
+ + + + +

++ + + + + +

Message

n-bit Codeword

+ + + + + + + +
+ + + + + + + +



[Gál Hansen  Koucký Pudlák V 2012]

• λ inverse Ackermann: λ3(n)=log log n, λ4(n)=log*n, ...

• Best-known bound for linear function in NP

Message

n-bit Codeword

+ + + + + + + +
+ + + + + + + +

Depth Wires

2 𝑛𝑛 ⋅ Θ
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

log log𝑛𝑛

2

d > 2 n·Θ(λd(n) )



Probabilistic construction

• i-th block balanced for message weight w = Θ(n/2i)  
Can do with wires (n/w) log (nw) < n i

• Total wires = Σ i < log n (n i) + n log n = 𝑛𝑛 ⋅ 𝑂𝑂(log2 𝑛𝑛)

message
...+

Layer of log n blocks
∀ message ∃ balanced block

Output bit:
XOR one random bit per block

+ + + + + + +
n-bit codeword

+ + + + ++



• Store n bits 𝑥𝑥 ∈ 0,1 𝑛𝑛 into 𝑛𝑛 + 𝑟𝑟 bits so that each of 𝑚𝑚 queries
can be answered reading 𝑡𝑡 bits

• Trivial: r = 𝑚𝑚 − 𝑛𝑛, 𝑡𝑡 = 1 𝑜𝑜𝑜𝑜 𝑟𝑟 = 0, 𝑡𝑡 = 𝑛𝑛

• This talk: Think 𝑟𝑟 = 𝑜𝑜 𝑛𝑛 ,𝑚𝑚 = 𝑂𝑂(𝑛𝑛)

• Best lower bound:
t = Ω n

r
for Encoding [‘07 Gal Miltersen]

Static data structures

n-bit data

𝑛𝑛 + 𝑟𝑟 bits

Arbitrary  
map A

m-bit output (queries)

t



• Theorem:
If 𝑓𝑓: 0,1 𝑛𝑛 → 0,1 𝑚𝑚 computable with 𝑤𝑤 wires in depth 𝑑𝑑

then 𝑓𝑓 has data structure with space 𝑛𝑛 + 𝑟𝑟 time 𝑡𝑡 = 𝑤𝑤
𝑟𝑟

𝑑𝑑
for any 𝑟𝑟

• Corollaries: 
• 𝑓𝑓 = encoding ⇒ t = O n

r
log3 𝑛𝑛 [GHKPV], matches [Gal Miltersen] Ω n

r

• t > n
r

5
implies new circuit lower bounds

• [Gal Miltersen] stops “right before” proving major result

From circuits to data structures [V 2018]



• Theorem: 
If 𝑓𝑓: 0,1 𝑛𝑛 → 0,1 𝑚𝑚 computable with 𝑤𝑤 wires in depth 𝑑𝑑

then 𝑓𝑓 has data structure with space 𝑛𝑛 + 𝑟𝑟 time 𝑡𝑡 = 𝑤𝑤
𝑟𝑟

𝑑𝑑
for any 𝑟𝑟

• Proof:
Store 𝑛𝑛-bit input and values of gates with fan-in > 𝑤𝑤/𝑟𝑟
Number of such gates is ≤ 𝑟𝑟
To compute any gate: either you have it, or it depends on ≤ 𝑤𝑤/𝑟𝑟 gates 
at next layer, repeat.                                                                      Qed

From circuits to data structures [V 2018]



Open

• Data structures lower bounds for  r = 𝑛𝑛2,𝑚𝑚 = 𝑟𝑟3 imply anything?



Thanks!
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