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Abstract

An n-bit boolean function is resilient to coalitions of size q if any fixed set of q bits
is unlikely to influence the function when the other n − q bits are chosen uniformly.
We give explicit constructions of depth-3 circuits that are resilient to coalitions of
size cn/ log2 n with bias n−c. Previous explicit constructions with the same resilience
had constant bias. Our construction is simpler and we generalize it to biased product
distributions.

Our proof builds on previous work; the main differences are the use of a tail bound
for expander walks in combination with a refined analysis based on Janson’s inequality.

1 Introduction

A resilient function, informally speaking, is a function for which a malicious adversary that
controls a small coalition of the input bits can not change the output with high probability.
Resilient functions have a wide range of applications. They were initially introduced for
coin flipping protocols [BL85, AL93, RZ98]. They have also been used to construct random-
ness extractors [KZ07, GVW15, CZ16, Mek17, CL16, HIV22] and more recently, to show
correlation bounds against low-degree F2 polynomials [CHH+20].

Our main contribution is an improved and simplified construction that generalizes to
product distributions. Before we present our results we introduce some definitions.

Definition 1. Fix a function f : {0, 1}n → {0, 1}, a distribution D over {0, 1}n, and a
coalition Q ⊆ [n]. Define IQ,D(f) to be the probability that f is not fixed after the bits
indexed by Q are sampled according to D. When D is the uniform distribution we write
IQ(f).

We say f is ρ-tradeoff resilient under D if for any Q ⊆ [n], IQ,D(f) ≤ |Q|ρ. We simply
say f is ρ-tradeoff resilient when D is the uniform distribution.
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In this paper, every occurrence of “c” denotes a possibly different positive real number.
Replacing “c” with O(1) everywhere is consistent with one common interpretation of the
big-Oh notation.

First we provide non-explicit tradeoff resilient circuits.

Theorem 2. For infinitely many n there exist monotone depth 3, size nc circuits C :

{0, 1}n → {0, 1} which are
(
c log2 n
n

)
-tradeoff resilient with bias n−1+o(1).

This result is considered folklore, but we are not aware of any proofs in the literature.
Related works [BL85, AL93, RZ98, CZ16, Mek17, Wel20] either do not prove a full tradeoff,
are not as balanced, or have worse resilience.

The construction in Theorem 2 is due to Ajtai and Linial [AL93]. In their seminal work,
they proved their construction is resilient to coalitions of size cn/ log2 n which is close to
the theoretical best cn/ log n implied by the KKL Theorem [KKL88]. However, Ajtai and
Linial did not prove any tradeoff resilience. Russell and Zuckerman [RZ98] then showed the
Ajtai-Linial construction has tradeoff resilience for coalitions of size n/ logc n, but not for
smaller coalitions. There is a more recent exposition [Wel20] on the topic; however, it proves
a tradeoff that is weaker. In particular, for coalitions of constant size the resulting influence
will be c log n/

√
n instead of c log2 n/n.

Next we state our main result, which is an explicit tradeoff resilient function that gen-
eralizes to product distributions, improves the bias to essentially match the non-explicit
construction, and has a simplified proof.

Definition 3. Bσ denotes the distribution over {0, 1}n where each bit is independently set
to 1 with probability σ.

Theorem 4. Fix integers w ≤ v ≤ n where v is prime and σ ∈ (0, 1/2] s.t. n = vw
and σ−w = Cv

log v
for a fixed constant C. Then there are explicit monotone depth 3, size nc

circuits C : {0, 1}n → {0, 1} which are
(

cσ−2

log(σ−1)
· log2 n

n

)
-tradeoff resilient under Bσ with bias

σ−2/n1−o(1).

Let us provide some background on existing explicit resilient functions. It is folklore
that Majority is c/

√
n-tradeoff resilient. Building on this, Ben-Or and Linial showed that

Recursive-Majority-3 is n−0.63..-tradeoff resilient [BL85].
More recently, Chattopadhyay and Zuckerman gave an explicit n−0.99-tradeoff resilient

function with bias n−c [CZ16]. Moreover, they derandomized the original Ajtai-Linial con-
struction so their function is computable by a small circuit. This was a key part of their
two-source extractor breakthrough.

Meka [Mek17] then improved the derandomization and achieved c log2 n/n-tradeoff re-
silience, but with constant bias. [IMV23] gave a generic way to compose tradeoff resilient
circuits and this allowed for nearly optimal size circuits with tradeoff resilience logc n/n. And
using this composition result, one can xor c log n copies of Meka’s construction to achieve
circuits with tradeoff resilience c log3 /n and bias n−c.
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We remark all of the results stated above are over the uniform distribution. A natural
question is to consider resilience over non-uniform distributions like product distributions.
Such distributions arise naturally; for instance, in a voting scenario one might consider the
votes being cast independently but not uniformly.

The recent work of [FHH+19] investigates this question by studying how resilient any
function can be under arbitrary product distributions. They show that in this setting, the
KKL theorem essentially still holds. Specifically, they prove a function can not be resilient
to coalitions of size > cn log log n/ log n under any product distribution.

We complement their result by extending the Ajtai-Linial construction to product dis-
tributions of the form Bσ, though with some loss in resilience depending on σ. Its not clear
whether this dependence is necessary. Besides complementing [FHH+19], our work might be
useful for further improved resilient constructions; see Section 1.2 for additional discussion.

Next we provide a table with known resilient circuit constructions under B1/2.

Explicit: Resilience: Tradeoff: Bias: Monotone: Depth: Size: Citation

Yes cn−1/2 Yes 0 Yes c log n nc Folklore
Yes n−0.63... Yes 0 Yes c log n cn [BL85]

No c log2 n/n No n−c No 3 cn2 [AL93]

No c log2 n/n Partial n−c No 3 cn2 [RZ98]

No c log2 n/n Partial n−c No 3 cn2 [Wel20]

No c log2 n/n Yes n−c Yes 3 nc Theorem 2
Yes n−0.99 Yes n−c Yes 4 nc [CZ16]

Yes c log2 n/n Yes c Yes 3 nc [Mek17]
Yes logc n/n Yes n−c No c n1.01 [IMV23]

Yes c log3 n/n Yes n−c No 5 nc [IMV23]

Yes c log2 n/n Yes n−c Yes 3 nc Theorem 4

Our next contribution is an explicit circuit that matches the KKL Theorem up to constant
factors and is exactly balanced under B1/2. As far as we know, only nearly balanced circuits
were known prior to this work.

Theorem 5. For infinitely many n, there is an explicit circuit C : {0, 1}n → {0, 1} such
that IQ(C) ≤ c log n/n for any Q ⊆ [n] : |Q| = 1 and E[C] = 1/2.

To prove this we use a result by Ajtai and Linial which gives a generic way to turn a
nearly balanced circuit into an exactly balanced one, without hurting the resilience too much.
However, it comes at a cost to the depth and monotonicity of the original circuit.

1.1 Proof of Theorem 4

The final construction is an Ajtai-Linial style AND of TRIBES circuit, which will be defined
through a generator G. The bulk of the proof is showing that the resulting circuit will be
1) resilient and 2) nearly balanced whenever G is a sampler and a design. 1) follows from
the sampler property, while both properties are needed to prove 2). Our starting point is an
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expander walk which is a sampler by known tail bounds. However, an expander walk does
not form a good design since two different walks can differ in just one node. Thus we pad
the expander walk with a short Reed-Solomon code which has good design properties. This
construction achieves a polynomial size domain which results in a polynomial size circuit.

Constructing a circuit through G First we set up notation. We identify n with a v×w
matrix and for any y ∈ [v]w we associate a subset of [n] of size w with one element per
column in the natural way: the kth element where k ∈ [w] is in column k and row y[k]. We
let S(y) denote this subset.

From S(y) we obtain other disjoint sets by increasing the row indices by j mod v. We
let S(y, j) denote this set. Note that for any y ∈ [v]w the sets S(y, 0), . . . , S(y, v− 1) form a
partition of [n] into v sets of size w each.

We now define CG.

Definition 6. For any G : [u]→ [v]w and i ∈ [u] we define

CG(i)(x) := ∨j∈[v] ∧k∈S(G(i),j) xk

and we define
CG(x) := ∧i∈[u]CG(i)(x).

Note CG is an ANDu-ORv-ANDw circuit and CG(i) is a read-once ORv-ANDw circuit,
where ANDw denotes a layer of AND gates of fan-in w, etc. For intuition see the following
illustration.

G(i) defines a read-once ORv-ANDw subcircuit:

S(G(i), 0),S(G(i), 1), S(G(i), v − 1)

w

v





CG(i)

OR

AND AND . . . AND

w

v

We next define some relevant quantities.

Definition 7. For integers 1 ≤ w ≤ v ≤ u and 0 < σ < 1 we define

p := (1− σw)v, bias(u, v, w, σ) := (1− p)u.
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Since the CG(i)(x) are read-once, we have P[CG(i)(Bσ) = 0] = p. And if we supposed
that CG was read-once (on uvw bits), then we would have P[CG(Bσ) = 1] = bias(u, v, w, σ).
Jumping ahead, we will show that when G is a sampler, CG on vw bits behaves similarly. So
by setting the parameters appropriately and the following fact, CG will be nearly balanced.

Fact 8. Fix 1 ≤ w ≤ v ≤ u and 0 < σ < 1 so that σ−w ln(u/ ln 2) ≤ v ≤ σ−w ln(u/ ln 2) + 1.
Then |bias(u, v, w, σ)− 1/2| ≤ cσw.

For the sake of flow, we defer the proof of Fact 8 and some of the other technical claims
below to the appendix.

The sampler property

Definition 9. G : [u] → [v]w is a (α, β)-sampler if for any f1, . . . , fw : [v] → {0, 1} s.t.
µ := Ey∈[v]w [F (y)] ≤ 1

αβ lnu
where F :=

∑
k∈[w] fk, we have

E
i∈[u]

[αF (G(i))] ≤ ecβαµ.

When β = c we say G is an α-sampler, and when α = 2, β = c we say G is a sampler.

The 1/ lnu factor is present in the definition for technical reasons. We will also need a
second version of the definition given next.

Claim 10. The statement in Definition 9 is equivalent to the following:

E
i∈[u]

[αF (G(i))1F (G(i))6=0] ≤ cβαµ.

Next we show the identity function is a sampler.

Fact 11. The identity function I : [v]w → [v]w is a sampler.

This directly follows by the proceeding.

Fact 12. Let X1, . . . , Xw be independent {0, 1}-valued r.v. s.t. µ := E[X] < 1 where
X :=

∑
k∈[w] Xk. Fix α > 1 s.t. αµ ≤ 1. Then E[αX ] ≤ eαµ,E[αX1X 6=0] ≤ 2αµ.

However, the identity function would not result in an efficient construction since the
resulting circuit would have size ≥ u = vw = nc logn. Thus we are interested in samplers with
a polynomial size domain u = vc. The existence of such samplers follows by the probabilistic
method (see Lemma 19). For an explicit construction, we can take G to be a random walk
over a (v, d, λ) expander, which is a regular graph with v nodes, degree d, and spectral
expansion λ. Tail bounds on expander walks [RR17] imply that G is indeed a good sampler.

Theorem 13 ([RR17]). Let G : [vdw]→ [v]w output walks of length w on a (v, d, λ) expander
for λ < 1/3. Then G is an α-sampler for any 1 < α < 1/2λ.

We remark that tail bounds from earlier works [Lez98, Wag08], appropriately extended,
would also suffice for our main result.
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The design property

Definition 14. We say G is a d-design if |S(G(i), j) ∩ S(G(i′), j′)| ≤ w − d for any i, i′ ∈
[u], j, j′ ∈ [v] s.t. (i, j) 6= (i′, j′) .

In other words, any two sets differ in at least d elements. Note |S(G(i), j)∩S(G(i), j′)| = 0
for any j 6= j′ by definition.

We will require the design properties of the Reed-Solomon code:

Fact 15. Fix some prime v and integers ` ≤ w ≤ v. The degree ` Reed-Solomon code
RS : [v]` → [v]w is `-wise independent and a w − ` design.

The final construction The final generator is the concatenation of two different codes,
as is done in [Mek17]. We replace the complicated extractor in [Mek17] with a standard
expander walk, which grants the sampler property by Theorem 13.

The second code will be a constant-degree Reed-Solomon code of length approximately
c log log n. The final generator will then possess the desired design property, albeit with a
small loss in the sampler property.

Lemma 16. Fix integers w ≤ v where v is prime and σ ∈ (0, 1/2] s.t. σ−w = Cv
log v

for a

fixed constant C. Then there is an explicit G : [u] → [v]w that is a (σ−1, σ−1)-sampler and
4 log log u/ log(σ−1)-design, where u = poly(v).

Proving resilience and small bias The remainder of the proof consists in showing that
circuits obtained from G are 1) resilient and 2) nearly balanced. 1) was known for σ = 1/2,
and it is straightforward to generalize to σ 6= 1/2.

Lemma 17. Fix integers w ≤ v ≤ u and σ ∈ (0, 1/2] so that σ−w = v/ ln(u/ ln 2) and
suppose G : [u]→ [v]w is a (σ−1, β)-sampler. Then for any Q ⊆ [n] s.t. |Q| ≤ cσ−w+1/β,

IQ,Bσ(CG) ≤ |Q| · cβσw−1.

For 2), we follow an approach similar to that of [CZ16, Mek17], which proved small bias
by combining Janson’s inequality with the requirement that G is a good design. However,
we consider a slightly tighter version of Janson’s inequality; see Proposition 24 and the
discussion there. This crucially allows us to apply the sampler property of G which in turn
allows us to simplify the design requirements on G and improve the final bias to essentially
match the nonexplicit construction.

Lemma 18. Suppose G : [u]→ [v]w is a (σ−1, β)-sampler and d-design. Then

|E[CG(Bσ)]− bias(u, v, w, σ)| ≤ eσ
d log4 u βσ

−1

n1−o(1)
.

We are now ready to prove Theorem 4.
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Proof of Theorem 4. Take G from Lemma 16. By Lemma 17,

IQ,Bσ(CG) ≤ |Q| · cσ−2σw = |Q| · cσ−2

log(σ−1)
· log2 n

n
.

The last inequality follows since σ−w = cv/ log v thus w = c log v/ log(σ−1) and v = n/w so
log v = c log n.

By Lemma 18, |E[CG(Bσ)]− bias(u, v, w, σ)| ≤ σ−2/n1−o(1). We conclude by Fact 8.

1.2 Future Directions

A long-standing open problem is to improve the cn/ log2 n resilience achieved by Ajtai and
Linial. In this direction, we pose the following question: Is there a function f : {0, 1}n →
{0, 1} such that 1) P[f = 0] = 1/n and 2) the influence of each bit is c log n/n2? In other
words, are there biased functions matching the KKL theorem?

It is well-known there are balanced functions which match KKL, namely TRIBES. How-
ever, when the parameters are set so that P[TRIBES = 0] = 1/n, the influence of each bit
becomes c log2 n/n2. The Ajtai-Linial construction is an AND over such biased TRIBES.

Thus any progress on the question above can be viewed as a first step towards beat-
ing cn/ log2 n resilience. The works of [EG20, EKLM22] provide some information on the
structure of functions which match the KKL Theorem that may be helpful.

Another problem is to obtain alternative constructions that improve on [BL85]. One pos-
sible approach follows from Theorem 4 by setting w constant (and a suitable σ) which allows
one to reach influence n−0.99; alternative derandomizations of the Ajtai-Linial construction
in this setting could be of interest.

1.3 Organization

In Section 2 we prove Theorem 2. We prove Lemmas 16, 17, 18 in Sections 3, 4, 5 respectively.
In Section 6 we prove Theorem 5.

2 Nonexplicit tradeoff resilient circuits

Here we prove the existence of good samplers and designs over the uniform distribution.

Lemma 19. For large enough integers w ≤ v there is a G : [v222w ln v] → [v]w that is a
sampler and bw/2c-design.

Combining this with Lemmas 17 and 18 we can prove Theorem 2.

Proof of Theorem 2. Fix w and set v = d2w ln(u/ ln 2)e where u := (vw)4 and set n = vw.
Note u ≥ v222w ln v. Take G from Lemma 19. By Lemma 17,

IQ(CG) ≤ c|Q| · 2−w+1 ≤ c|Q| · log2 n

n
.
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The last inequality follows since v = c2w log n so n = c2ww log n which implies that 2w =
cn/ log2 n. And by Lemma 18 and Fact 8, |E[CG]− 1/2| ≤ n−1+o(1).

Let us add a couple of remarks. First, one can improve the final circuit size to cn2

through a different proof which avoids the sampler definition and argues directly about
each subcircuit. However, we choose to present the current proof as it is simpler and more
consistent with the explicit construction. Second, one can replace Lemma 18, the proof of
which is somewhat involved, with a simpler argument due to [Wel20], at the cost of the
monotonicity of the final nonexplicit circuit.

2.1 Proof of Lemma 19

For any G : [u] → [v]w and F =
∑

k∈[w] fk, where f1, . . . , fw : [v] → {0, 1}, let SF (G) :=∑
i∈[u] 2F (G(i))1F (G(i)) 6=0. By Fact 12, over a uniformly sampled G : [u]→ [v]w and any fixed

F with mean Ey∈[v]w [F (y)] = µ < 1/2 we have

E
G

[SF (G)] ≤ u · 4µ.

By the above and Hoeffding’s inequality, for any fixed F with mean µ = t/v we have

PG [SF (G)− 4uµ > 2uµ] < exp

(
−2(2uµ)2

u22w

)
< exp

(
− 8ut2

v222w

)
< v−8t2 .

The last < follows for u ≥ v222w ln v. Now we union bound the probability of some bad F
with mean t/v:

PG[∃F : E[F ] = t/v ∧ SF (G) > 6uµ] < |{F : E[F ] = t/v}| · v−8t2 ≤ v−6t.

The last≤ follows by the Vandermonde identity, which says there are
∑

`1+···+`w=t

(
v
`1

)
. . .
(
v
`w

)
=(

vw
t

)
≤ (vw)t functions F with mean t/v.

After a union bound over all possible 1 ≤ t ≤ v, the probability of some bad F with
mean ≤ 1 is at most

∑∞
t=1 v

−6t < 2v−6 < 1/2.
Now we bound the probability that G is a w/2 design. For a fixed z ∈ [v]w and a

uniformly sampled y ∼ [v]w, the probability y intersects z in more than w/2 elements is
≤ (c/v)w/2. Thus by a union bound,

PG[∃i′ 6= i ∈ [u] ∧ j′, j ∈ [v] : |S(G(i′), j′) ∩ S(G(i), j)| ≥ w/2] ≤ (uv)2(c/v)w/2 < 1/2.

The last < holds for w a large enough constant since u = (vw)4, w ≤ v. Hence there is a
G : [u]→ [v]w that is a sampler and (w/2)-design for u ≥ v222w ln v.
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3 Explicit tradeoff resilient circuits

In this section we we prove Lemma 16, restated below, which provides an explicit σ−1-
sampler and design. The bulk of the output of G : [u] → [v]w will come from an expander
walk, but a small subset of the output of size roughly logw will come from a constant-degree
Reed-Solomon code.

To analyze the sampler property of G (Proposition 20) we apply Cauchy-Schwarz and
use the known sampler properties of expander walks (Theorem 13) and Reed-Solomon codes
(Proposition 22). However, there is a σ−1 factor loss from applying Cauchy-Schwarz.

G will be approximately a c logw-design (Proposition 21) which simply follows from the
design properties of the Reed-Solomon code.

Lemma. Fix w ≤ v where v is prime and σ ∈ (0, 1/2] s.t. σ−w = Cv
log v

for a fixed constant C.

Then there is an explicit G : [u]→ [v]w that is a (σ−1, σ−1)-sampler and 4 log log u/ log(σ−1)-
design, where u = poly(v).

3.1 Proof of Lemma 16

Fix w ≤ v where v is prime and σ ∈ (0, 1/2] so that σ−w = v/ ln(u/ ln 2) for u which we
specify below.

It is well known there are explicit (v, d, λ) expanders with d ≤ λ−c for any explicit λ. For
instance, one can take powers of constant degree expanders with constant expansion. Let W
output walks of length w1 ≤ w on such an expander with λ = σ2/4 for some w1 we specify
later. By Theorem 13, W : [vdw1 ] → [v]w is a σ−2-sampler. Note vdw1 = vc since d = σ−c

and σ−w ≤ v.
Let RS : [v]c1 → [v]w2 denote the code from Fact 15 where c1 is a constant large enough

so that vc1 ≥ vdw1 and w2 := (c1/3) max(blog lnu/ log(σ−1)c, 4). Note w2 < w since σ−w =
v/ ln(u/ ln 2) and c1 < w2.

Finally, we set w1 := w − w2 and u := vdw1 which implies v/ ln(u/ ln 2) = (1 +
o(1))Cv/ log v for some fixed constant C. We define G : [u]→ [v]w as follows:{

G(i)k = W (i)k if 1 ≤ k ≤ w1

G(i)k = RS(i)k−w1 if w1 < k ≤ w.

Proposition 20. G is a (σ−1, σ−1)-sampler.

Proof. Fix f1, . . . , fw : [v] → {0, 1} so that µ = E[F ] ≤ 1/(cσ−2 lnu) where F =
∑

k∈[w] fk.

Let F1 = f1 + · · ·+fw1 , F2 = fw1+1 + · · ·+fw, µ1 = E[F1], µ2 = E[F2] (so µ1 +µ2 = µ). Then

E
i∈[u]

[σ−F (G(i))] = E
i∈[u]

[σ−F1(W (i))σ−F2(RS(i))]

≤ E
i∈[u]

[σ−2F1(W (i))]1/2 E
i′∈[u]

[σ−2F2(RS(i′))]1/2

≤ ecσ
−2µ1 · (ecσ−2µ2 + σ−2w2µc12 )1/2.
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The second ≤ follows by Cauchy-Schwarz. The last ≤ follows since W is a σ−2 sampler and
by Proposition 22, stated at the end. To conclude it suffices to show

(σ−2w2µc12 )1/2 ≤ µ2.

This follows as σ−2w2 ≤ (lnu)(2c1/3) and µc12 ≤ µ(2c1/3)µ
(c1/3)
2 ≤ (lnu)−(2c1/3)µ

(c1/3)
2 .

Proposition 21. G is a 4 log log u/ log(σ−1)-design.

Proof. Its clear that G is a (w2−c1)-design, and note w2−c1 ≥ (c1/6) · (log lnu/ log(σ−1)) ≥
4 log log u/ log(σ−1) for c1 large enough.

3.2 Remaining proof

The following is a sampler like property of Reed-Solomon codes.

Proposition 22. Let D be a `-wise uniform distribution on [v]w. Then for any f1, . . . , fw :
[v]→ {0, 1} s.t. µ := Ey∈[v]w [F (y)] ≤ 1/2α where F =

∑
k∈[w] fk,

E[αF (D)] ≤ ecαµ + αwµ`.

Proof. Define the random variables Y1 = f1(y1), . . . Yw = fw(yw) where y is sampled from D
and let Y =

∑
k∈[w] Yk. Then

P[Y ≥ `] ≤
∑

S⊆[w],|S|=`

P

[∏
i∈S

Yi = 1

]
=

∑
S⊆[w],|S|=`

∏
i∈S

P[Yi = 1] ≤
(
w

`

)(µ
w

)`
≤ µ`.

The = follows as D is `-wise uniform. The next ≤ follows by Maclaurin’s inequality. Since
the above holds for any k ≤ `, we have

E[αY ] ≤ E[αY |Y = 0] +
`−1∑
k=1

E[αY |Y = k]P[Y = k] + E[αY |Y ≥ `]P[Y ≥ `]

≤ 1 +
`−1∑
k=1

αkµk + αwµ`

≤ 1 + 2αµ+ αwµ`.

The last ≤ follows since αµ < 1/2. We can now conclude since 1 + x ≤ ex.

4 Sampler to resilience

In this section we prove Lemma 17 which says that when G is a sampler, then the resulting
circuit CG will be resilient. To do so we bound the probability that each read-once subcircuit
CG(i) will be fixed and then apply a union bound. Each subcircuit CG(i) is unlikely to be
fixed since the coalition size is less than the number of independent ANDw terms in CG(i).
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Lemma. Fix integers w ≤ v ≤ u and σ ∈ (0, 1/2] so that σ−w = v/ ln(u/ ln 2) and suppose
G : [u]→ [v]w is a (σ−1, β)-sampler. Then for any Q ⊆ [n] s.t. |Q| ≤ cσ−w+1/β,

IQ,Bσ(CG) ≤ |Q| · βσw−1.

Proof. Fix a coalition Q ⊆ [n] of size q. After sampling from Bσ the bits indexed by Q, CG(i)

is not fixed iff Ei ∧ Fi = 1 where{
Ei = 1 if ∀j : S(G(i), j) ∩Q = ∅, Ai,j(x) = 0,

Fi = 1 if ∃j : S(G(i), j) ∩Q 6= ∅, Ai,j(x) = ?

where Ai,j(x) := ∧k∈S(G(i),j)xk. By Ai,j(x) = ? we denote that the bits indexed by S(G(i), j)∩
Q are set to 1.

First we bound P[Ei]. Since there are v ANDw terms in CG(i) and Q can intersect with
≤ q of them we have

P[Ei] ≤ (1− σw)v−q ≤ p · eqσw ≤ c/u.

since v = cσ−w lnu and q ≤ cσ−w.
Next we bound P[Fi] by union bounding over all intersecting j:

P[Fi] ≤
∑

j∈[v]:S(G(i),j)∩Q 6=0

σ(w−|S(G(i),j)∩Q|) = σw
∑
j∈[v]

σ−|S(G(i),j)∩Q|1|S(G(i),j)∩Q|6=0.

Combining the bounds above we have∑
i∈[u]

IQ(CPi) ≤
∑
i∈[u]

P[Ei]P[Fi]

≤ c

u
σw
∑
i∈[u]

∑
j∈[v]

σ−|S(G(i),j)∩Q|1|S(G(i),j)∩Q|6=0

= cσw
∑
j∈[v]

E
i∈[u]

σ−|S(G(i),j)∩Q|1|S(G(i),j)∩Q|6=0.

To conclude we claim that for any fixed j ∈ [v],

E
i∈[u]

σ−|S(G(i),j)∩Q|1|S(G(i),j)∩Q|6=0 ≤ βσ−1q/v.

To see this, for each k ∈ [w] define fk : [v]→ {0, 1} as{
fk(y) = 1 if {((k − 1)v + y + j) mod v} ∈ Q;

fk(y) = 0 if {((k − 1)v + y + j) mod v} /∈ Q.

Note |S(G(i), j) ∩ Q| = F (G(i)) and Ey∈[v]w [F (y))] = q/v ≤ cσ−w+1/(vβ) ≤ 1/(σ−1β lnu)
where F =

∑
k∈[w] fk. The claim now follows since G is a (σ−1, β) sampler.

11



5 Sampler and design to small bias

Here we prove Lemma 18, restated below.

Lemma. Suppose G : [u]→ [v]w is a (σ−1, β)-sampler and a d-design. Then

|E[CG(Bσ)]− bias(u, v, w, σ)| ≤ eσ
d·log4 u βσ

−1

n1−o(1)
.

For this we will need two different approximations of the OR of boolean circuits. The
first is the Bonferroni inequality.

Proposition 23. For any boolean random variables Z1, . . . , Zn and odd K, letting Z :=
∨i∈[n]Zi we have

0 ≤ P[Z]−
∑

k∈[K−1]

(−1)k−1Sk(Z1, . . . , Zn) ≤ SK(Z1, . . . , Zn)

where Sk(Z1, . . . , Zn) :=
∑

S⊆[n]:|S|=k P[∧i∈SZi].

We also need the following slight tightening of Janson’s inequality [Jan90]. The below
version is implicit in the proof presented by [AS92] (c.f. [LSS+21]). We provide a justification
in the appendix.

Proposition 24. Let C1, . . . , Cn be arbitrary monotone boolean circuits such that P[Ci =
0] = p ≥ 1/2 ∀i over some product distribution D. Then letting C := ∨i∈[n]Ci we have

∏
i∈[n]

P[Ci = 0] ≤ P[C = 0] ≤
∏
i∈[n]

P[Ci = 0] ·

(
1 +

n∑
`=1

2`

`!
∆(C)`

)

where the probabilities are over D and

∆(C) :=
∑
i∈[n]

L(C, i), L(C, i) :=
∑
i′∈[n]:
i′<i,
i′∼i

P[Ci′ ∧ Ci]

where i′ ∼ i denotes that Ci′ and Ci are not on disjoint variables.

The upper bound is usually stated as
∏

i∈[n] P[Ci = 0]·e2∆(C). If one used this bound, then

in the course of proving Lemma 18 one needs to bound the quantity ET⊆[u]:|T |=k e
∆(CG(T ))− 1

for k not too large, where CG(T ) := ∨i∈TCG(i). [CZ16, Mek17] do so by requiring design

properties of G. If G is a d-design, then ET⊆[u]:|T |=k e
∆(CG(T )) ≤ elogc u/2d (see Lemma 26),

resulting in a final bias of approximately 2−d. To achieve polynomial bias, one would need
a Reed-Solomon code of length c log n, which would ruin the sampler property.

Instead if one uses the above version of Janson’s inequality, one needs to bound ET⊆[u]:|T |=k ∆(CG(T ))
`

for 1 ≤ ` ≤ n. Through the sampler property of G, we prove ET⊆[u]:|T |=k ∆(CG(T )) = n−1+o(1)

(Lemma 25). We then use Lemma 26 to bound the remaining terms E
∑

∆(CG(T ))
`. This

analysis results in a final bias of elogc u/2dn−1+o(1) = n−1+o(1) for d roughly c log log n.

12



Lemma 25. Suppose G : [u]→ [v]w is a (σ−1, β)-sampler. For any 1 ≤ k ≤ log u,

E
T⊆[u]:
|T |=k

∆(CG(T )) ≤
βσ−1

v1−o(1)
.

Lemma 26. Suppose G : [u]→ [v]w is a d-design. For any 1 ≤ k ≤ log u,

max
T⊆[u]:
|T |=k

∆(CG(T )) ≤ log4 u · σd.

Assuming Lemmas 25 and 26 we can prove Lemma 18.

Proof of Lemma 18 . We can write ¬CG = ∨i∈[u]Zi where Zi := ¬CG(i). We can also write
1− bias(u, v, w, σ) = 1− (1− p)u where recall p = (1− σw)v. By Bonferroni’s inequality, for
any odd K which we set later we have∣∣∣∣∣∣E[¬CG]−

∑
k∈[K−1]

(−1)k−1 E[Sk(Z1, . . . , Zu)]

∣∣∣∣∣∣ ≤ |E[SK(Z1, . . . , Zu)| ,∣∣∣∣∣∣(1− bias(u, v, w, σ))−
∑

k∈[K−1]

(−1)k−1

(
u

k

)
pk

∣∣∣∣∣∣ ≤
(
u

K

)
pK

where the expectations are over Bσ. Note that E[Sk(Z1, . . . , Zu)] =
∑

T⊆[u]:|T |=k P[CG(T ) = 0],
where CG(T ) = ∨i∈TCG(i) = ∨i∈T ∨j∈[v] Ai,j, and Ai,j = ∧k∈S(G(i),j)xk. Thus we view CG(T ) as
an ORkv-ANDw circuit. First note that by Lemmas 25, 26 we have

E
T⊆[u]:
|T |=k

∆(CG(T ))
` ≤ max

T⊆[u]:
|T |=k

∆(CG(T ))
`−1 E

T⊆[u]:
|T |=k

∆(CG(T )) ≤ (log4 u · σd)`−1

(
u

k

)
βσ−1

v1−o(1)
.

Combining this with Proposition 24 we have(
u

k

)
pk ≤ E[Sk(Z1, . . . , Zu)] ≤ pk

∑
T⊆[u]:|T |=k

(1 +
kv∑
`=1

2`

`!
∆(CG(T ))

`)

≤
(
u

k

)
pk(1 +

βσ−1

v1−o(1)

kv∑
`=1

2`

`!
(log4 u · σd)`−1)

≤
(
u

k

)
pk(1 +

βσ−1

v1−o(1)
elog4 u·σd).

The last inequality follows since
∑∞

`=0 x
`/`! = ex. If the Z1, . . . , Zu were independent

then of course E[Sk(Z1, . . . , Zu)] =
(
u
k

)
pk. So the above is saying that when G is a sampler,

the resulting Zi behave as if they were independent up to a small multiplicative error.

13



After repeated applications of the triangle inequality, letting δ = βσ−1

v1−o(1)
elog4 u·σd , we have

|E[CG]− bias(u, v, w, σ)| ≤ δ
K−1∑
k=1

(
u

k

)
pk + (2 + δ)

(
u

K

)
pK

≤ δ(1 + p)u + (c/K)K

≤ cδ.

The last inequality follows since p = c/u and by setting K = c log v/ log log v.

5.1 Proof of Lemmas 25, 26

Fix any T ⊆ [u] : |T | = k and define Y (i′, j′, i, j) := σ−|S(G(i′),j′)∩S(G(i),j)|1|S(G(i′),j′)∩S(G(i),j)|6=0.
By definition we have

∆(CG(T )) =
∑

(i,j)∈T×[v]

L(CG(T ), (i, j))

=
∑

(i,j)∈T×[v]

∑
(i′,j′)∈T×[v]:
(i′,j′)<(i,j),
(i′,j′)∼(i,j)

P[Ai′,j′ ∧ Ai,j]

= σ2w
∑

(i,j)∈T×[v]

∑
(i′,j′)∈T×[v]:
(i′,j′)<(i,j)

Y (i′, j′, i, j)

The last equality follows as P[Ai′,j′ ∧ Ai,j] = σ2w−|S(G(i′),j′)∩S(G(i),j)| and 1(i′,j′)∼(i,j) =
1|S(G(i′),j′)∩S(G(i),j)|6=0. One can think of (i, j) as a number, with i as the most significant bit.

To prove Lemma 26, since G is a d-design, for any fixed i 6= i′ ∈ T and j ∈ [v] we have∑
j′∈[v]:

(i′,j′)<(i,j)

Y (i′, j′, i, j) ≤ wσ−(w−d).

Thus ∆(CG(T )) ≤ σ2w · k2v · wσ−(w−d) ≤ σd · k2 lnu · w ≤ σd ln4 u. The second inequality
follows since v = cσ−w lnu.

Now we prove Lemma 25. We need the following result.

Proposition 27. Suppose G : [u] → [v]w is a (σ−1, β)-sampler. For any 1 ≤ k ≤ u and
j′, j ∈ [v],

E
T⊆[u]:
|T |=k

∑
i′,i∈T :
i′<i

Y (i′, j′, i, j) ≤
(
u

k

)
k2 βσ

−1

v1−o(1)
·

14



Assuming Proposition 27, we can prove Lemma 25.

E
T⊆[u]:
|T |=k

∆(CG(T )) ≤ σ2w E
T⊆[u]:
|T |=k

∑
(i,j)∈T×[v]

∑
(i′,j′)∈T×[v]:
(i′,j′)<(i,j)

Y (i′, j′, i, j)

= (
c lnu

v
)2
∑
j′,j∈[v]

E
T⊆[u]:
|T |=k

∑
i′,i∈T :
i′<i

Y (i′, j′, i, j)

≤ (
c lnu

v
)2 · v2k2 βσ

−1

v1−o(1)

≤ βσ−1

v1−o(1)
.

5.2 Proof of Proposition 27

Proposition 27 directly follows from the next two results.

Proposition 28. For any j′, j ∈ [v], i ∈ [u]. Ei′∈[u] Y (i′, j′, i, j) ≤ cβσ−1w
v

.

Proof. We can write
Y (i′, j′, i, j) = σ−F (G(i))1F (G(i)) 6=0

where F =
∑

k∈[w] fk and for each k ∈ [w], fk : [v]→ {0, 1} is defined as follows:{
fk(y) = 1 if y + j = G(i′)k + j′ mod v;

fk(y) = 0 otherwise.

Note E[F ] = w/v. We can conclude since G is a (σ−1, β) sampler.

Proposition 29. Fix 1 ≤ k ≤ u and non-negative X : [u] × [u] → R s.t. for any i ∈ [u],
Ei′∈[u]X(i′, i) ≤ µ. Then

E
T⊆[u]:
|T |=k

∑
i′,i∈T :
i′<i

X(i′, i) ≤ ck2µ·

Proof. We have

E
T⊂[u]:
|T |=k

∑
i′,i∈T :
i′<i

X(i′, i) =

(
u

k

)−1(
u− 2

k − 2

) ∑
i′,i∈[u]:
i′<i

X(i′, i) ≤
(
u

k

)−1(
u− 2

k − 2

)
u2µ ≤ ck2µ.

Remark 30. The condition i′ < i is necessary. Suppose X(i′, i) = uµ for i′ = i and 0
otherwise. Then

E
T⊆[u]:
|T |=k

∑
i′,i∈T

X(i′, i) = kuµ·
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6 Balanced circuits matching KKL

In this section we prove Theorem 5. We need the following result due to Ajtai and Linial
[AL93], the proof of which we give at the end.

Lemma 31. Let C1, C2 : {0, 1}n → {0, 1} be depth d circuits such that |E[C1] − 1/2| < ε1,
E[C2] < (1 − 2ε1). Then there is a depth d + 2 circuit C ′ : {0, 1}2n → {0, 1} such that
E[C ′] = 1/2 and IQ(C ′) ≤ IQ(C1)+IQ(C2)+P[C2 = 0] for any Q ⊆ [2n]. Moreover, if C1, C2

are explicit then C ′ is explicit.

Proof of Theorem 5. Let C1, C2 be read-onceORv-ANDw, ORv′-ANDw′ circuits where vw, v′w′ =
cn. First we set w, v so that v = d2w ln 2e. Thus by the inequality e−x/(1−x) ≤ 1− x ≤ e−x,

|E[C1]− 1/2| ≤ c1 log n

n

for some fixed c1. Similarly, we set w′, v′ so that v′ = d2w′ ln
(

n
3c1 logn

)
e, w′ which implies∣∣∣∣E[C2]−

(
1− 3c1 log n

n

)∣∣∣∣ ≤ c log3

n2
.

Now for any Q1, Q2 ⊆ [n] : |Q1| = |Q2| = 1 we have

IQ1(C1) ≤ c log n

n
,

IQ2(C2) = (1− 2−w
′
)v
′−12−(w′−1) ≤ c log n

n
· log2 n

n
=
c log3 n

n2
.

We conclude by Lemma 31.

6.1 Proof of Lemma 31

Let δ = E[C1]− 1/2 and define µ so that E[C2] = 1− µ. We define

C ′(x, y) := (C1(x) ∧ C2(y)) ∨ (D(x) ∧ ¬C2(y))

where D(x) : {0, 1}n → {0, 1} is an explicit DNF with E[D] = 1
2

+ δ − δ
µ
∈ [0, 1]. The ∈

follows since µ > 2|δ| by hypothesis. We justify such a D in the end. Now,

E[C ′(x, y)] = (1/2 + δ)(1− µ) + E[D(x)] · µ = 1/2.

For any Q ⊆ [2n], letting Q1, Q2 denote the sets in x, y respectively, by a union bound we
have IQ(C ′) ≤ IQ1(C1) + IQ2(C2) + P[C2 = 0].

To conclude, it remains to construct an explicit DNF D such that E[D] = 2−n · k for any
k ∈ [2n]. Let us write the binary representation of k as α12n−1 + · · ·+αn20 where αi ∈ {0, 1}.
We construct f by adding the term ¬x1 . . .¬xi−1xi if αi = 1. The term ¬x1 . . .¬xi−1xi has
2n−i inputs in its support. Furthermore, each term will be disjoint. Hence f attains the
desired bias.
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7 Deferred proofs

7.1 Proof of Fact 8

We use the inequalities e−x(1+cx) ≤ e−
x

1−x ≤ 1 − x ≤ e−x for x ∈ (0, 1), and ex ≤ 1 + 2x for
x ≤ 1. First we lower bound bias(u, v, w, σ). We have

(1− σw)v ≤ e−vσ
w ≤ ln 2/u.
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Thus
bias(u, v, w, σ) ≥ (1− ln 2/u)u ≥ e− ln 2(1+c/u) ≥ 1/2− c/u.

To upper bound bias(u, v, w, σ), note

(1− σw)v ≥ e−σ
wv(1+cσw) ≥ e−(ln(u/ ln 2)+σw)(1+cσw) ≥ (ln 2/u)(1− cσw).

Thus
bias(u, v, w, σ) ≤ (1− (ln 2/u)(1− cσw))u ≤ e− ln 2(1−cσw) ≤ 1/2 + cσw.

From here we can conclude since u−1 ≤ v−1 ≤ σw.

7.2 Proof of Claim 10

First suppose Ei∈[u][α
F (G(i))] ≤ ecβαµ ≤ 1 + cβαµ. The last ≤ follows since ex ≤ 1 + 2x for

x ∈ [0, 1]. Next, note that

E
i∈[u]

[αF (G(i))1F (G(i)) 6=0] = E
i∈[u]

[αF (G(i))]− Pi∈[u][F (G(i)) = 0].

By Markov’s inequality, P[F (G(i)) = 0] = 1−P[F (G(i)) ≥ 1] ≥ 1−E[F (G(i))] ≥ 1− cβαµ.
The last inequality follows by Jensen’s inequality.

Now suppose Ei∈[u][α
F (G(i))1F (G(i)) 6=0] ≤ cβαµ. Then since 1 + x ≤ ex, Ei∈[u][α

F (G(i))] ≤
1 + cβαµ ≤ ecβαµ.

7.3 Proof of Fact 12

For the first inequality, let µk := E[fk] for each k ∈ [w]. Since 1 + x ≤ ex,

E[αX ] =
∏
k∈[w]

E[αXk ] =
∏
k∈[w]

(1 + (α− 1)µk) ≤
∏
k∈[w]

e(α−1)µk = e(α−1)µ.

The second inequality follows by similar reasoning as in the proof of Claim 10.

7.4 Proof of Proposition 24

The statement follows by repeating the proof in [AS92] (c.f. [LSS+21]) and avoiding the in-
equality 1+x ≤ ex in the end. We follow the presentation of [LSS+21] up until equation (A.4),
stated next. The probabilities below are over D, and recall L(C, i) =

∑
i′∈[n]:i′<i,i′∼i P[Ci′ ∧

Ci],∆(C) =
∑

i∈[n] L(C, i).

P[C = 0] ≤
∏
i∈[n]

(
P[Ci = 0](1 + 2L(C, i))

)
.

Then by the AM-GM inequality,∏
i∈[n]

(1 + 2L(C, i)) ≤
(

1 +
2∆(C)

n

)n
≤ 1 +

n∑
`=1

2`

`!
∆(C)`.
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