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Introduction
• Last time, we have seen various cryptosystems, and some 

cryptanalyses
• How do you ascertain the security of a cryptosystem?

• Some reasonable ideas:
• Computational Security: best alg takes a long time

• No one knows how to get that (impossible?)
• Can be done against specific attacks (brute-force 

search)
• Provable Security: reduce the security of a 

cryptosystem to a problem believed (or known) to be 
hard

• Unconditional Security: Cryptosystem cannot be broken 
even with infinite computation power



Review of Probability Theory

• Security generally expressed in terms of probability

• Because an attacker can always guess the key!

• This is true of any cryptosystem, and unavoidable

• We only need discrete probabilities for now



Probability Distributions

• Probability space: (Ω, Pr)
• Ω, the sample space, is a finite set of possible 

states (or possible worlds or possible outcomes)
• Pr is a function P(Ω) → [0,1] such that

• Pr(Ω) = 1
• Pr(∅) = 0

• Pr(A∪B) = Pr(A) + Pr(B)   if A∩B=∅
• Pr is called a probability distribution, a probability 

measure, or just a probability

• Because of additivity, Pr determined by Pr({a}) ∀a



Examples

• Single die:
• Ω = {1,2,3,4,5,6}
• Pr ({4}) = 1/6
• Pr ({1,3,5}) = 3/6 = 1/2

• Pair of dice:
• Ω = {(1,1),(1,2),(1,3),(1,4),...,(6,5),(6,6)}
• Pr ({(1,1)}) = 1/36
• Pr ({(1,a) ∣a=1,2,3,4}) = 4/36 = 1/9



Joint Probabilities

• Suppose (Ω1, Pr1) is a probability space

• Suppose (Ω2, Pr2) is a probability space

• Can create the joint probability space (Ω1×Ω2,Pr) by 
taking:

• Pr({a,b}) = Pr1({a})Pr2({b})

• Extending by additivity



Conditional Probability

• Pr (A∣B) = Pr(A∩B) / Pr(B)
• Only defined if Pr(B)>0

• More easily understood with a picture...

Bayes’ Theorem: Pr (B | A) = Pr (A∣B) Pr(B) / Pr(A)



Random Variables
• A random variable is a function from states to some set of values
• Given probability space and a random variable X, the probability 

that the random variable X takes value x is:

                         Pr ( {w∣X(w)=x} )

• This is often written Pr(X=x) or Pr[x]   (YUCK)

• The probability space is often left implicit

• Conditional probabilities:
    Pr (X=x∣Y=y) = Pr ({w∣X(w)=x}∣{w∣Y(w)=y})

• X and Y are independent if P(X=x ∩ Y=y) = Pr(X=x) Pr(Y=y) ∀x,y



Application to Cryptography

• Suppose a probability space (Ω, Pr) with:
• Random variable K (=key)
• Random variable P (=plaintext)
• K and P are independent random variables

• Simple example: states are (key, plaintext) pairs

• Key probability is Pr(K=k)

• Plaintext probability is Pr(P=x)



Ciphertext Probability

• This induces a probability over ciphertexts:

• Can compute conditional probabilities:

Pr(C = y) =
∑

x,k•ek(x)=y

Pr(P = x)Pr(K = k)

Pr(C = y ∩ P = x) = Pr(P = x)
∑

k•ek(x)=y

Pr(K = k)

Pr(P = x | C = y) =
Pr(P = x)

∑
k•ek(x)=y Pr(K = k)

∑
x′,k•ek(x′)=y Pr(P = x′)Pr(K = k)

Pr(C = y | P = x) =
∑

k•ek(x)=y

Pr(K = k)



Perfect Secrecy

• We say a cryptosystem has perfect secrecy if

      Pr (P=x | C=y) = Pr (P=x)   for all x,y

• The probability that the plaintext is x given that 
you have observed ciphertext y is the same as the 
probability that the plaintext is x (without seeing 
the ciphertext)

• Depends on key probability and plaintext probability



Characterizing Perfect Secrecy
Theorem: The shift cipher, where all keys have 
probability 1/26, has perfect secrecy if we use the 
key only once, for any plaintext probability. 

• Can we characterize those cryptosystems with perfect 
secrecy?

Theorem: Let (P,C,K,E,D) be a cryptosystem with |K| = 
|P| = |C|.  This cryptosystem has perfect secrecy if and 
only if all keys have the same probability 1/|K| and 

             ∀x∈P ∀y∈C ∃k∈K ● ek(x) = y



Vernam Cipher

• Also know as the one-time pad

• P = C = K = (Z2)n
• Strings of bits of length n

• If K=(k1, ..., kn):
• eK (x1, ..., xn) = (x1+k1 (mod 2), ..., xn+kn (mod 2))
• dK (x1, ..., xn) = (x1-k1 (mod 2), ..., xn-kn (mod 2))

• To encrypt a string of length N, choose a one-time 
pad of length N



Conclusions
• If ciphertexts are short (same length as key), can get 

perfect security
• Approach still used for very sensitive data 

(embassies, military, etc)
• But keys get very long for long messages
• And there is the whole key distribution problem

• Modern cryptosystems: one key used to encrypt long 
plaintext (by breaking it into pieces)
• We will see more of these next time

• Need to be able to reason about reusing keys



A Detour: Entropy
• Entropy: measure of uncertainty (in bits) introduced by 

Shannon in 1948 
• Foundation of Information Theory

• Intuition
• Suppose a random variable that takes value {1,...,n} with 

some nonzero probability
• Consider the string of values generated by that 

probability distribution
• What is the most efficient way (in number of bits) to 

encode every value to minimize how many bits it take to 
encode a random string?

• Example: {1,...,8}, where 8 is much more likely than others



Definition of Entropy
• Let random variable take values in finite set V

• Weighted average of -log2 Pr (X=v)

Theorem: Suppose X is a random variable taking n 
values with nonzero probability, then

                     H(X) ≤ log2 (n)

• When do we have equality?

H(X) = −
∑

v∈V

Pr(X = v) log2 Pr(X = v)



Huffman Encoding
Algorithm to get a {0,1} encoding that takes less than 
H(X)+1 bits on average

1. Start with a table of letter probabilities
2.Create a list of trees, initially all trees with only a letter 

and associated probability
3.Iteratively:

a.Pick the two trees T1, T2 with smallest probabilities 
from the list

b.Create a small tree with edge 0 leading to T1 and edge 
1 leading to T2

c. Add that tree back to the list, with probability the sum 
of the original probabilities

4.Stop when you get a single tree giving the encoding



Conditional Entropy
• Let X and Y be random variables

• Fix a value y of Y
• Define the random variable X|y such that

   Pr (X|y = x) = Pr (X=x | Y=y)

• Conditional entropy, written H(X|Y):

• Intuition: average amount of information about X that 
remains after observing Y

H(X | y) = −
∑

v∈V

Pr(X = v | Y = y) log2 Pr(X = v | Y = y)

H(X | Y ) =
∑

y

Pr(Y = y)H(X | y)



Application to Cryptography

• Key equivocation H(K∣C): amount of uncertainty of 
the key that remains after observing the ciphertext

Theorem:   H(K∣C) = H(K) + H(P) - H(C)

• A spurious key is a possible key, but incorrect

• E.g., shift cipher, with ciphertext WNAJW
• Possible keys: k=5 (RIVER) or k=22 (ARENA)

• Many spurious keys  --->   Good!



How Many Spurious Keys?

• Question: how long of a message can we permit 
before the number of spurious keys is 0? 
• That is, before the only key that is possible is the 

right one?

• This depends on the underlying language in which 
plaintexts are taken

• Cf: cryptanalysis, where we took advantage that not 
all letters have equal probability in English messages



Entropy of a Language
• HL = number of information bits per letter in language L

• Example:
• If all letters have the same probability, a first 

approximation would be 4.7
• For English, based on probabilities of plaintexts 

(letters), a first approximation is 4.19
• For pairs of letters? Triplets of letters? ...

• Entropy of L:

• Redundancy of L:

HL = lim
n→∞

H(Pn)
n

RL = 1− HL

log2 |P |



Unicity Distance
Theorem: Suppose (P,C,K,E,D) is a cryptosystem with |C| = |P| 
and keys are chosen equiprobably, and let L be the underlying 
language. Given a ciphertext of length n (sufficiently large), the 
expected number of spurious keys sn satisfies

• The unicity distance of a cryptosystem is the value n0 after 
which the number expected number of spurious keys is 0.
• Average amount of ciphertext required for an adversary to 

be able to compute the key (given enough time)

• Substitution cipher: n0 = 25
• So have a chance to recover the key if encrypted message 

is longer than 25 characters

sn ≥
|K|

|P |nRL
− 1


