A TYPED PROGRAMMING LANGUAGE

The Semantics of Rank Polymorphism

JUSTIN SLEPAK

A dissertation submitted in partial
fulfillment of the requirements for the
degree of Doctor of Philosophy to the

Jfaculty of the

KHOURY COLLEGE OF COMPUTING SCIENCES
Northeastern University

Boston, Massachusetts

July 3, 2020

Justin Slepak: A Typed Programming Language, The Semantics of Rank
Polymorphism, © July 3, 2020

Northeastern University

Khoury College of PhD Thesis Approval
Computer Sciences
A Typed Programming Language:
Thesis Title: The Semantics of Rank Polymorphism
Author: Justin Slepak

PhD Thesis Approval to complete all degree requirements for the PhD in Computer Science.

Ol Msa 2020/5/4

Thesis Advisor Date’ ‘
o . '
.;1" / s // /’4 / 3 /‘2.(5’/ Zo

/.

Thesis Reader Date |

b Aol SR 5/25/2s

thesis Reader Date
5/29/20

V Thesis Reader Date

Thesis Reader Date

KHOURY COLLEGE APPROVAL.:

Associate Dean for Graduate Programs Date

COPY RECEIVED BY GRADUATE STUDENT SERVICES:

Recipient’s Signature Date

Distribution: Once completed, this form should be scanned and attached to the front of the electronic
dissertation document (page 1). An electronic version of the document can then be uploaded to the
Northeastern University-UMI Website.

Northeastern University
Khoury College of PhD Thesis Approval
Computer Sciences

Employment upon Graduation - to be turned in to the Graduate Office
(does not need to be included with your electronic dissertation submission)

Justin Slepak
Name:

. August 27, 2020
Graduation Date:

Please choose one, and indicate location/company and the position

Research Scientist, Facebook

m Research - Academic or Industrial:

D Development:

D No firm commitment, but possible options include:

ABSTRACT

In the rank-polymorphic programming model, all functions operate on
aggregate data of arbitrarily high rank, or number of dimensions. During
function application, an argument array is split into cells, the individual
components the function expects to consume. For example, an RGB-to-
greyscale pixel transform operates on each vector in an arbitrarily large
array. The aggregate structure surrounding the cells, called the frame,
serves as the iteration space for cell-wise function application. The
programming model was first developed by Iverson with the language
APL [43], but it struggled with a barrier to efficient compilation: Loop
nesting structure is derived from data computed at run time.

This dissertation presents the design and formal semantics of Remora,
a higher-order, rank-polymorphic programming language with a static
type system which identifies the shape of run-time data. This overview
is followed by formal semantics for a core language. Remora’s static
semantics ascribes to each expression a type which describes the shape
of the resulting array. Quantification over the shape of cells and the type
of atoms within an array is explicit, but the polymorphism over frames is
entirely implicit. That is, a function’s type only describes its cell-level
behavior, while implicit iteration—which is common to all functions—is
identified by typing rules. A type-driven dynamic semantics determines
the iteration space for functions applied to computed array data, and a
type soundness theorem ensures that the types—and shapes—ascribed
to expressions match those of their eventual results.

While frame polymorphism is instantiated implicitly in Remora’s
formal semantics, explicitly instantiating cell polymorphism is a severe
annotation burden. For example, a vector-mean function can be used on
a 3 x 5 x 4 array with no explanation that the array is a 3 x 5 frame,
but the function must be explicitly instantiated to operate on vectors of
length 4. That burden is alleviated by a bidirectional typing system which
uses a novel constraint solver for the theory of array shapes to identify
implicit dimension and shape arguments. The vector-mean function can
then be applied directly to the 3 x 5 x 4 array, with bidirectional rules
elaborating to code which explicitly instantiates it for 4-vector cells.

Two translation steps link Remora’s formal semantics to conventional
rank-monomorphic languages with explicit iteration. While Remora’s dy-
namic semantics relies heavily on run-time type information, a type era-
sure pass can change from carrying full type information in dynamically
created closures and arrays to describing argument and iteration-space
shapes statically at sites. With that shape information at each call site,
the program can be translated from using rank-polymorphic function
calls to rank-monomorphic explicit iteration.

Who should I thank?
— Olin Shivers

ACKNOWLEDGMENTS

Northeastern University’s Programming Research Lab has collectively
been an incredible asset. Over the years, I’ve seen the lab culture go
through some good and bad times, but the essential parts stand strong.
Careful criticism and refinement of each other’s research, writing, and
speaking helps get our message out clearly. Rather than a traditional
“journal club,” new students are brought up to speed in a student-run sem-
inar with sessions focused on major topics in programming languages.
Establishing broad shared background knowledge across the lab helps
us understand each other’s work and the immense variety of research
coming from other labs. Daily contact with others who work on seem-
ingly unrelated projects is the only way I could have pulled together all
the pieces on which to build my own. I've learned a lot from the Formal
Methods Group as well. Though the group is smaller than the PRL, the
latter half of my PhD drew heavily on techniques I learned from them.

There were also many earlier influences in life that led me to this field,
this lab, and this dissertation. Over a three-semester span at Michigan
Technological University, I got my first real exposure to compilation,
static analysis, parallel programming, and the design behind program-
ming languages. The faculty teaching these courses were eager not only
to take us through a long tour of the grimy innards of such systems but
also point at unanswered questions. Having a grand old time digging
around here is how I found out for certain that these were the kinds of
projects I like to work on.

Even earlier than that, my father told me when first teaching me to
use BASIC on the family’s Apple Ile that programming is how to get
access to the full power this amazing tool has to offer. Never-ending
encouragement from my parents to keep following my curiosity (and
occasionally to send back long-winded reports on what I'd found) has
kept me going as long as I can remember. So I thank the whole family,
especially my parents Jeff and Toni and my brother Alex, for their
unwavering support. For a more down-to-earth note, I must also thank
my parents for their generosity as frequent hosts during semester breaks
and for logistical support through the two and a half cross-country moves
involved in my PhD.

—

* Olin Shivers brings to the Remora project an intense enthusiasm
for and long experience using rank-polymorphic programming,

vii

which makes for a well-tuned intuition about what programming
in a new rank-polymorphic language ought to be like. I don’t think
this work could have been what it is without being guided by
Olin’s taste in programming. Lots of people have asked me what
Olin’s technical role in Remora is because it looks so far removed
from his past research, so there it is. That said, an advisor’s role is
more than just technical guidance. Academia is a strange place to
an outsider, and it’s not really a culture I was socialized for before
I came to Northeastern. Olin has always been happy to explain the
odd customs and unwritten rules, often before I knew to ask.

* Pete Manolios was originally the "formal methods consultant" for
Remora. A type system is designed to encode invariants about
arrays’ shapes needs to be limited to invariants a type checker (or
inferrer) can reason about effectively. Pete’s expertise on decision
procedures served both as a counterbalance for the temptations of
expressiveness and as guidance once the goal of type inference
pushed Remora’s needs beyond the bounds of already established
work. The argument supporting the type-erasure transformation
also follows a form of reasoning I learned from Pete.

* Amal Ahmed is known as the lab’s type systems expert. My famil-
iarity with the design of type systems starts from the seminar she
ran my first year at Northeastern. That extends also to reasoning
about type systems, which turned out to be the bulk of my dis-
sertation work. Future development of Remora still has a lot to
learn from her work on integrating programming languages with
differing type disciplines.

* Alex Aiken brings to the committee a working familiarity with the
practical uses of parallelism and compilation issues related to it.
Having him on the committee helped keep the design of Remora
from straying too far into head-in-the-clouds esoterica. While he
shares a lot of common understanding with Olin, he has insight
we just can’t get locally.

My grasp on formal semantics is due primarily to Matthias Felleisen’s
teaching, and he has done a lot to shape the lab culture that helps us
students grow. I also thank him for insistently reminding everyone (inside
and outside the PRL) that programming languages are for programming
and for keeping the craft of software as the underlying motivation for
research in programming languages. He has also kept me from falling
through administrative cracks now and then.

Having Jan Vitek join the lab has helped me keep aware of contem-
porary language design work looking at the same kinds of problems as

viii

Remora, and that’s only one province of his intercontinental research em-
pire. He is also heavily into dynamic compilation techniques. Although
that sort of work has not had much influence on this project’s direction
so far, it looks like a good possibility for the future.

Will Clinger was my official mentor when I came to Northeastern.
Language design is strongly shaped by history, and you can learn a
lot of it from him. As a first-semester student—especially a first-month
student—I didn’t know what I wanted to spend the upcoming years doing.
Will was happy to talk about a variety of possible directions, whether
they were close to his background or not.

You can learn a lot in a surprisingly short time by standing around
at a whiteboard with someone in the same field who has a radically
different way of thinking about it. One of the most valuable features
of the PRL has been a steady stream of labmates with what felt to me
like completely foreign mindsets: Paul Stansifer and Michael Ballantyne,
immersed in syntax and how to transform it; Leif Andersen, who is
like them but more so and also much more ambitious about what pro-
gramming could be; Tony Garnock-Jones, whose thoughts are shaped
by prior focus on distributed systems; Andrew Cobb, who dove deep
into automatic differentiation;! Max New, who has facility with a broad
range of mathematical structures and fits tricky semantic issues neatly
onto them.

My co-advisees Jonathan Schuster, Alex Marquez, and Dionna Glaze,
were always around to commiserate about whatever went wrong.

I am grateful for the support, shop talk, and advice from the rest
of the Programming Research Lab too: Mitch Wand, Heather Miller,
Frank Tip, John Reppy,? Jason Hemann, Ben Lerner, Stephen Chang,
Ben Greenman Sam Caldwell, Ben Chung, Oli Fliickiger, Daniel Patter-
son, Ming-Ho Yee, Aviral Goel, Aaron Weiss, Artem Pelenitsyn, Julia
Belyakova, Alexi Turcotte, Ellen Arteca, Olek Gierczak, Cameron Moy,
Nate Yazdani, Ryan Culpepper, Sam Tobin-Hochstadt Carl Eastlund,
Christos Dimoulas, Dimitris Vardoulakis, Jesse Tov, Tess Strickland,
Aaron Turon, Jamie Perconti, Erik Silkensen, Philip Mates, Vincent
St-Amour, Asumu Takikawa, Kevin Clancy, William Bowman, Celeste
Hollenbeck, Di Zhong, Hyeyoung Shin, Sam Lazarus,® Eli Barzilay,
David Van Horn, Filip Kfikava, Gabriel Scherer, Konrad Siek, Paley Li,
and Saba Alimadadi.

Thanks as well to the other faculty and students of the Formal Meth-
ods Group: Thomas Wahl, Stavros Tripakis, Ankit Kumar, Ben Boskin,
Andrew Walter, Konstantinos Athanasiou, Harsh Chamarthi, Mitesh Jain,
Vasilis Papavasileiou, Peizun Liu, and Jaideep Ramachandran.

My research has been helped a lot by consults with Dougal Maclau-
rin, Alexey Radul, Joshua Dunfield, Neel Krishnaswami, Mooly Sagiv,

ix

! We described him as the only one of us
who does any real work.

2 Visiting on sabbatical

3 Helped test out Remora’s suitability as
a tool for signal processing code

Jeremy Gibbons, Burke Fetscher, Gabriel Radanne, Ed Kmett, Pierre-
Evariste Dagand, Didier Rémy, Francois Pottier, Vinod Grover, Sean
Lee, and Mahesh Ravishankar.

Thanks to the faculty from Michigan Tech who helped set me along
this path: Steve Carr, Zhenlin Wang, Steve Seidel, Soner Onder, and Don
Kreher.

My motivation for this line of research also comes partly from shop
talk with a few non-CS folks I knew at Tech: Greg Karlovits, Caleb
Carlin, Katie Sebeck, and Chuanzhi Zang.

Finally, thanks to Carl West for always pushing me to think about the
design and function of the tools I use.

CONTENTS

[

IT

IT1

10

INTRODUCTION 1
1.1 My Thesis 2

FORMAL SEMANTICS

BACKGROUND 7

2.1 Rank Polymorphism 7

2.2 Formalism for APL 11

2.3 Related Array-Oriented Languages 12

2.4 Dependent Types 19

PROGRAMMING WITH RANK POLYMORPHISM

3.1 Rank Polymorphism with Dynamic Typing 23
3.2 A Type Discipline for Rank Polymorphism 31
SEMANTICS OF TYPED REMORA 37

4.1 Syntax 37

4.2 Static Semantics 43

4.3 Dynamic Semantics 54

4.4 Type Soundness 58

TYPE INFERENCE

BACKGROUND 63

5.1 Local Type Inference and Bidirectional Typing

5.2 Dependent Type Inference 65

5.3 Theory of Sequences 67

LOCALLY INFERRING DEPENDENT TYPES 73
6.1 Syntax 75

6.2 Solver Invocation 79

6.3 Bidirectional Judgment Forms 80

6.4 Subtyping Judgment Forms 90
FIRST-ORDER THEORY OF ARRAY SHAPES 101
7.1 Structure of Solver Queries 102

7.2 String Equations Modulo Theories 103

7.3 Generalizing to a Mixed-Prefix Fragment 113
EVALUATION 115

8.1 Elaboration Soundness 115

8.2 Practical Use 123

TRANSLATION
BACKGROUND 145

9.1 Compilation Targets 145
9.2 Dataflow Graphs 147
TYPE ERASURE 149

23

63

Xii

CONTENTS

10.1 Erased Remora 149
10.2 Correctness of Translation 152
11 EXPLICIT ITERATION 159
11.1 Mapping and Replication 159
11.2 Further Steps to a Low-Level Language 165

12 CONCLUSION 169
12.1 Future Directions 170

BIBLIOGRAPHY 173

IV APPENDIX

PROOFS (4.2: STATIC SEMANTICS) 187

PROOFS (4.4: TYPE SOUNDNESS) 229

PROOFS (8.1: ELABORATION SOUNDNESS) 241
PROOFS (10.2: CORRECTNESS OF TRANSLATION) 259

o Q w »

LIST OF FIGURES

Figure 4.1
Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 5.1

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6

Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 8.1
Figure 10.1

Figure 10.2
Figure 10.3

Core Remora grammar 38

Value forms, syntactic contexts, and evaluation
contexts 39

Common array-manipulation primitive opera-
tions and their Remora types. Each function
type is wrapped in a scalar, with the function
name bound at that scalar type in the base envi-
ronment. For readability, we elide the enclosing
Mand V forms. 42

Types for iota and its variants. More detailed
argument-shape information allows a more pre-
cise result shape: iota/v always produces a
vector, while iota/s and iota/w have their re-
sult shape specified by their input. 44
Sorting rules 45

Kinding rules 46

Typing rules (introduction forms) 48
Typing rules (elimination forms) 49
Type equivalence 51

List-processing metafunctions 55

Dynamic semantics for Remora 57
Overlap axiom, visualized: w is the overlapping
portion of a and d. 68

Grammar for implicitly typed Remora 77
Environment structure for implicitly typed Remora
Type synthesis judgment 83

Type checking judgment 86

Application synthesis judgment 89
Instantiating existential type variables as sub-
types 93

Instantiating existential type variables as super-
types 94

Subtype rules, part 1: simple type forms 97
Subtype rules, part 2: polymorphic type forms
Supplemental “reach-through” rules for instan-
tiating existential variables 100

Base environment entries used for type synthe-
sis and elaboration of sample code 125
Abstract syntax for type-erased Remora 150
Dynamic semantics for erased Remora 151
Type erasure for Remora 153

98

Xiii

78

X1V

LIST OF FIGURES

Figure 10.4
Figure 11.1

Figure 11.2
Figure 11.3
Figure 11.4

Figure 11.5

Type-erasing Remora evaluation contexts 154
Abstract syntax for an internal representation

with explicit iteration 160

Dynamic semantics for explicit iteration forms 161
Dynamic semantics for optional forms 162
Converting explicit Remora’s implicit iteration

to explicit iteration 164

Converting erased Remora’s implicit iteration

to explicit iteration 166

INTRODUCTION

The essence of the rank-polymorphic programming model is implicitly
treating all operations as aggregate operations, usable on arrays with
arbitrarily many dimensions. The model was first introduced by Iverson
with the language APL [43] (short for “A Programming Language”).
Over time, Iverson continued to develop this programming model, mak-
ing it gradually more flexible, eventually leading to the creation of J
[50] as a successor to APL. The boon APL offered programmers was
a notation without loops or recursion: Programs would automatically
follow a control-flow structure appropriate for the data being consumed.
The nature of the implicit iteration structure could be modified using
second-order operators, such as folding, scanning, or operating over a
moving window. These second-order operators would directly reveal all
loop-carried data dependences.

In this sense, other languages demanded that unnecessary work be
put into both compilers and user programs. The programmer would be
expected to write the program’s iteration structure explicitly; in many
languages this entails describing a particular serial encoding of what is
fundamentally parallelizable computation. The compiler must then per-
form intricate static analysis to see past the programmer’s overspecified
iteration schedule.

The design of APL earned a Turing award for Iverson [44] as well
as a mention in an earlier Turing lecture [4], praising it for showing the
basis of a solution to the “von Neumann bottleneck.” However APL’s
subsequent development proceded largely in isolation from mainstream
programming-language research. The APL family of languages painted
itself into a corner with design decisions such as requiring functions
to take only one or two arguments and making parsing dependent on
values assigned at run time. As a result, APL compilers were forced to
support only a subset of the language (such as Budd’s compiler [10])
or to operate on small sections of code, alternating between executing
each line of the program and compiling the next one [49]. What we gain
from the rank-polymorphic programming model’s natural friendliness to
parallelism, we can easily lose by continually interrupting the program
to return control to a line-at-a-time compiler. Limiting the compiler to
operating over a narrow window of code can also eliminate opportunities
for code transformations like fusion, forcing unnecessary materialization
of large arrays.

The tragedy of rank-polymorphic programming does not end at for-
gone opportunities for performance. Despite the convenience of rank
polymorphism for writing array-processing code—a common task in

4 For example, operations which already
expect aggregate data—perhaps the
programmer writes a function to
compute the norm of a vector or the
determinant of a matrix—do not always
lift easily to consume even
higher-dimensional arguments

INTRODUCTION

many application domains—APL and its close descendants do not see
widespread use. There is enough desire for implicitly aggregate com-
putation to support user communities for systems such as NumPy [73]
and MATLAB [63], which do not follow as principled or as flexible a
rule for matching functions with aggregate arguments*. However, pro-
grammers are driven away from APL itself by features such as obtuse
syntax, restrictions on function arity, poor support for naming things, and
a limited universe of atomic data to populate the arrays [2]. Investigating
rank polymorphism itself, separated from the idiosyncrasies of APL and
J themselves, calls for developing a new language. A new language can
serve as a base from which to launch new design experiments not directly
compatible with past languages.

1.1 MY THESIS

The implicit, data-driven control structure of higher-order
rank-polymorphic programs can be identified statically by a
type system suitable for the programming style common in
rank-polymorphic code.

Rank polymorphism is not a new programming model, but since it
evolved mostly in isolation from the programming-languages research
community, formal semantics has not kept up with the development of
the programming model. In promising a static, type-based analysis, this
thesis implicitly incurs the obligation to formalize the dynamic behavior
of rank polymorphism. This type system is not only for safety: it also
describes the program’s implicit control structure, whose discovery used
to have to be deferred until run time. We need to know that the type
system’s description of the program’s control structure is accurate, and
static semantics can only be proven sound with respect to some dynamic
semantics. On the other hand, any type system which rules out programs
which “go wrong” can be expected to also rule out some programs
which do not. So just having a sound type system for a programming
model is not enough. We need a type system which is not so restrictive
as to prohibit the code programmers typically write when using that
programming model. Some prior work Aas imposed too much restriction,
making many common array-programming primitive operations not just
unwieldy but impossible to use. This thesis promises to avoid that dead
end.

What follows to support my thesis is a design document for Remora,
a rank-polymorphic programming language. While APL has seemed
“too dynamic” for good static compilation, due to deriving its control
structure from computed data, Remora uses a type system which tracks
array shapes in order to identify the implicit iteration space of each
function call. In order for types to provide enough detail about array
shapes, Remora uses a restricted form of dependent typing, in the style

1.1 MY THESIS

of Dependent ML [102]. In Dependent ML, types are not parameterized
over arbitrary program terms but over a much more restricted language.
For Remora, our language of type indices consists of natural numbers,
describing individual dimensions, and sequences of natural numbers,
describing array shapes.

Past work on applying dependent types to computing with arrays has
focused on ensuring the safety of accessing individual array elements
[93, 103]. Bounds checking array indices is essential in a programming
model where extracting a single element is the only elimination form
for arrays, but the rank-polymorphic programming model generally
eschews this operation. Instead, arrays are consumed whole, and function
application itself serves as the elimination form for arrays. Remora’s use
of dependent types instead aims to check that arrays have compatible
shapes without having to consider whether a particular element index
falls within legal bounds. Remora’s type system is flexible enough to
express polymorphism over the cell shape, such as a determinant function
that can operate on square matrix cells of any size. It can also handle
functions whose output shape is not determined by input shape alone,
such as reading a vector of unknown size from user input or generating
an array of caller-specified shape.

Part I gives a more extended overview of the rank-polymorphic pro-
gramming model, including a demonstration using an untyped variant of
Remora in Chapter 3. Remora’s operational semantics and the type sys-
tem which describes program control structure are presented in Chapter
4, including a proof of type soundness (i.e., the control structure implied
by the type system is the actual program behavior).

Remora’s types themselves are very detailed and therefore verbose.
A function’s type includes descriptions of its input and output—both
the elements those arrays contain and their shapes—as well as explicit
quantification over those element types and portions of the associated
shapes. For example, the type of the filter function, which takes a
bitmask specifying which parts of an array to keep or drop, has the type

(Arr (Vv ((t Atom))
(A (n ((d bim) (s Shape))
(A (> ((Arr Bool (Shp d))
(Arr t (++ (Shp d) s)))
(A (X ((k Dim))
(At (++ (Shp k) s)))
(shp)))
(Shp)))
(shp)))
(Shp))

This type quantifies over t, the type of data appearing inside the array; d,
the length of the array’s leading axis; and s, the sequence of remaining

INTRODUCTION

axes. The first argument is the bitmask, a boolean vector with length d.
The second argument is the dx s array of t. The result, described with
the ¥ type, is a kx s array, where k is the number of items the bitmask
says to retain. Since the actual value of k is dependent on run-time data,
it is existentially quantified—the result array’s leading axis has unknown
length.

Explicit type annotations in Remora code can easily make up more
of the program text than term-level code. Making the language usable
for human programmers calls for type inference, to help identify restric-
tions on the shape of a function’s arguments and fill in the details of
how argument arrays fit that shape. The algebra of array shapes makes
Remora’s type system incompatible with global type inference strate-
gies that rely on automatic generalization and principal typing. Instead,
Remora uses bidirectional typing, as described in Chapter 6. The task
of inferring shapes requires a new constraint solver for string equations
modulo theories. The theory of array shapes and the structure of the cor-
responding solver are laid out in Chapter 7. The efficacy of the combined
system is shown in Chapter 8, by proving that the elaborated code has
the appropriate type—and so, the appropriate control structure—as well
as by demonstrating type synthesis on a collection of sample code.

Part III considers issues in translating Remora code to a lower-level
target. While the formal semantics makes heavy use of run-time type
information, this is more of a convenience for the formalism. Chapter 10
shows how the run-time type information can be pared down to only the
portion directly relevant to program control flow, moving the description
of the expected input shape from a closure, a dynamically created object,
to its call site, a static part of the program. The complementary portion of
translation, replacing the implicit iteration structure with explicit looping,
is described in Chapter 11.

Part I

FORMAL SEMANTICS

BACKGROUND

2.1 RANK POLYMORPHISM

In rank-polymorphic array programming languages, such as APL [43],
J [50], and FISh [46], all functions automatically lift over large array
arguments. The universe of data in these languages consists of regular
(i.e., hyper-rectangular) arrays. Such an array is fully described by its
sequence of “atoms,” which are the base values contained in the array,
and its “shape,” a sequence of natural numbers describing how the atoms

4 5 6
atoms [1,2,3,4,5,6]. The “rank” of an array is the number of dimen-
sions it has, or the length of its shape, such as 2 for matrices. “Rank
polymorphism” is the property of accepting arguments of arbitrarily high

are arranged. For example, the matrix [3] has shape [2,3] and

rank. As a brief demonstration® of rank polymorphism, in a dynamically
typed, Lisp-like dialect, we can add a vector and a matrix using the same
operation as we use to add two scalars.

> (+12)
3

> (+ [106 20]
[[1 2 3]
[4 56]])

[[11 12 13]

[24 25 26]]

Making a function compatible with high-rank arguments does not
require special handling by that function. In rank-polymorphic languages,
it is instead a part of the semantics of function application itself. User-
defined functions are treated no differently than functions built into the
language. This places APL and its descendants in constrast with systems
such as MATLAB [63], which includes iteration in the definitions of
most built-in functions, or NumPy [73], where an ad hoc mechanism like
operator overloading for an array data structure is used to make certain
primitive operators lift while user code is denied such privileges.

Early design work on APL only permitted lifting operations to either
two arrays of identical shape or an array of any shape and a scalar. In
the case of two array arguments, the operation maps over corresponding
pairs of array elements, producing a result whose shape matches that of
the arguments. The semantics for the mixed scalar/aggregate case can

7 These examples are written as an
imaginary session in a read-eval-print
loop. For now, all examples will be in a
dynamically typed variant of Remora.
Static typing will be introduced later.

BACKGROUND

be seen as replicating the scalar argument before mapping the operation
over corresponding pairs of array elements. Functional programmers
might prefer to think of it as partially applying the function to the scalar
argument, producing a liftable unary function to map over the aggregate
argument.

> (+ [[90 80 70]
[60 50 40]]
[[12 3]
[4 56]1])
[[91 82 73]
[64 55 46]]

> (+1 [[1 23]
[456]])

[[2 3 4]

[56 7]1]

> (add1 [[1 2 3]
[4 5 6]])

[[2 3 4]

(56 7]]

In order to generalize the implicit lifting beyond functions on scalars,
it was necessary to associate with each function the ranks it expects
for its arguments. This allows, for example, a vector-norm function
to lift over rank-n data by viewing it as a rank-(n — 1) collection of
vectors. Each of these vectors within the larger array is called a “cell,”
and the vector-norm function will compute an independent result for
each cell in its argument. More generally, when a function expects a
rank-r argument, the actual argument’s cells are its rank-r sub-arrays.
The cell shape consists of the r rightmost entries in the array’s shape. The
aggregate structure around the cells is called the “frame.” When rank-n
data is passed to a function which expects rank-r input (with r < n), the
rank-(n — r) frame serves as the iteration space for lifting the function
over that data. The final result is the individual cells’ results assembled
in that rank-(n — r) frame.

This way, the lifting mechanism generalizes from requiring matching
shapes to requiring matching frames. For example, if a polynomial-
evaluation function expects a vector of coefficients and a scalar at which
to evaluate the polynomial, it is also applicable to a matrix and a vector,
provided their respective leading axes have the same length (i.e., there
are as many coefficient vectors as there are values).

> (poly-eval [-10 5 1] 3) ; -10 + 5x + x™2, at x=3
14

2.1 RANK POLYMORPHISM

> (poly-eval [[-10 5 1] ; this polynomial at x=3
[5 34]] ; this one at x=2
(3 2])

[14 27]

Iverson generalized the frame-compatibility rules one step further by
considering two frames compatible as long as one is a prefix of the other.
Imagining the lifted function application as an implicit nest of for loops,
the prefix-agreement rule says that both arguments must agree on the
outermost loops, but one argument may demand additional inner loop
layers. For example, adding a matrix and a vector corresponds to two
nested loops: the outer loop traverses the matrix’s major axis and the
vector, and the inner loop traverses only the matrix’s minor axis, keeping
a constant position within the vector. Generalizing to prefix agreement
enables the vector-matrix addition example we began with.

> (+ [10 20]
[[12 3]
[4 56]])

[[11 12 13]

[24 25 26]]

Remora makes two additions to Iverson’s prefix-agreement implicit
lifting. First, functions of any arity are permitted, whereas APL and J
only allow lifting for functions of one or two arguments. The rule that
one argument frame must prefix the other is generalized to requiring that
all frames be prefix-orderable. Then the frame which has all others as
prefixes is the principal frame which determines the iteration space for
that function application. We can write a ternary function (in this case,
with 0 indicating 0-dimensional expected inputs) as follows:

> (define (lerp (1o 0) (hi 0) (alpha 0))
(+ (x 1o (- 1 alpha))
(* hi alpha)))

> (lerp [1 1] [0 3] 0.75)
[0.25 2.5]

Second, Remora supports first-class functions. This means a function
may produce a function as a result, and lifting the function-producing
function will build an array whose atoms are functions. The function po-
sition in an application form can therefore contain an array of functions,
which is considered to have scalar cells—its frame is its entire shape.
The functions in the array must agree as to the cell rank of each argument
so that a single frame-of-cells decomposition can apply to each one.

10

BACKGROUND

> ([+ -1 10 3)
[13 7]
> (((curry +) [3 4]) [[106 20 30]
[40 50 60]1])
[[13 23 33]
[44 54 64]]

Allowing arrays in function position—applying the old functional
programming idea that behavior is itself data—means the fundamentally
SIMD programming model is also able to express MIMD computation.
However, the indirect jumping and diverging control paths which tend to
arise from the use of closures (or virtual function calls) are often poorly
supported on commodity parallel hardware. This “higher-order SIMD”
case is likely to fit better with coarser-grained task parallelism than actual
SIMD hardware.

Some applications demand data which is not strictly regular. The
programmer might want to operate on a list of strings, where each string
is represented as a vector of characters. Then a list of strings is a matrix
of characters, with one row for each string. Requiring regularity would
mean that all strings in the same list must have the same length. One
solution used in prior languages is to designate a padding character—
such as a null byte or a space—and extend every string to match the
length of the longest. This character is known in Iverson’s terminology
as the “fill” element, and APL and J have a designated fill for each type
of atom. Since the fill element is still an ordinary character (or integer,
float, etc.), the particular use case must not treat fill elements at the
end as semantically significant (e.g., a convention of ignoring trailing
whitespace). Filling can also cause a quadratic blowup in storage costs if
there is one extremely long string in the list.

Non-regular data can even arise from processing regular data, by
lifting a function whose result shape depends on the particular atoms
in its input array, not just the input shape. For example, iota takes as
input a vector and produces an array whose shape is that argument vector,
containing natural numbers counting up from O as its atoms.

> (iota [B])
[012345]

> (iota [2 4 3])
[[[e 1 2]

[3 4 5]

[6 7 8]

[9 10 11]]
[[12 13 14]

[15 16 17]

[18 19 20]

[21 22 23111

2.2 FORMALISM FOR APL

If iota is applied to a matrix, there will be several result cells with
possibly different shapes. A regular array cannot have sibling subarrays
of different shape. In certain cases, APL and J will insert fill elements,
but a more general method of handling non-regular data is available.

A “box” is an atom containing a single array of any shape. Several
boxes can be collected together in an array, although their contents may
differ in shape or even rank. While APL and J each offer a function
for extracting the data from a box, they recreate the danger of having a
function which is unsafe to use in lifted application.® Instead, Remora
uses a let-like form for temporarily binding the box’s contents to a
variable, giving an opportunity to clean up any raggedness.

> (define b (box [4 5 6]))

> (unbox contents b
(sum contents))
15

General tree data falls at the extreme end of irregularity. Encoding
and manipulating such data is beyond the scope of this dissertation, but
Hsu’s description of a compiler implemented in APL [42] includes a
discussion of several ways to do so.

2.2 FORMALISM FOR APL

APL has received less attention in the way of formal semantics than
A-calculus, and much of the prior work has focused on the behavior
of the primitive (first- and second-order) functions rather than on rank-
polymorphic function application itself.

Two complementary lines of work cover a large portion of the prob-
lem. First, Gerhart set out to formally verify APL programs, which of
course requires a formal specification of their behavior [32]. The proofs
themselves deal with assertions about program state at particular points
during execution, much like Hoare logic [40]. Gerhart’s inference method
accounts for the constraints which functions place on their operands’
shapes: either one must be scalar, or the two must be equal.” Mullin com-
plements Gerhart’s work by laying out the semantics of APL’s toolbox
of array operations [85]. Rather than focusing on APL’s unique func-
tion application mechanics, Mullin’s formalism is designed to develop
an algebra of array computation such as might be desired by an APL
implementor seeking to optimize user programs.

The prospect of separating out a core language to isolate the essence
of APL from surrounding incidental complexity was explored by Tu’s
Functional Array Calculator (FAC) [94]. FAC explicitly defines high-
dimensional arrays as deeply nested one-dimensional arrays, with a
“partition” construct allowing an array to be broken up into pieces which

11

6 From the viewpoint of type-based
analysis, this way of consuming boxed
data corresponds to strong dependent
sums, whereas Remora—Ilike Dependent
ML—uses weak sums.

7 This does not handle functions with
non-scalar cells or the prefix agreement
rule—Gerhart handled APL as it existed
at the time.

12

S This is referred to using metafunctions
named MonadicMap and DyadicMap,
suggesting that map-like behavior is
intended, but their definitions do not
include it.

BACKGROUND

can be operated on in parallel. A variety of APL primitives are defined
in terms of FAC constructs. FAC comes with a sketch of the mathemati-
cal structures needed for a denotational semantics of an array language.
However, it does not fully define the mapping from syntax to domain
elements. Most critically, it lacks a definition of rank-polymorphic func-
tion application. Instead, the semantics for FAC’s application is written
as simply invoking meta-level function application.®

Orgass constructs a denotational semantics using only natural numbers
as the domain of values [75]. Using a conventional encoding of tuples,
an array is represented as a 5-tuple whose elements are rank, shape
(itself a tuple of dimensions), number of atoms, type tag, and a tuple
containing the atoms themselves. Several common array combinators
are defined as primitive recursive functions on IN. Lifting over large
aggregate input is included in the definitions of individual functions. An
example defines how this lifting is performed for a function on scalars,
but some machinery needed for modern-day rank polymorphism—such
as higher-rank cells and prefix agreement—is missing, as this work
predates those developments.

2.3 RELATED ARRAY-ORIENTED LANGUAGES

The rank-polymorphic programming model arose from Iverson’s work
on APL [43] over the course of several decades. He eventually designed
J [50] to be a successor to APL, fixing what he considered design mis-
takes. Iverson worked in isolation from mainstream programming lan-
guage research, so language-design developments often now taken for
granted, such as lexical scope and higher-arity functions, are not used in
APL and J. Iverson also used his own vocabulary derived from linguis-
tics. In J, arrays, first-order functions, and variables are referred to as
” “verbs,” and “pronouns” respectively. Second-order functions
are “adverbs” if unary and “conjunctions” if binary. Thus, like in natural
languages, an adverb modifies a verb, changing what it does when ap-
plied to one or two nouns. Adopting this terminology constrains how the
user thinks about programming and even restrains further development
of the design of the language. Second-order functions cannot be com-
posed because composition itself is second-order (i.e., it is only usable
on first-order functions). These languages have developed a reputation
as “write-only” languages due to Iverson’s unconventional selection of
symbols for primitive operators and a popular attitude among the user
community which disdains naming intermediate results of computation.

Several aspects of APL’s design—echoed as well in J—interfere with
efforts to produce an effective compiler. Juxtaposition is overloaded to
mean several things: array construction; two kinds of function compo-
sition; and function application, which may itself be prefix, infix, or
postfix. Which of the above syntactic forms juxtaposition means depends

“nouns,

2.3 RELATED ARRAY-ORIENTED LANGUAGES

on the run-time values associated with juxtaposed symbols. The goal
of statically parsing APL led in one case to the use of interprocedural
data-flow analysis [101].

Although APL was initially intended as a mathematical notation,
suitable for both algebraic manipulation and mechanized evaluation,
many primitive functions include special-case behavior which makes it
difficult to come up with robust rewrite rules. Operations which might
appear amenable to reordering or fusion turn out not to be if one of them
invokes the cell-padding mechanism.

There is also a sort of pole in the semantics around the results of
many computations involving empty arrays. The result shape of a lifted
operation consists of the principal frame shape followed by the shape
of the result cells. If we lift an operation over a frame containing a 0-
length dimension, there are no result cells. So what shape does the result
array have? Resolving this in a way that reliably preserves straightfor-
ward algebraic reasoning requires knowing the full range of behavior of
the function being lifted; APL and J instead estimate by observing the
function’s behavior on one example.

A more fundamental problem, which motivates this work, is heavy use
of implicit control. When a hypothetical compiler encounters a function
application, the iteration space is derived from the shapes of the argument
arrays and the argument ranks the function expects. The conventional
solution is to defer decisions about control flow until run time. An APL
interpreter can simply inspect the actual functions” and arrays in order
to recover the necessary information.

However, doing so at every function call can incur a high cost. Several
second-order primitives are iteration-pattern manipulators, like reduc-
tion or stencil computation, and such functions repeatedly apply the
first-order function they modify. While an ordinary first-order function
application can amortize the rank-dispatch cost over a large argument
array, invoking that function many times on smaller pieces of the array
cannot. It is common for interpreters to identify some common appli-
cations of second-order functions as “special code” which is handled
by an alternative implementation. Thus +/ (folding with addition) can
be implemented by a simple accumulating loop instead of going back
and forth between the interpreter and the implementation of + itself.
Unfortunately, recognition of special code is brittle and limited to built-
in functions. Iteration involving user-defined functions cannot have a
special subroutine in the interpreter.

Later work inspired by APL avoided some of the design decisions
that interfere with compilation. Static typing provides some information
about the arrays’ shapes. Repa [52] is a Haskell library providing a
regular array datatype with parallel aggregate operations. An array’s
type includes its shape, expressed as a type-level list of natural numbers.
The inhabitants of a type implementing the Shape type class are indices

13

9 Since a function’s expected argument
rank is an important part of its behavior,
that information is generally included in
its run-time representation.

14

10 If we imagine an array as a function
from positions to elements (i.e., the
exponential type ELt™°") then the
logarithm of an array type is its index
space. A functor with a logarithm is
called “Naperian” in honor of John

Napier, discoverer of logarithms.

BACKGROUND

into an array of that shape, such as integer sequences of the appropriate
length. Whole-array operations such as foldl and backpermute have
types which describe how their results’ shapes are determined from their
arguments’ shapes. An extra Slice type class is needed to describe both
extracting a sub-array and adding new axes via replication. Implementing
a Slice instance describes how to convert between indexing into the
entire array and indexing into a sub-array. A slice specifier thus identifies
its target sub-array by describing the index transformation. In order to
support a form of loop fusion within library code, Repa makes heavy
use of laziness, representing a delayed array as a function from index
to element. Later work exposed Repa’s data representation decisions so
that the programmer could choose more easily when to force or delay
aggregate operations [66].

There is no implicit lifting over an argument frame (only a map func-
tion for applying a Haskell function to every atom) and no notion of
expected rank. Choosing the axis to use for an aggregate operation like
reduction is accomplished by permuting the axes beforehand. The focus
on lifting scalar operations also limits filter, which uses a predicate
on array elements, to consuming vectors because having additional axes
would mean leaving irregularly-placed holes in the resulting array, with
no dimension sequence able to describe the output. By contrast, the
analogous function in APL selects rank-(7 — 1) subarrays from a rank r
array.

A more APL-faithful semantics is offered by Gibbons’ work with
Naperian functors [33]. This builds on applicative functors [65], which
can be thought of as structures which carry along some extra information
about how function application ought to work. One common example is
using the List type to encode nondeterminism—the potential for each
computation step to lead to several different possible results. Using an
operator called <*>, the Applicative type class’s extended version of
function application, accumulates a growing collection of intermediate
results (which may themselves be functions to apply with <x> later).

A similar Applicative instance can be built for rank-polymorphic
application of arrays of functions, but Gibbons points out that the pattern
can be generalized beyond any specific regular-array datatype. A Naper-
ian functor is a structure in which element positions can be identified
with inhabitants of some particular type. In other words, a functor is
Naperian if there is a type which can be used to index into it.'% Using
some Haskell language extensions, it is possible to define a type-level
function which produces a type corresponding to natural numbers up to
a chosen bound # (itself given as a type-level natural number). This is
the appropriate index type for an n-vector type, and the type of r-tuples
containing bounded naturals indexes into rank-r arrays.

Generalizing from nesting of vectors or lists to nesting of Naperian
functors allows rank-polymorphic programming over data structures

2.3 RELATED ARRAY-ORIENTED LANGUAGES

with the same essence as arrays but substantially different run-time
representation, such as homogeneous pairs (indexed by booleans) or
even full binary trees (indexed by bit-vectors).

Imposing a sequential order on the index space, corresponding to the
Traversable type class, enables whole-array operations such as reducing,
scanning, and permuting along the dimension it represents.

FISh [46] ascribes a static shape to each array, also consisting of a se-
quence of natural numbers. It is checked by a shape-analysis pass, which
is effectively a separate judgment from the type judgment. In FISh’s
shape judgment, the shape of a function is a function on shapes. This
shape language includes nontrivial computation capability, so functions
are not required to give specific argument shapes. Allowing shape-level
computation means that a function’s type does not universally quantify
over pieces of its arguments’ shapes (as in Repa) with instantiation to
be worked out by unification or some other form of constraint solving.
Instead, the result shape for a function application is discovered by run-
ning the corresponding shape function on the shapes already discovered
for its arguments. Rank-polymorphic functions are thus shapeable, using
shape functions which only manipulate the rightmost elements of their
arguments. However, function application itself is not rank-polymorphic
in FISh—instead, an explicit map with a scalar function is required.

The separation of shape into a separate computation language hit a
dead end when dealing with functions like filter and iota because the
result shape is not a well-defined function of the argument shape. Where
code in a sufficiently extended Haskell might use universal quantification
over a dimension or index type, FISh had no clear path forward. Requir-
ing complete, static shape predictability proved to be too restrictive for
practical use.

Another common array-programming model is centered on ragged
nested vectors, giving up rank-polymorphic lifting in exchange for a
more permissive data model. In NESL [7], a vector’s type does not
specify its length, but it does specify nesting depth. For example, [int]
represents vectors of integers, while [[int]] represents vectors of vectors
of integers. Vectors are typically consumed and produced by parallel
comprehension, but a comprehension only iterates along the outermost
nesting level. When consuming a nested vector, it is expected that the
operation performed on each element—a vector with one less nesting
level—may itself be a parallel computation. Since NESL is meant for
working with ragged data, the inner sequences are expected to have
differing lengths. Simply forking off a parallel sub-task for each one and
collecting their results at the end would mean a lot of idle time for short
sub-tasks while waiting for the longest to finish.

In order to simplify the cost model presented to the programmer,
NESL'’s key contribution is a flattening technique which transforms
a nested parallel computation on a nested vector into a flat parallel

15

16

I Qutside of APL tradition, this is
known as “boxed” data.

BACKGROUND

computation on the flattened version of the vector [8]. Once a vector is in
flattened form, it can be freely broken into equal-sized pieces to distribute
across the available hardware resources. The flattened representation of a
vector of vectors includes a “segment descriptor,” a list of the sub-vectors’
lengths. When inner pieces of a nested parallel computation have some
nontrivial dependence structure, like in a scan or reduce, the segment
descriptor identifies the boundaries where data dependence should not
be carried forward.

Data Parallel Haskell imports the nested-parallelism programming
model into Haskell. This required substantial work to integrate with the
native Haskell data model, and using an efficient memory representa-
tion required a new type-system extension. For most datatypes, GHC,
the predominant Haskell compiler, represents a value as a pointer to
dynamically allocated memory!! containing a thunk which will pro-
duce the actual value when executed. Traversing an array to operate on
each element requires dereferencing many pointers and possibly forc-
ing many thunks, losing the cache-friendliness of a contiguous array
representation. For performance reasons, GHC therefore offers arrays
containing the elements’ actual data rather than pointers to that data,
but this is only available for certain built-in types. Data Parallel Haskell
uses a non-parametric representation of array types in order to achieve
the memory-access performance typically associated with arrays. The
Haskell community’s traditional interest in loop fusion also provides
performance benefits, eliminating not only intermediate data structures
but also the synchronization that would be necessary to construct them.

Whitney’s K programming language [56] was inspired by his work
with Iverson on APL, but it uses the nested-vector programming model
rather than rank polymorphism. While implicit and explicit mapping
over nested data are available, depending on the operation being mapped,
K is typically used for interacting with the kdb+ database. A language
extension called Q offers conventional relational operators and queries
over kdb+.

The close match between array-oriented programming models and
GPU hardware, which uses widely vectorized functional units with high
memory bandwidth for graphics computation, has sparked several pro-
jects developing high-level languages for general-purpose GPU comput-
ing. Unlike using SIMD instructions on a CPU, GPUs conventionally
have several hardware threads grouped and scheduled together. Condi-
tional branching is discouraged because it forces the group to temporarily
split—only one subgroup can make progress at a time until they reach a
control join point. Conveniently, array-oriented languages favor indepen-
dent operations on many array elements at once with only rare control
divergence.

Harlan [41] targets heterogeneous parallel hardware by allowing the
programmer to specify where particular computation will take place and

2.3 RELATED ARRAY-ORIENTED LANGUAGES

where data will be stored. Data-flow analysis allows the compiler to elide
unnecessary data movement. The distinction between procedures running
on the CPU versus on the GPU reflects a separation required in lower-
level GPU programming languages such as CUDA [70]. Despite this
distinction, Harlan sets a design goal to avoid restricting the computation
model available when writing GPU kernels. Preserving the simplicity
of the programming model motivates much of the research related to
Harlan, including extracting coarse task parallelism from finer-grained
data-parallel code [90] and taking advantage of recent hardware advances
which permit nested parallelism [104].

In Nova, all user-defined functions are meant to be used as parallel
compute kernels, invoked from a second host language [13]. There is no
syntax for array data in Nova because they are meant to be passed in as
arguments from host code or generated from certain built-in functions.
The programming model is otherwise fairly conventional functional
style, with A and a fixed-point form p, as well as a combinator library for
common array operations such as map and scan. Arrays inhabit a nestable
vector type. The type system thus tracks the rank of each array, but not
the full shape. Instead, concrete array dimensions are kept alongside
run-time data. Nova is meant to be usable as a compilation target for
domain-specific languages or for embedding in standalone applications.

Futhark shares some of Nova’s design goals—a typed, high-level
GPU language suitable as a compilation target—but it uses a more de-
tailed type system which describes the full shapes of regular arrays [38].
Futhark is less flexible about common functional-language facilities,
like first-class functions and recursion. It is effectively a first-order lan-
guage. Certain second-order functions are provided, but they are built-in
syntax with special treatment by the compiler. Programmers are not
free to implement their own second-order functions. For the sake of
practicality, Futhark’s type system must allow polymorphism over array
dimensions, but Futhark’s compiler aggressively monomorphizes not
only polymorphic function calls but also module instantiations [27].

Accelerate is a Haskell-embedded domain-specific language for GPU
computation [11]. It uses a type encoding similar to Repa, with an array’s
type encoding its rank. Since Accelerate is built as an embedded DSL,
with Haskell serving as a metalanguage for building GPU kernels, Accel-
erate has the opportunity to perform substantial code transformation such
as including fusing array operations without requiring special support
from GHC [57]. The inevitable separation of GPU-resident data and
computation from ordinary Haskell data living in CPU memory makes
Accelerate somewhat less fluid to use than Repa.

While array-oriented programming is already a somewhat domain-
specific programming model to begin with, some languages have targeted
more specific application domains. In machine learning, TensorFlow [1]
and PyTorch [77] provide multidimensional array structures similar to

17

18

BACKGROUND

those of NumPy, but they provide a collection of automatically differen-
tiable operations, which can be executed on either the CPU or GPU. In
a style similar to Haskell embedded DSLs, Python serves as the meta-
language for constructing array programs. A data-flow graph model of
array programs facilitates automatic differentiation.

Halide was developed to make performance tuning easier by sep-
arating the iteration schedule from the algorithmic core. Rather than
general multidimensional array computation, it focuses specifically on
manipulating image data. Common tasks such as stencil computation
can be stated easily enough in a mainstream C-like language (or in a
rank-polymorphic language), but maximizing performance depends on
the order in which intermediate scalar values are calculated. For example,
two rounds traversing the same image can make poor use of the data
cache. Where a high-level language user might look to the compiler to
perform fusion, Halide allows the programmer to specify when each
iteration of each pass should happen, thus covering transformations such
as loop interchange, fusion, and tiling, as well as rematerialization and
the use of temporary storage. The schedule language is itself a DSL
whose notation is based on commonplace iteration decisions about when
to feed one pass’s results to the next, rather than explicit for loops.

Diderot is a DSL for processing medical and scientific images using
the vocabulary of tensor calculus, which operates on a continuous domain.
Diderot code is explicit about its use of parallelism, with a thread-like
construct separating out responsibility for regions of input and output in
the tensor-field computation. Domain specificity enables Diderot to use
only a small collection of types without polymorphism, thus avoiding the
monomorphization effort of Futhark, and to provide an extensive toolkit
of built-in tensor functions.

Recognizing the fundamentally array-like nature of relational data-
bases, Chen et al developed HorselR as an intermediate representation
for relational queries, allowing optimizations commonly used in array-
oriented languages to be used in a database engine. Although it is a
3-address notation, as is typical of low-level IRs, all operations are vec-
tor operations. HorselR is monomorphic, but it does include a “wild card,”
or dynamically checked, type for rare cases in which a table column has
a statically uncertain type.

Some systems take a more conservative approach by injecting par-
allelizable array computation into what is typically thought of as a
mainstream sequential programming model. These include language
extensions such as OpenMP and Coarray Fortran, as well as some in-
dependently standing languages. In SaC, static single assignment form
is enforced at source level—despite a superficially C-like programming
model, mutation is prohibited [89]. Array computation is written us-
ing parallelizable comprehension forms corresponding to conventional
operations (such as map, fold, etc.). Since array data can only be con-

2.4 DEPENDENT TYPES

sumed by extracting an individual element, the body of a comprehension
necessarily computes a location in an array from which to select an ele-
ment. The reliance on array indexing motivated Qube [93], an extension
which uses Xi-style singleton and range types to check that an index fits
within an array’s bounds [103]. The single-assignment approach was
also used in SISAL [67]. While much of SISAL’s design focuses on
stream processing—intrinsically serial computation since data must be
accessed sequentially—the compiler finds opportunities for parallelism
in pipelining stream operations. SISAL also includes parallelizable loops,
though some of the analysis of dependence between iterations may be
left to a run-time scheduler [29].

Of the prior languages discussed here, only APL and J offer general
rank polymorphism, with argument frame shapes chosen based on a func-
tion’s expected argument ranks and the application automatically lifted
over the principal frame. K allows implicit iteration for scalar functions
applied to arguments of identical structure, but functions which consume
aggregate input or are applied to arguments of differing structure require
explicit use of a map-like operator. NumPy’s operator overloading allows
certain primitives to be used on NumPy arrays with compatible shapes.!?
MATLAB?’s inclusion of iteration in built-in functions’ definitions al-
lows programmers to mostly avoid writing loops themselves. Otherwise,
array-oriented programming languages have required the programmer to
be explicit about using iteration, whether through a function like map or
comprehension-like syntax.

2.4 DEPENDENT TYPES

Remora’s ability to describe array shapes in detail comes from integrating
rank polymorphism into a dependent type system. In the same way that
parametric polymorphism in System F generalizes simple typing by
allowing terms to be parameterized over types, and type constructors in
the style of System F, allow types to be parameterized over other types,
dependent typing allows types to be parameterized over terms [5]. A
classic example is a List type which is parameterized over the type of
list elements and the length of the list. Functions which have restrictions
as to the length of list they can accept can encode such restrictions in
their input type. For example, head and tail only work on nonempty
lists, so they would demand input of type List T (n+1). The type of a
list-producing function’s output must also include the length of the list,
so we have a tail producing a List T n.

In order to support such input and output types, a dependent function
type must quantify over the type T and the natural number n. Fully written
out with explicit quantification, the type of tail is

N T:Type, n:Nat . List T (n+1) -> List T n

19

12 NumPy allows shapes to be brought
into agreement by extending any unit
dimensions and prepending new
dimensions.

20

BACKGROUND

We use IT for the generalization of functions and universal quantifica-
tion, but it is commonly known as a “dependent product.” A type of the
form N n:Nat . F[n] can be seen as a product type, much like a tuple,
except that instead of a finite number of elements, this product has one
for every natural number. It is effectively

Flo] x F[1] x F[2] x ...

Element projection from this dependent product works more like function
application than selecting a statically named or numbered field.

The analogous existential quantifier is X. The type £ n:Nat . F[n]
carries both a hidden natural number n and a datum whose type depends
on n. Since the existential variable n is a term variable, this type acts
somewhat like a tuple, in contrast to a System F-style 3 type. Similar to
IT types, X types are called “dependent sums” because they generalize
sum types to indexing over an arbitrary type. The example ¥ n:Nat .
F[n] encodes the infinite sum

F[o] + F[1] + F[2] + ...

There are two flavors of case analysis on dependent sums. One possibility,
referred to as “strong” dependent sums, is to use projection operators,
similar to those used for tuple types. Applying the projection 7t; extracts
the value of the existential variable, and 7t, extracts the value whose
type depends on it. Alternatively, “weak” dependent sums limit access
to the existentially quantified value by only offering a let-like form for
destructing. This is more similar to the conventional way of destructing
3 types. The two values are temporarily bound to variables, so the first
variable can be used to type operations involving the second, but the let
body’s type must not mention those variables.

Several dependent type theories have been developed, most notably
Martin-Lof type theory [62] and the Calculus of Constructions [14].
They have formed the basis of several programming languages, includ-
ing Agda [72], Coq [91], Epigram [64], and Idris [9]. Development
of such languages and related infrastructure often focuses on tools for
programming-language metatheory, using dependent types to state theo-
rems about a language, with inhabitants of those types serving as proofs.

Even outside of metatheory, dependent type systems allow very de-
tailed invariants about a function to be encoded in its type, for example
requiring that two numbers be relatively prime or that a search tree be
balanced. In Remora’s case, the purpose of the type system is not prov-
ing arbitrary invariants, but establishing enough information about array
shapes to identify the implicit control structure of rank polymorphism.
This is a smaller job, which calls for a smaller tool. The task of pro-
ducing proofs of required properties as some of a function’s arguments
is recognized as a barrier to adoption of dependent typing, motivating
the design of systems which use specific decision procedures to check
whether these type-like invariants are maintained.

2.4 DEPENDENT TYPES

One strategy is to restrict dependent types so that types are only
parameterized over a restricted language with a decidable theory instead
of depending on arbitrary program terms. This restricted dependent
typing is the basis of Dependent ML [102]. The language of type indices
is completely separate from the term-level and type-level languages:
IT and ¥ only bind index variables, and a separate V quantifier is used
for type variables. Some computation can be done in the type-index
language—which is necessary for expressing interesting properties of the
data being typed—but computation is limited for the sake of decidability.
Dependent ML is often presented with an index language based on
Presburger arithmetic, allowing types like that of append:

¥ T. N m,n:Nat. List Tm -> List T n -> List T (m+n)

Presburger arithmetic is unable to express multiplication, so it is impos-
sible to characterize the behavior of flatten, which would turn a List
(List T m) ninto a list whose length is m* n. Instead, flatten would
have to return a list of indeterminate length, represented by the type

Y l:Nat. List T 1

An alternative strategy is to decorate ordinary non-dependent types
with refinements expressed in a carefully chosen logic. In the case of
function types, the refinements on the input and output types correspond
to pre- and post-conditions. This refinement-based approach is known as
“logically qualified datatypes,” or “liquid types” [86].

Restricted dependent types and liquid types are essentially equivalent
in terms of the invariants they can express, with index arguments in the
former corresponding to computationally irrelevant proof witnesses for
logical qualifiers in the latter. Remora uses restricted dependent types
because the goal of Remora’s type system is to identify the implicit
shape-driven control structure. Merely ensuring shape compatibility is
not enough—finding the iteration space requires access to the shape
witnesses themselves.

21

PROGRAMMING WITH RANK POLYMORPHISM

Adopting an unfamiliar programming model requires developing a new
mindset and intuition, for both how programs behave and how to make
use of the model’s particular mechanics. Practical use of rank poly-
morphism often relies on manipulating a function’s argument ranks or
generating a data structure which serves to represent an iteration space.

This chapter presents a tutorial on programming with rank polymor-
phism, starting in an untyped variant of Remora. This variant is im-
plemented as an embedded language within Racket [30], invoked by
identifying the language as #lang remora/dynamic. The language itself
is available as a Racket package, with source and installation instructions
at https://github.com/jrslepak/Remora/tree/master/remora.

Some syntactic sugar is included for making arrays easier to write
out. Enclosing a sequence of expressions in brackets stands for a vector
frame built from those expressions, which may themselves be bracketed
sequences. As another syntactic convenience, an atom appearing in a
syntactic position which requires an expression is automatically con-
verted to a scalar. So the numeral 3 appearing in an expression position
is replaced by (array () 3). A vector can be written out as [2 4 6 8],
amatrix as [[2 4] [6 8]], and so on.

3.1 RANK POLYMORPHISM WITH DYNAMIC TYPING

The syntax of Remora distinguishes expressions, whose eventual values
must be arrays, from syntactic atoms, which stand for the basic values
which populate an array. The numeric literal 20 is an atom, with no
associated shape information. The array literal (array () 20) is an
expression, denoting a scalar array whose sole atom is 20. Its shape is
the empty sequence because a scalar has rank 0. The expression

(array (23) 123 456)

is also an array—a 2 x 3 matrix containing as atoms the numbers 1
through 6.

Although functions only operate on expressions, an individual function
such as (A ((x 0)) x) is an atom. However, the function position in an
application form must be occupied by an expression. So applying that
function requires it to at least be wrapped as a scalar (or larger array). A
boxed array—the escape hatch from regularity—is also an atom, so it
too must be included in an array in order to compute with it.

A frame expression form allows arrays to be assembled from other
arrays, rather than directly from atoms. This is means we can use an

23

https://github.com/jrslepak/Remora/tree/master/remora

24

PROGRAMMING WITH RANK POLYMORPHISM

expression which will compute the array we want rather than the array
value itself. The shape described in a frame is only the leading dimen-
sions which describe how the sub-array cells are to be laid out. The 2 x 3
matrix above could be written as follows:

(frame (2)
(array (3) 1 2 3)
(array (3) 4 56))

This is a 2-vector frame built around 3-vector cells, which is the same as
a 2 x 3 matrix. Writing out constant values with frame instead of array
does not buy us anything. The purpose of the frame form is to build
arrays from expressions which can compute new arrays. The same 2 x 3
matrix could be the result of evaluating this expression:

(frame (2)
(-10[9 8 7]
(sqrt [16 25 361))

Regularity demands that every cell used to build a frame have the same
shape. There is no matrix whose rows are [1 2 3] and [4 5] because
these two vectors have different length. So they cannot coexist as cells in
the same frame form. In a dynamically typed setting, combining them
like this raises a run-time error:

(frame (2)
(array (3) 1 2 3)
(array (2) 4 5))

When static typing is introduced later, such cases can be ruled out ahead
of time.

The handful of examples from the opening of Chapter 2 demonstrate
several cases of implicitly lifting a function to consume arguments of
various ranks. We now examine the behavior of one of them.

> (+ [10 20]
[[12 3]
[456]1])
[[11 12 13]
[24 25 26]1]

There are two intuitive ways to understand the lifting behavior. One
option is write out the iteration space as an explicit part of the program’s
control structure by translating to C-like for loops.

for (i =0; i< 2; i++)
for (j =0; j<3; j+)
result[i][j] = vec[i] + mat[i][j];

3.1 RANK POLYMORPHISM WITH DYNAMIC TYPING

Another option is a more evaluation-oriented intuition, keeping the
iteration space represented in the data. In our vector-matrix addition
example, the true iteration space is the [2,3] frame arising from the
matrix argument’s shape, whereas the vector’s shape is just the singleton
sequence [2]. To make the iteration space more apparent, we transform
the vector by replicating each of its cells—in this case, 10 and 20.

(+ [10 20]
[[12 3]
[4 5 6]])
|
(+ [[16 10 10]
[20 20 20]]
[[1 23]
[456]])
|
[[(+ 10 1) (+ 10 2) (+ 10 3)]
[(+20 4) (+205) (+206)]]
|
[[11 12 13]
[24 25 26]]

The evaluation intuition generalizes more easily to situations where
the function being applied includes its own internal looping behavior,
which is a very common situation in array-oriented programming.

A function is written out using a Scheme-like A, but with some extra
information attached to each formal parameter. Application lifts functions
over the arguments’ cells, and that behavior depends on how big those
cells are. So the behavior of a function is not fully specified unless we
also state the cell rank for each argument. For example, the following
mean function has the rank of its formal parameter v specified as 1,
meaning that it operates on vector cells.

(x ((v 1))
(/ (reduce + 0 v)
(length v)))

In #lang remora/dynamic, we can turn this into a declaration for later
use:

> (define (vec-mean (v 1))
(/ (reduce + 0 v)
(length v)))

> (vec-mean [4 8 0])

3

> (vec-mean [[6 3 6]
(4 8 0]])

[5 4]

25

26

PROGRAMMING WITH RANK POLYMORPHISM

Although vector mean serves well as an example of how rank-poly-
morphic programs behave, the above version is less generally applicable
than it could be. Remembering the row-vector versus column-vector
question about addition, we might want the means of a matrix’s columns.
Several built-in functions, including reduce and length, treat the entire
argument as a single cell. No matter how high the argument’s rank,
length returns the size of its major axis—the number of atoms in a
vector, rows in a matrix, planes in a 3D array, efc.

> (length [1 2 3 4])

4
> (length [[1 2 3 4]

(567 8]])
2

User-written code also has access to this capability by specifying a
parameter’s rank as all. The cell rank we use when applying this sum
function is whatever rank the actual argument happens to have:

> (define (sum (v all))
(reduce + 0 v))
> (sum [[1 2 3 4]
[56 7 8]])
[6 8 10 12]

The major-axis mean function is written much like the vector-mean
function, but it lifts differently.

> (define (mean (v all))
(/ (reduce + 0 v)
(length v)))
> (mean [4 8 0])

3

> (mean [[6 3 6]
[480]])

[5 11/2 3]

Working with rank-polymorphic code favors a geometric intuition
about the data, choosing which axis to use for some operation or how
we want some arguments’ axes aligned. Carrying out that choice means
choosing a function with the right input-cell ranks, so Remora makes it
easy to specify them. In the earlier example of vector-matrix addition,
the vector is effectively treated as a column, but some cases, such as row
operations used in Gaussian elimination, call for a vector to be treated
as a row. All this requires is a version of the + function which expects
rank-1 arguments. Such a function can be written by “reranking” +, that
is, n-expanding it to take arguments of a different rank:

3.1 RANK POLYMORPHISM WITH DYNAMIC TYPING

(x ((@a1) (b 1)) (+ab))

This is a common enough pattern to be worth some syntactic sugar.
We will write a reranked function by preceding the original function with
a tilde and a list of new argument ranks: ~(1 1)+ is the vector-addition
function. When we apply this function to a vector and a matrix, their
respective frames are scalar and vector.

(~(1 1)+
[10 20 30] ; scalar frame, one vector cell
[[1 23] ; vector frame of vector cells

[4 5611

The explicit-control version of this code is a single for loop around
a call to the function which implements the reranked +. That function
itself is also a single loop traversing its two vector arguments. Inlining
that call produces something quite similar to the previous vector-matrix
addition, but with the inner loop traversing the vector argument.'3

for (int 1 =0; i < 2; i++)
for (int j =0; j < 3; j++)
result[i][j] = vec[j] + mat[i][j];

Following the evaluation-based intuition, the 3-vector argument ex-
pands to a vector of vector cells, each of which is identical to the original
vector. In the third step, § reduction reveals the lifted use of +, corre-
sponding to the inlined inner loop above.

(~(1 1)+ [10 20 30]
[[12 3]
[456]1])
|
(~(1 1)+ [[10 20 30]
[160 20 30]]
[[123]
[4 5 6]])
|
[(~(1 1)+ [10 20 30] [1 2 3])
(~(1 1)+ [10 20 30] [4 5 6])]
|
[(+ [10 20 30] [1 2 3])
(+ [10 20 30] [4 5 6])]
|
[[(+10 1) (+202) (+ 30 3)]
[(+ 10 4) (+ 20 5) (+ 30 6)]1]
|
[[11 22 33]
[14 25 36]]

27

13 This is a single-character difference
[from the previous version, and inlining a
mutation-heavy function can be a
substantial leap of logic, so evaluation
is favored over translation for
describing the intuition behind
array-oriented programming.

28

PROGRAMMING WITH RANK POLYMORPHISM

Reranking is important for effectively using common whole-array
operations, such as append, reduce, and rotate. These functions operate
along the major axis, treating the entire array as a single cell. No matter
the argument’s shape, it will be considered to have a scalar frame.

> (append [[1 2]

[3 4]]
[[5 6]
(7 81])

[[1 2]

[3 4]

(5 6]

(7 8]1]

> (reduce + 0 [[1 2]

[3 411
[4 6]

> (rotate [[1 2 3]

[4 5 6]
[7 8 9]]
1)
[[4 5 6]
[7 8 9]
[1 2 3]]

Suppose we instead want to stitch matrices together horizontally or
find the sum of a matrix along its minor axis or rotate the rows instead of
the columns. The minor-axis summation might be rephrased as the “sum
of each vector,” indicating that we want a vector-consuming version of
reduce. We write that function as ~(0 0 1)reduce. Similarly, appending
along the minor axis is the same as appending corresponding rows and
then gathering them back together as a matrix, and rotating along the
minor axis is the same as rotating each row individually:

> (~(1 1)append [[1 2]

(3 4]]
[[5 6]
[7 811)
[[1 25 6]
[3 47 8]]

> (~(0 0 1)reduce + 0 [[1 2]
[3 411)
(3 7]

3.1 RANK POLYMORPHISM WITH DYNAMIC TYPING

> (~(1 ®)rotate [[1 2 3]

[4 5 6]
[7 8 9]]
1)
[[2 3 1]
[5 6 4]
(8 97]]

Splitting an array into cells means those cells’ major axes are some
later axis of the larger array. So functions initially written to operate
along an argument’s major axis are easy to adapt to use other axes by
reranking. This also applies to the mean function we wrote earlier.

> (~(1)mean [[6 3 6]
(4 80]])
[5 4]

Boxed data relaxes the regularity requirements by allowing an array
of any arbitrary shape to be wrapped up as a single atom. Several boxes
can be packed together into an array, although their contents may differ
in shape or even rank. The shape of boxes’ contents has no bearing on
the shape of the array containing the boxes.

> (shape-of [(box [4 5 6])
(box [[1 2]
(34111
(2]

While common array-computation primitives like iota are available
in #lang remora/dynamic, they are not recommended for lifting over an
argument frame:

> (iota [3])
[012]

> (iota [4])
(012 3]

> (iota [[3] [4]])

Error: Result cells have mismatched shapes

A lifting-safe variant iota* instead produces boxed output, ensuring
that the result cell is always scalar.

> (iotax [3])
(box [0 1 2])

> (iotax [4])
(box [0 1 2 3])

29

30

PROGRAMMING WITH RANK POLYMORPHISM

> (iotax [[3] [4]11)
[(box [0 1 2])
(box [0 1 2 3])]

Boxed data is consumed using a special unbox form, which acts much
like let, temporarily binding the box’s contents. With unbox, the body
gives the programmer an opportunity to account for the raggedness
remaining in the result data from some lifted operation. Boxing enforces
a separation between the regular outer axes, where implicit lifting is
available, and potentially non-regular inner axes, which require explicit
handling. When taking the sum of several boxed vectors, we know we
get scalar result cells, so there is no need to box them.

> (define (boxvec-sum (b 0))
(unbox vec b
(sum vec)))

> (boxvec-sum [(box [5 6 7 81])
(box [12 13 141)1)
[26 39]

On the other hand, applying add1 to each box’s contents would pre-
serve their various shapes, so each box’s result needs to be boxed itself.

> (define (box-addl (b 0))
(unbox contents b
(add1 contents)))

> (box-add1 (box [1 2 31))
[2 3 4]

> (box-addl [(box [1 2 3])
(box [7 81)1)

Error: Result cells have mismatched shapes

> (define (box-addix (b 0))
(unbox contents b
(box (addl contents))))

> (box-addi* (box [1 2 3]1))
(box [2 3 4])

> (box-addix [(box [1 2 3])
(box [7 81)1)
[(box [2 3 4])
(box [8 91)]

3.2 A TYPE DISCIPLINE FOR RANK POLYMORPHISM

Higher-order programming makes it easy to modify existing functions
to operate within a box or extract data from a box for regularization.

> (define (from-box (f 0))
(X ((b 0)) (unbox contents b (f contents))))

> ((from-box sum) (iotax [[3] [411))
(3 6]

> (define (in-box (f 0))
(n ((b0))
(box (unbox contents b (f contents)))))

> ((in-box double) (iota* [[3] [411))
[(box [0 2 4])
(box [0 2 4 6])]

So the list of varying-length strings can be represented with a ragged
array, with each individual string wrapped up as a boxed vector. An
operation which consumes an entire string is still liftable, and a function
like in-box can adapt it to handle boxed strings.

One awkward hole remains in #lang remora/dynamic. When func-
tion application lifts over an empty frame—i.e., the frame has a zero
dimension—what is the shape of the resulting array? The frame portion
of the shape is clear, but the cell portion is indeterminate. Ideally, the
result cell shape should be whatever the function would have produced
as the cell shape had there been any cells. For example, sqrt would
give a scalar cell shape, an RGBa pixel compositing function would
give a 4-vector result shape, and reverse would give a result cell shape
matching the input cell shape. While #lang remora/dynamic offers an
alternative form of application with a user-specified result shape to use if
the frame is empty, a more robust solution is to use static information
about the function’s behavior.

3.2 A TYPE DISCIPLINE FOR RANK POLYMORPHISM

Although the original motivation for Remora’s type system was static
understanding of rank polymorphism’s data-driven control flow, having
control structure tied so closely to data means that ensuring sensible
control flow requires ensuring valid data. Function application without a
valid frame, whether due to ill-structured data or mutually incompatible
arguments, cannot produce a valid result.

Checking whether the function and argument arrays have compati-
ble shapes for frame lifting requires tracking their shapes within their
types.'* Rank-polymorphic lifting itself is common to all functions, so

31

I4 Tracking only rank can solve the
problem of trying to use a matrix-inverse

function on a vector but not the problem

of trying to use it on a non-square
matrix. The problem of trying to use it
on a non-singular matrix is beyond the
scope of this work.

32

15 For decidability reasons discussed
later, we do not allow multiplication.

16 This desugaring relies on knowing
the difference between shape variables
and dimension variables, so we use
different sigils to distinguish them.

PROGRAMMING WITH RANK POLYMORPHISM

it does not need to be described in each function’s type. Instead, a func-
tion’s type need only describe its behavior on an individual cell, and the
type of its result when lifted over some frame can be derived using the
frame and result-cell shapes. For example, a simple addition function
can itself be typed as consuming two numeric scalars and producing one
numeric scalar. The type resulting from applying it to a 3-vector and a
3 x 4 matrix is a 3 x 4 matrix, whereas applying it to a 3-vector and a
4-vector is ill-typed.

While we are now stepping outside of what can be done in #lang
remora/dynamic, there should ideally be little difference in the code we
write. Arrays of base values are quite easy to type: [2 4 6 8] is clearly
a 4-vector containing integers, which we’ll write as [Int 4] and [#t #t
#f] is a 3-vector of booleans, or [Bool 3]. For scalar data, we could
write [Float], with no dimensions listed, but when the context clearly
requires an array type, for brevity we can just write the atom type itself:
Float. For higher-rank data, we can list additional axes, such as typing
this 30° rotation matrix

[[0.866 -0.500]
[0.500 0.866]1]

as [Float 2 2]. This is shorthand for the more explicit (A Float (shape
2 2))—an array of floating-point numbers with the shape 2 x 2. The type
constructor Arr builds an array from an atom type, but it is indexed by
a more term-like shape expression. In a context where a type describes
an array as opposed to a bare atom, an unadorned atom type like Int is
taken to mean an array type with the empy shape, (A Int (shape)).

With an array type indexed by shape, we now need a language for type
indices. That language is split into two sorts: dimensions and shapes.
A dimension describes the length of one axis of an array, and a shape
is a sequence of dimensions. Any natural number is a valid dimension.
We also allow addition on dimensions,!> written as (+ dy dy ...). This
way, we can support operations like appending new elements onto a
vector. Shapes can also be appended, capturing the nesting of cells in
a frame. The shape of a 3 x 7 frame of 2 x 4 cells is constructed by
appending the frame shape and cell shape: (++ (shape 3 7) (shape 2
4)) is equal to (shape 3 7 2 4).

The shorthand for array types can be thought of as using an atom type
followed by a sequence of shapes to append, with each dimension d
being implicitly promoted to the vector shape (shape d). Using shape
variable @s and dimension variable $d,'6

[Int (+ $d 1) @s 3]
is shorthand for

(A Int (++ (shape (+ $d 1)) @s (shape 3)))

3.2 A TYPE DISCIPLINE FOR RANK POLYMORPHISM

When writing out functions, we will include a bit more detail. Instead
of stating the cell rank for each formal parameter, we state the entire cell
type. For linear interpolation on floats, we’ll write:

(X ((lo Float) (hi Float) (a Float))
(+ (xahi) (x (-1a) o))

Adapting the sum function from the previous section to work on vectors
in typed code introduces a new problem. Suppose we write something
like

(x ((v [Int 31))

(reduce + 0 v))

We can only use this function on vectors of length 3. What we want
is a function that is polymorphic in the length of the cells, replacing the
concrete dimension 3 with a variable dimension. For now, we’ll call that
dimension $v and write out an explicit abstraction for it:

(In ((($v Dim)))
(X ((v [Int $vI))
(reduce + 0 v)))

The I\ form parameterizes over a dimension, which we then use to
specify the type we want for v’s cells. This way, the function can be used
on vectors of any length, as long as the length is passed in, analogous to
passing a pointer to a buffer along with an integer indicating the buffer’s
size. The type of this function is roughly

(N (($v Dim))
(-> ([Int $v]) Int))

M is a universal quantifier as typically used in dependently typed
languages, though Remora imposes more limits on what computation
can be used to decide how to instantiate a 1 type.

A single-dimension sum is still a bit unsatisfying compared to our
untyped version which works on all-ranked cells. In order to consume
any arbitrarily high-ranked array as a single cell in typed code, we must
quantify over shapes—sequences of dimensions—not just individual di-
mensions. We might naively try asking for any shape at all, remembering
that the untyped sum would lift over anything at all:

(In (((ov Shape)))
(x ((v [Int @v]))
(reduce + 0 v)))

A Shape is an arbitrary-length sequence of Dims, which turns out to be
too general. In order to reduce along an array’s major axis, it must have
a major axis. A scalar argument cannot be allowed. In order to make this
work, we can parameterize over both the major axis and the remainder
of the shape:

33

34

17 Colleagues in the lab have suggested
that these ought to be called the Dorian,
Phrygian, etc. axes.

PROGRAMMING WITH RANK POLYMORPHISM

(Ix ((($v Dim) (@v Shape)))
(X ((v [Float $v @v]))
(reduce + 0 v)))

Note that in the array-type shorthand, the atom type is followed by
a sequence of indices, some of which are Dims while others are Shapes.
These are two different sorts of things—individual dimensions and se-
quences of dimensions—but we will allow them to be interspersed as
a syntactic convenience, such as in [Int 8 @s 10] indicating an array
with major axis 8, minor axis 10, and @s standing for intermediate!”
axes. Analogous to the shorthand offered for writing arrays in terms of
their atoms, the notation for a shape as a sequence of components implic-
itly converts Dims to singleton Shapes and concatenates those sequences.
Concatenation on Shapes is possible in user code, via the ++ operation:
(++ (shape 3 4) (shape 2 5)) is equivalent to (shape 3 4 2 5).

The other operation on indices is adding individual dimensions. This
can be used to describe the behavior of functions like append, whose
output’s leading dimension is the sum of its inputs’ leading dimensions.
It can also be used to encode restrictions on argument cell shapes, such
as limiting mean to avoid division by zero:

(In (($v Dim) (@v Shape))
(A ((v [Int (+ 1 $v) @v])))
(/ (sum v) (length v)))

Typed Remora’s use of boxes effectively treats ragged data and un-
certain result shape as the same problem. Existential quantification can
hide the uncertain portion of an array’s shape, such as giving iotax the
output type (£ ((@s Shape)) [Int @s]), or the portion that makes it
incompatible with its sibling cells, such as the typing the ragged array
we got from lifting iotax*:

[(box [0 1 2] ((@s Shape)) [Int @s])
(box [0 1 2 3] ((@s Shape)) [Int @s])]

Note that each individual boxed array must be annotated with its ¥
type. Without this annotation, it is uncertain what shape information is
meant to be hidden and what is meant to be revealed. A box typed as (T
((@s Shape)) [Int @s]) makes no promises at all about the shape of
the underlying array. The more specific type (X (($1 Dim)) [Int $1])
would guarantee that the box contains a vector, but that vector could be
of any length.

Suppose we had iota0 as a variant of iota which took a scalar, speci-
fying the result vector length. Then iota0 could have that more specific
output type reflecting the guarantee that the output will be a boxed vector.
Any computation using the unboxed result of iota* must be completely
independent of the rank of the underlying array, which could be a scalar,

3.2 A TYPE DISCIPLINE FOR RANK POLYMORPHISM

vector, matrix, efc., but with iota0, downstream computation only needs
to accommodate vectors. A function might even give an output type
like (¥ (($1 Dim)) [Float (1 + $1)]), promising a nonempty vector
of floats or (¥ (($1 Dim)) [Float $1 $1]) promising a square matrix.

This points to a broader design principle for typed rank-polymorphic
programming: Keep type-level information at type level instead of mov-
ing it to term level and hoping to reconstruct it later.

The code samples above gloss over another important issue, for the
sake of conciseness. Built-in functions with polymorphic types still
have to be instantiated before use. So a fully explicitly typed language
is unsuitable for human use due to the immense and numerous type
annotations required. However it is suitable for developing the formal
semantics of Remora in Chapter 4. Mitigating the verbosity of cell-type
annotations and explicit polymorphic instantiation will be one of the core
goals of type inference in Part II.

35

SEMANTICS OF TYPED REMORA

This chapter presents a formal semantics for Remora. The formalism
is explicit in quantification and instantiation for cell types, but rank-
polymorphic frame lifting remains implicit. The mechanics of rank-
polymorphic lifting are driven by types, rather than by inspecting array
values’ shapes, resolving the empty-frame problem encountered in some
untyped code. In describing high-arity syntactic forms, ellipses identify
sequences of syntactic elements.!® So the pattern (+ 7 ...) stands for an
s-expression with the symbol + followed by zero or more subexpressions,
which are collectively called 7

An ellipsis may be applied to a larger fragment of syntax, such as
in (++ (shape x p) ...). Here, we have a sequence of s-expressions,
each of which is shape followed by two items. Successfully matching
an s-expression to this pattern also identifies two sequences, x ... and
v They are, respectively, the sequence of all first dimensions from
the shapes and the sequence of all second dimensions from the shapes.

Ellipses can be nested, as in (+ (+ 7n...) ...). This pattern describes
a sequence of sequences of summands. We also lift this sequence notation
to describe sequences of premises in judgment forms, such as checking
the type of every argument in a function application form.

The formalism presented in this chapter is based on a model developed
using PLT Redex [28]. The model is available at https://github.com/
jrslepak/Revised-Remora. Within the model source, language.rkt de-
fines the core language of this chapter (explicitly typed Remora), typing-
rules.rkt implements typing and related judgments, and reduction.rkt
gives the reduction relation on an extended version of the language which
includes full type annotations.

4.1 SYNTAX

The grammar for Core Remora is given in Figure 4.1, with value forms
specified in Figure 4.2. Term-level syntax is divided into atoms, written
as a, and expressions, written as e. Expressions produce arrays, which
contain atoms. For the most part, atom terms perform only trivial compu-
tation. This rule applies to base values, written as b; primitive operators,
written as 0; and A-abstractions, which may abstract over terms, types,
and type indices. As an exception, a box gives an atomic view of an array
of any shape and may therefore perform any computation to compute its
contents. A box hides part of its contents’ shape, using a dependent sum.
It existentially quantifies type indices, but an explicit type annotation

37

18 Following the style of
Macro-by-Example [54]

https://github.com/jrslepak/Revised-Remora
https://github.com/jrslepak/Revised-Remora

38

SEMANTICS OF TYPED REMORA

ee Expr

aeAtom ::

T € Type ::

k € Kind ::
1eldx

y € Sort ::
0eOp =

f € Func ::

te Term ::

X
(array (n...)aa...)
(array (n...) 1)
(frame (n...)ee...)
(frame (n...) 1)

(ef ey)
(t-apperT...)
(i-appetr...)

(unbox (x; ... x.es)ep)
b

0

A ((xT1)...) e)
(M ((xk)...) e)
(A ((xy)...) e)

(boxt... eT)
x

B

(AT1)
(->(r...) 7"

(V((xk)...))
Mxy)...))
E(xy)...)T)
Array | Atom

x
n

(shapet...)
(+1...)

(+1...)

Shape | Dim

%t | % | % | %/
%append | %reduce
%iota | ...

ole

al A((xt)...) e)

Expressions

Variable reference
Array, containing atoms
Empty array and its atom type
Frame, containing array cells
Empty frame and its cell type
Term application

Type application

Index application
Let-binding box contents
Atoms

Base value

Primitive operator

Term abstraction

Type abstraction

Index abstraction

Boxed array

Types

Type variable

Base type

Array

Function

Universal

Dependent product
Dependent sum

Kinds

Type indices

Type variable

Single dimension
Sequence of dimensions
Adding dimensions
Appending shapes

Index sorts

Primitive operators

Functions

Terms

Figure 4.1: Core Remora grammar

4.1 SYNTAX 39

veVal m=x | (array(n...)u...) Values
veAtval :=b | 0 Atomic values
| (M((xT)...) e)
| (A ((xk)...) e)
| (IA((xy)...) e)
| (box:...vT)
C:=E|A Syntactic contexts
E =0 Expression contexts
| (array(n...)a... Aa...)
| (frame (n...)e... Ee...)
| (e... Ee...)
| (t-appEz...)
| (i-appE:...)
| (unbox (x;... x,E)e)
| (unbox (x;... x,e) E)
A =0 Atom contexts
| (A((x7)...) E)
| (MA((xk)...) E)
| (In((xy)...) E)
| (box:... ET)
V=0 Evaluation contexts
| (array (n...)a... (boxt... Vt)a...)
| (frame (n...)e... Ve...)
| (v...Ve...)
| (t-appVr...)
| (i-appWVi...)
| (unbox (x;... x, V)e)
| (unbox (x;... x,v) V)

Figure 4.2: Value forms, syntactic contexts, and evaluation contexts

40

SEMANTICS OF TYPED REMORA

is required. A box built from the index 3 and a 3 x 3 matrix could be
meant, for example, as an unspecified-length vector containing 3-vectors,
with type (X ((n Dim)) (A Int (shape n 3))) or as a square matrix of
unspecified size, with type (£ ((n Dim)) (A Int (shape n n))).

An array can be written as a literal, with its shape and individual atoms
listed directly. It can also be written in nested form as a frame containing
cells (its subexpressions) arranged in the specified shape. For example,

the matrix [}] can be written as the literal

(array (2 2) 123 4)
or as a vector frame of vector literal cells:

(frame (2)
(array (2) 1 2)
(array (2) 3 4))

The frame notation allows construction of arrays from unevaluated cells.
An empty array (i.e., one whose shape includes a zero dimension) must
be written with the type its elements are meant to have. An empty vector
of integers is a different value than an empty vector of booleans, and
they inhabit different types.

Term, type, and index abstractions can be applied to zero or more
expressions, types, or indices. The body of the abstraction must itself be
an expression, i.e., all functions produce arrays as their results.

The unbox form unwraps each box in an array of boxes, let-binding its
index- and term-level contents. Suppose we have M, a boxed square matrix
of unspecified size. Unboxing M as in (unbox (1 aM) e) lets us use the
index variable 1 and term variable a within e, the body. The results from
evaluating the body for each box’s contents are then gathered together to
produce the full result.

Types include base types (written as B), functions, arrays, universal
types, and dependent products and sums. Universals specify the kind
of each type argument, and dependent products and sums specify the
sort of each index argument. Types are classified as either Atom or Array.
Type indices are naturals and sequences of naturals, with addition and
appending as the only operators. They are classified into sorts, Dim and
Shape.

The grammar in Figure 4.1 does not require any specific set of prim-
itive operators, base types, and base values. An example collection of
array-manipulation primitives and their types is given in Figure 4.3. Most
of these primitives perform some operation along the argument’s major
axis. For example, head extracts the first scalar of a vector, the first row
of a matrix, efc.This means that the argument shape must have one di-
mension more than the result shape, and that extra dimension must be
nonzero. This is expressed in the type of head by giving the argument
shape (++ (+ 1 d) s), i.e., a single dimension which is 1 plus any arbi-
trary natural followed by any arbitrary sequence of naturals. In taking

4.1 SYNTAX

one scalar from a 3-vector, we would instantiate d as the dimension 2
and s as the empty shape (shape). If we want to extract the first plane of
a5 x 6 x 7 array, we use 4 for d and (shape 6 7) for s.

Since these operations work along the major axis, we can use other
axes instead by instantiating them differently. Suppose mtx is the ma-
trix (array (3 2) 0 1 2 3 4 5), with the type (A Num (shape 3 2)).
Then (t-app (i-app head 2 (shape 2)) Num) is a function which ex-
tracts the first row of a (1+2) x 2 (i.e., 3 x 2) matrix. So ((t-app (i-app
head 2 (shape 2)) Num) mtx) evaluates to (array (2) 0 1). Instead,
consider (t-app (i-app head 1 (shape)) Num). This is a function with
input type (A Num (shape 2)) and output type (A Num (shape)). It ex-
tracts the first scalar of a 2-vector. When applied to mtx, this function
lifts to extract the first scalar from each 2-vector, gathering the results as
(frame (3) (array () 0) (array () 2) (array () 4)).Then evalua-
tion proceeds, reducing to (array (3) 0 2 4), the first column of mtx.

Several primitives must return boxed arrays because the type system
cannot keep track of enough information to fully describe the result
shape. As an extreme example, read-nums reads a vector of numbers
from user input, and there is no way of knowing until run time how long
a vector the user will enter. In other cases, the necessity of boxing comes
from a limit on the type system’s expressive power. The ravel function
produces a vector whose atoms are all those of the argument array, laid
out in row-major order. The length of the ravel of some array is fully
determined by that array’s shape: it is the product of all of its dimensions.
However the undecidability of Peano arithmetic would interfere with
type checking (not to mention future efforts on type inference). Since
“product of all dimensions” is not expressible in Presburger arithmetic,
we instead have ravel return a boxed vector.

Boxing is not limited to vectors. For example, filter uses a vector of
booleans to decide which parts of an array to retain. Since the number of
true entries in that vector is unknown, the size of the result’s major axis
is also unknown. The resulting ¥ type existentially quantifies only that
one dimension, and leaves the remaining dimensions externally visible.

The iota functions and their variants, described in Figure 4.4, form
a useful case study on what invariants can be expressed in Remora’s
type system. These functions produce arrays whose atoms are successive
natural numbers starting from 0, such as (array (2 3) 061 2 3 4 5),
representing the matrix [} 2]. The argument to iota is a vector of
numbers specifying the result array’s shape. Since this vector can be
dynamically computed, we cannot give any specific shape for iota’s
return type. Instead, iota must return a box with existentially quantified
shape. Recall that boxing arrays allows functions with data-dependent
result shape to lift safely, since applying iota to (array (2 2) 3 3 4
4) must produce a 3 x 3 matrix and a 4 x 4 matrix as its two result cells.

41

42

Function

head, tail

behead, curtail

length

shape, ravel

append

reverse

rotate

fold

reduce

scan

filter

read-nums

iota

reshape

SEMANTICS OF TYPED REMORA

Type

(->

(>

(->

(->

(->

(>

(->

(->

((A t (++ (shape (+ 1 d)) s)))
(At s))

((At (++ (shape (+ 1 d)) s)))
(A t (++ (shape d) s)))

((A t (++ (shape d) s)))
(A Int (shape)))

((Ats))
(A (2 ((d Dim)) (A Int (shape d)))
(shape)))
((A t (++ (shape m) s))
(A t (++ (shape n) s)))
(At (++ (shape (+ mn)) s)))

((A t (++ (shape d) s)))
(A t (++ (shape d) s)))

((A t (++ (shape d) s))
(A Int (shape)))
(At (++ (shape d) s)))
((A (-> ((A t s) T) T) (shape))
T
(A t (++ (shape d) s)))
T
((A (> ((Ats)(Ats)
(At s)) (shape))
(At (++ (shape (+ 1 d)) s)))
(At s))

((A (> ((Aur) (Ats))
(A ur)) (shape))

(Aur)

(A t (++ (shape d) s)))

(A u (++ (shape d) r)))
((A Bool d)

(At (++ (shape d) s)))
(A (£ ((k Dim)) (A t (++ (shape k) s)))

(shape)))
0
(A (= ((k Dim))
(A Int (shape k))) (shape)))

((A Int (shape d)))
(A (X ((s Shape)) (A Int s)) (shape)))

((A Int (shape d))
(Atr))
(A (2 ((s Shape)) (A Int s)) (shape)))

Figure 4.3: Common array-manipulation primitive operations and their Remora
types. Each function type is wrapped in a scalar, with the func-
tion name bound at that scalar type in the base environment. For
readability, we elide the enclosing N and V forms.

4.2 STATIC SEMANTICS

Variants on iota allow the programmer to communicate more detailed
knowledge to the type system. When the result is meant to be a vector,
iota/v takes that vector’s length as the argument. The resulting box is
typed as a vector of unknown length rather than an array of completely
unknown shape. Knowing that we have a vector of numbers rather than
any arbitrary array means, for example, that summing the box’s contents
with reduce is certain to produce a scalar. We can thus type the following
function as consuming and producing non-boxed scalars:

(X ((n (A Num (shape))))
(unbox (len nums (iota/v n))
((t-app (i-app reduce len (shape)) Num)
+
((t-app (i-app append 1 len (shape)) Num)
(array () 0)
nums))))

In a more programmer-friendly surface language, with automatic instan-
tiation of polymorphic functions and conversion of bare atoms to scalar
arrays, this might be written as:

(X ((n (A Num (shape))))
(unbox (len nums (iota/v n))
(reduce + (append [0] nums))))

Alternatively, the programmer might prefer to use iota/s to pass the
desired result shape as a type index rather than as a term-level vector.
In that case, there is no need to box the result array. In the automatic-
instantiation shorthand, iota/s may be stylistically awkward, calling
for the variant iota/w, which takes an extra array argument as a “shape
witness” rather than instantiating at a shape index. Producing a number
array whose shape matches some existing array xs could then be written
as (iota/w xs) instead of ((i-app iota/s shape-of-xs)).

The reshape function behaves similarly to iota, except that the atoms
in the result array are drawn from the second argument, repeating them
cyclically if necessary. So using reshape with the shape specification
(array (2) 3 2) and the vector (array (5) 1 2 3 4 5) produces the
3 x 2 matrix (array (3 2) 1 2 3 4 5 1). Like iota, reshape benefits
from alternative ways for the programmer to specify the result shape.

4.2 STATIC SEMANTICS

We present typing rules for Remora as well as supporting judgment
forms: sorting rules for type indices, kinding rules for types, and a type
equivalence judgment handling both @-conversion of polymorphic types

43

44 SEMANTICS OF TYPED REMORA

Function Type

iota (-> ((A Int (shape d)))

(A (2 ((s Shape)) (A Int s)) (shape)))
iota/v (-> ((A Int (shape)))

(A (2 ((d Dim)) (A t (shape d)))

(shape)))
iota/s (N ((s Shape))
(> O (A Int s)))

iota/w (> ((A t s))

(A Int s))

Figure 4.4: Types for iota and its variants. More detailed argument-shape infor-
mation allows a more precise result shape: iota/v always produces
a vector, while iota/s and iota/w have their result shape specified
by their input.

and the multiple different ways a particular shape might be written.
Typing Core Remora uses a three-part environment structure: © is a
partial function mapping index variables to sorts; A maps type variables
to their kinds; and I’ maps term variables to their types. The stratification
of Dependent ML-style types allows indices to be checked using only the
sort environment and types using only the sort and kind environments.
Following the definition of each judgment form, we give a handful of
lemmas which will be needed for a type soundness argument in Section
4.4. The well-formedness judgments each come with a lemma stating
that the judgment gives a unique result to each well-formed term and
that unique result is preserved by substituting well-formed assignments
for free variables. When we show type soundness for Remora, these
results will be needed to prove the preservation lemma. Uniqueness of
typing is particularly important for Remora, where the implicit iteration
in function application (including index and type abstractions) is driven
by the types ascribed to the function and argument expressions. Well-
defined program behavior relies on having a unique decomposition of
each array into a frame of cells.

4.2.1 Sorting

Figure 4.5 defines the sorting judgment, © - :: , which states that
in sort environment ©, the index : has sort . Natural number literals
have sort Dim. A sequence of indices is a Shape, provided that every
element of the sequence is a Dim. Addition is used on Dim arguments to
produce a Dim. Shape arguments may be appended, to form another Shape.
Variables may be bound at either sort, but they can only be introduced
into the environment by index abstraction and unboxing terms—the
index language itself has no binding forms.

4.2 STATIC SEMANTICS

OF1y
nelN x:y)e®
—— S:NAT & S:VAR
© —n::Dim OFxuy
O} ::Dim --- O+ ::Dim ---
S:SHAPE S:PLUS
© + (shape t...) :: Shape ©F (+¢...)::Dim
® 1 :: Shape
S:APPEND

O | (++1...) : Shape
Figure 4.5: Sorting rules

We give two results about the well-behaved nature of the sorting rules:
No type index inhabits two different sorts (in the same environment),
and replacing an index’s variables with appropriately sorted indices does
not change the sort.

Lemma 4.2.1 (Uniqueness of sorting). I[f® 1y and © 1 :: 9/,
theny =y’

Proof. No non-variable index form is compatible with multiple sorting
rules, so they can only have whichever sort their one compatible rule
concludes. It remains to show that uniqueness holds for variables. Since
O is a well-defined partial function, mapping variables to sorts, © (x)
can only have one value. If @(x) = y and O(x) = y', y = . O

Lemma 4.2.2 (Preservation of sorts under index substitution). If©,x ::
Yty and © 1y iy, then © = i[x — 1] 2 y.

Proof sketch. This is straightforward induction on the original sort de-
rivation. O

4.2.2 Kinding

Kinding rules are given in Figure 4.6. The Array kind is only ascribed to
types built by the array type constructor and type variables bound at that
kind. The array type constructor requires as its arguments an Atom type
and a Shape index. Base types are fundamental, non-aggregate types,
such as Float or Bool, so they are Atoms. Function types have kind Atom,
but their input and output types must be Arrays. This reflects the rule that
application is performed on arrays, and the function produces an array
result. Similarly, universal types and dependent products, describing type
and index abstractions, must have an Array as their body, while they
themselves are Atoms. This rules out types whose inhabitants would have
to be syntactically illegal due to containing expressions instead of atoms
as their bodies. Since boxes present arrays as atoms, dependent sum

45

46

SEMANTICS OF TYPED REMORA

O;A+T:k

(x:k)eA
————— K:VAR ——— K:BASE
A-xk O;A+ B::Atom
O;AF T:Array ---
O;A ' Array

; K:FN
A (->(T...)T"):: Atom

O;A,x:k... —T:Array
;A (V((xk)...)T):: Atom

K:UNI1V

O,xy...;A T Array
A (M((xy)...) T)::Atom

K:P1

O,xy...;A- T Array
AR (Z((xy)...) T) = Atom

K:SicmA

© I 1 :: Shape O; A T::Atom
O;A+ (AT1):: Array

K:ARRAY

Figure 4.6: Kinding rules

types also have an Array body and are kinded as Atoms. A universal type
adds bindings for its quantified type variables to A. Dependent products
and sums do the same for their index variables in ©.

As with sorting of indices, we expect a well-kinded type to inhabit
only a single kind (fixing a particular environment). The kinding system
should also allow free index or type variables to be replaced with appro-
priately sorted or kinded indices or types without changing the original
type’s kind.

Lemma 4.2.3 (Uniqueness of kinding). If ©;A+— T kand ©O;A T ::
kK thenk =K.

Proof. As with uniqueness of sorting, no non-variable type is compatible
with multiple kinding rules. Since all kinding rules except for K: VAR
ascribe a specific kind, the only remaining case is for type variables. The
kind environment A is a well-defined partial function, so A(x) = k and
A(x) =k" imply k = k. O

Lemma 4.2.4 (Preservation of kinds under index substitution). If ©,x ::
V;AETikand © 1y iy then ©;A - t[x — 1] it k.

Proof sketch. This is straightforward induction on the original kind de-
rivation. O

Lemma 4.2.5 (Preservation of kinds under type substitution). Given
O;A,x ke -1 kand O;A - T, i ky then ©;A - t[x — 1] k.

4.2 STATIC SEMANTICS

Proof sketch. This is also provable by induction on the kind derivation
for 7. -

4.2.3 Typing

The typing rules in Figures 4.7 and 4.8 relate a full environment (®
mapping index variables to sorts, A mapping type variables to kinds,
and [' mapping term variables to types), a term (whether an atom or an
expression), and its type under that environment. Since an array type
might have its shape described in multiple different ways, e.g., a vector of
length 6 or a vector of length (+ 1 5), the T:EQV rule makes reference
to a type-equivalence judgment (presented in full detail in §4.2.4) which
reconciles such differences according to the algebraic theory of type
indices.

The signature S, referenced in the T:OP rule, is a function mapping
from primitive operators to their types. For example, S[+] is (-> ((A
Num (shape)) (A Num (shape))) (A Num (shape))), meaning + is an
operator which consumes two scalar numbers and produces one scalar
number.

Array literals (T:ARRAY) and nested frames (T:FRAME) both in-
clude a length check: the number of atoms or cells must be equal to
the product of the given dimensions. In the case of empty arrays, the
length-matching condition is fulfilled if and only if the array has a 0
as one of its dimensions. Term, type, and index abstractions (T:LAM,
T:TLAM, and T:ILAM respectively) all bind their arguments’ names in
the appropriate environment.

Typing function application (T: APP) starts by identifying the type of
the expression in function position. It must be an array of functions, and
the array’s entire shape 1/ is treated as the function frame. The function
input types, also arrays, specify the element type and cell shape for
each argument. Each cell shape : must be a suffix of the shape of the
corresponding actual argument; the remainder ¢, is the argument’s frame.
In the semilattice defined by the sequence-prefix relation =, the least
upper bound of a collection of sequences (written as L) is the one which
has all the others as prefixes. The maximum of these frames under prefix
ordering (where [23] = [232] but [23] & [6 3 2]) is the principal frame
1p. That is, the function and argument arrays will all be lifted so as to
have 1, as their frames when the program runs. Then 1, is used as the
frame around the function’s output type to give the result type for this
function application.

Type application (T:TAPP) and index application (T:IAPP) also re-
quire arrays in function position, but they can skip prefix comparison
as type and index arguments do not come in arrays that must be split
into frames of cells. Thus the function’s frame shape /¢ passes through

47

48 SEMANTICS OF TYPED REMORA

(x:7)eT
——— T:0prP ——— T:VAR
;AT - o: o] AT Hx:T
;AT —t:7 t~1
AT+t T

T:EQv

AT Ha:T
O; A T Atom Length[[a...]]:Hn...
O;A\;T + (array (n...)a...): (At (shapen...))

T:ARRAY

O;A - T::Atom Oen...
O;\;T + (array (n...)) : (At (shapen...))

T:0A

AT —e:(ATi)
O;A+ (AT1)::Array Length[[e...]]=nn...

O;A; T+ (frame (n...)e...): (At (++(shapen...) 1))

T:FRAME

O;A I T ::Atom © 1 ::Shape Oen...

T:0F
O;A; T+ (frame (n...) (Ati)): (At (++ (shapen...) 1))
OAT,x:T... e T O;AF T Array -
5 T:LAM
GAT-FON((xT)...)e):(>(t...)T)
GAx:k...;THe:T
T:TLAM
GAT (M ((xk)...) e):(V((xk)...)T)
O,x:y..;ATHe:t
T:ILAM
OATHIAN((xy)...) e):(N((xy)...)T)
Oy
A (X T At ;AT e ..
E(xy)...)1) om e:t[x—1,...] T-Box

AT - (boxe... e(X((xy)...)T)): (T (xy)...) T)

Figure 4.7: Typing rules (introduction forms)

4.2 STATIC SEMANTICS

;AT e: (AY((xk)...) (At 1)) 1f) ATk -

T:TAppP
O; AT+ (t-appet...):(Aty[x—,...] (++lf 1))
;AT e:(A(N) (A OF1::
AMxy)...) (AT p)) ip) Ly T-IAPD
O;A\;T + (i-appetr...): (ATp[xr—>L,...] (++lf lp[x*—>l,...]))
;AT Heg: (A ((Xy)...) t)s)
O,x; =y .. N, X s T X > xi, L ey (AT 1)
O;AF (ATy 1) i Array
T:UNBOX
O;A;T - (unbox (x; ... x.es)ep): (At (++15 1))
O;AT ep: (A(->((AT1)...) (AT 1)) uf)
AT e, : (AT (+H1,0)) - I, = Iflg,...
¢ ¢ P U{fa }T:APP

;AT - (ef eg---): (A v (++ Ip 8y
Figure 4.8: Typing rules (elimination forms)

unaltered, and arguments are substituted into the body type 7}, to produce
the resulting array’s element type.

When constructing a box (T:B0X), a dependent-sum type annotation
is provided. The box’s index components must match their declared
sorts, and substituting them into the body of the dependent sum type
must produce a type that matches the box’s array component. Unboxing
(T:UNBOX) requires that ey,,, the expression being destructed, be a
dependent sum. The unbox form names the sum’s index and array com-
ponents and adds them to the sort and type environments when checking
epody- Although the index components are in scope while checking the
body, information hidden by the existential is not permitted to leak out:
The end result type 1,4, must be well-formed without relying on the ex-
tended sort environment. Unboxing a frame of boxes (scalars) produces
a frame of result cells, similar to lifting function application.

Anticipating a progress lemma, we prove a canonical-forms lemma
for Remora’s typing rules. Following the atom/array distinction, we have
separate lemmas for atoms and arrays. Although an atom can contain
an array if that atom is a box, we avoid mutual dependence between the
lemmas by not making any claim about the syntactic structure of the
box’s contents.

Lemma 4.2.6 (Canonical forms for atomic values). Let v be a well-typed
atomic value, that is, -;-;- — U : T.

1. If t is of the form (-> (t; ...) T,),
then v is of the form
oor(A((xt;)...) e).

49

50 SEMANTICS OF TYPED REMORA

2. If tis of the form (¥ ((x k) ...) t,),
then v is of the form
(A ((x, k) ...) e).

3. If tis of the form (N ((x y)...) 7p),
then v is of the form
(Ix ((xp y)...) e).

4. If tis of the form (X ((xy)...) 1),
then v is of the form
(box ... vy (£ ((xp) ...) 1)),
with T = (5 ((x ¥) ...) 7).

5. If T is of the form B,
then v is of the form
b.

Proof sketch. The type derivation may end with T:EQV, so we consider
the sub-derivation prior to all final T:EQV instances. We examine which
typing rules can ascribe a type of the right form and then identify what
form the term must take to match those rule. O

Lemma 4.2.7 (Canonical forms for arrays). Let v be a well-typed value,
thatis, ;- +—v:T,

1. If tis of the form (A (-> (t;...) T,) 1),
then v is of the form
(array (n...)E...).

2. If tis of the form (A (VY ((xk)...) t,) 1),
then v is of the form
(array (m...) (M ((x, k) ...) e)...).

3. If tis of the form (A(N ((xy)...) ’l'p) 1),
then v is of the form
(array (n...) (I ((xp) ...) e) ...).

4. If tis of the form (A (X ((x y)...) 1) 1),
then v is of the form

(array (n...) (boxi... vp (T ((xp ¥) ...) 1)) ...),
witht = (I ((xy ¥)...) ’l’é).

5. If T is of the form (A B 1),
then v is of the form
(array (n...)Db...),
with -;+;- b : B for each of b

Proof sketch. This proceeds like the proof for Lemma 4.2.6. O

4.2 STATIC SEMANTICS

T>T
t=1 ==/
TEQV:REFL — —— TEQV:ARRAY
T>T (At =(AT 1)
Ti]-ETi,]- T, =T, -
QV:FN

(> (...)) = (> (1] ...) 1)

T[x»—>xf,...] =~ r’[x’n—»xf,...] with fresh xy ...

7 7 TEQvV:UNIV
WVlxk)..)D)=2WwW((xk)...)t)
— x| x> xp, . ith fresh x ¢ ...
7x Xf | =[x Xf], wi ref Xf TEQv:P1
Mixpy)..)=z y)...) ™)
— x| 2= Tx - xp, .. ith fresh x+ ...
x Xf | =[x Xf | with fres Xf TEQV:SIGMA

Cxy)..)D)=E (X y)...))

Figure 4.9: Type equivalence

4.2.4 Type Equivalence

Remora’s typing rules rely on a type-equivalence relation defined in Fig-
ure 4.9. The equivalence relation is essentially a-equivalence augmented
with a check as to whether array shapes are guaranteed to be equal.

The index equality check in TEQV: ARRAY, stated as = 1 = 1/, asks
whether the equality of : and /' is valid, i.e., whether it is true for every
possible choice of values for the variables appearing in the equality. This
is based on the algebraic laws of the theory of type indices. For example,
since appending is associative, the type indices (++ (++ 1g...) 11 ...),
(#+ 19... (++17...)), and (++ 1y... 17 ...) are all equal, no matter
the values chosen for the variables appearing in ¢y ... and ¢1 So any
nesting of ++ forms can be rewritten in a canonical form by flattening.
Individual dimensions are sums of natural-number literals and variables,
i.e., affine combinations of variables. So a dimension can be written in a
canonical representation with the number of occurrences of each variable
and the total of all natural-number literals.

Then type indices ¢ and //—whether they are shapes or dimensions—
are guaranteed to be equal if and only if their canonical forms are the
same. Two shapes built by appending components must have the compo-
nents match, or else an assignment of variables might give corresponding
components different lengths or place a mismatching dimension in com-
ponents of equal length. For example, the equality (++ x y) = (++ x
x) is falsified by any choice of x which has a different length than y
(such as x = (shape 3),y = (shape 3 3)) or which makes any individ-
ual dimension differ (such as x = (shape 2 3),y = (shape 3 3)). When

51

52

SEMANTICS OF TYPED REMORA

coefficients on variables within corresponding dimensions do not match
perfectly, that is an opportunity for a variable assignment to force those
dimensions to differ, e.g., (shape (+ a a 2) 4) = (shape (+ b a) 4)
can be falsified by choosinga =1,b = 2.

We expect the relation = actually to be an equivalence relation, i.e.,
reflexive, symmetric, and transitive. Only reflexivity has its own inference
rule, so we now show symmetry and transitivity.

Lemma 4.2.8 (Symmetry of =). If Tt =~ v/, then T’ ~ 7.

Proof sketch. This follows via straightforward induction on the equiva-
lence derivation. 0

Lemma 4.2.9 (Transitivity of =). If tg = 1 and 11 = Ty, then 15 = T5.

Proof sketch. This follows from induction on the derivations of 7y = 1y
and 7; = T,. Since both derivations mention 7, the structure of the
equivalence rules prohibits the derivations from ending with different
rules (other than TEQV:REFL, which passes that structural requirement
on to its premises). 0

Theorem 4.2.1. = is an equivalence relation.

A type-equivalence relation should not cross kind boundaries. Viola-
tion of this principle would allow use of T:EQV to ascribe an ill-kinded
type to a well-typed term. It follows directly from inspection of the
equivalence rules that they will not relate an Atom with an Array, but
correct use of type and index variables remains to be proven. To that end,
we show that two equivalent types will be ascribed the same kind by the
same environment.

Lemma 4.2.10. If O;A 1 ::kand t = 1, then ©;A +— 7’ :: k.

Proof sketch. This result is proven by induction on the derivation of T =~
7’. In each case, the induction hypothesis converts a kind derivation for
some fragment of 7 into a kind derivation for a corresponding fragment
of 7/ (and similar for index fragments). O]

We also expect type equivalence to be well-behaved under substitution.
Ultimately, substituting equivalent types or indices into equivalent types
ought to produce equivalent types. Proving that result by induction on
derivation of equivalence is straightforward except for the REFL case.

Lemma 4.2.11. If = 1 = !/, then for any index variable x, t[x — 1] =~
T[x—]

Proof sketch. This is provable using induction on the structure of 7. Only
the case for arrays makes direct use of 1 and /’; the other cases simply
use the induction hypothesis to prove the premises of the derivation of
T[x — 1] =[x — /] O

4.2 STATIC SEMANTICS

Lemma 4.2.12. If t, =~ 1|, then for any type variable x, T[x — T, | =
T[x —).

Proof. We use induction on the structure of 7. The cases for univer-
sals, dependent products, and dependent sums require instantiating the
induction hypothesis with a substitution of fresh type variables xy
For example, when 7 = (V ((x, k) ...) T,), the induction hypothesis
promises the equivalence of 7, after substituting in x¢ ... forx, ... and
also T, or T, for x. O

Theorem 4.2.2. If T =~ v’ and t, =~ T}, then for any type variable x,
T[x — 1] = U'[x — 1]

Proof sketch. We use induction on the derivation of 7 =~ 7’. In each
case, the induction hypothesis provides equivalence derivations for cor-
responding fragments of t[x — 7,] and 7/[x — 7,], which can then be
used to prove the substituted types themselves equivalent. 0

Having defined the typing judgment and the type-equivalence relation
on which it builds, we can now prove the usual results about typing in
Remora. The T:EQV rule can allow many types to be ascribed to a single
term, but we will prove that an environment and term can only map to a
single equivalence class.

Theorem 4.2.3 (Uniqueness of typing, up to equivalence). If ©;A;T —
t:tand O;\;T —t: 7/, thent =1

Proof sketch. This can be proven by induction on ¢, showing that all
derivations of ®; A;T ¢ : / must end with the same non-T:EQV rule
(chosen according to the structure of t) followed by 0 or more T:EQV
instances, which keeps the result in the same equivalence class as 7. [J

We also require guarantees about substitution in terms: replacing an
index variable with an appropriately sorted index, a type variable with an
appropriately kinded type, or a term variable with an appropriately typed
expression should not change the type of the original term. If substitution
turns a term ¢ with type 7 into ¢’ with type 7/, where T =~ 7/, we can add
a T:EQV at the end of the new type derivation to conclude ¢’ has type 7.
As such, we do not need to include an “up to equivalence” caveat when
stating the preservation of typing lemmas.

Lemma 4.2.13 (Preservation of types under index substitution). Given
O,x ;AT =t:tand © -1y iy then ©;A;T[x — 1] - tHx — 1] :
T[x — 1,].

Proof sketch. This is straightforward induction on the type derivation
O,x:y; ATt O

Lemma 4.2.14 (Preservation of types under type substitution).
Given O;A,x . kT —t:tand ;A + T, 1 k,
then ©; A;T[x — 1] - tx — 1] s T[x — 7).

53

54

SEMANTICS OF TYPED REMORA

Proof sketch. This is straightforward induction on the type derivation
Ax kT Ht:T. O

Lemma 4.2.15 (Preservation of types under term substitution). Given
AT, x: 1t -t:tand ©; AT eyt Ty then O; AT - tx —ey] : T

Proof sketch. We use induction on the derivation of ©;A; T, x : 7, ¢ :
T.]

We call an environment well-formed, written as @; A |- T, if for every
binding x : T € I, we can derive ©; A |- 7 :: Array. This is the expected
case, rather than permitting T to have kind Atom, because a lone variable
is an expression and ought to stand for an array value.

When we show that the typing judgment only ascribes types of the
appropriate kind, the case for the T:EQV rule relies on the earlier lemma
that the type equivalence relation respects kinding, i.e., two equivalent
types will have the same kind when checked in the same environment.

Theorem 4.2.4 (Ascription of well-kinded types). Given ©;A; I —t: 1
where ©;A T

e Iftis an expression, then ©;A — T :: Array
o If't is an atom, then ©;A | T :: Atom

Proof sketch. This follows by induction on the derivation of ©; A;T
t : t. It is not sufficient to point out that each typing rule ascribes a
type whose form matches the appropriate kind. Elimination-form cases
call for a little extra work. For UNBOX, the kind check on the result
type is necessary to ensure that existentially quantified variables do not
leak out. The APP case must ensure that index variables in the ascribed
type actually appear in the environment. This is guaranteed because the
principal frame is always chosen to be one of the function- or argument-
position frames. O

4.3 DYNAMIC SEMANTICS

In the dynamic semantics for Remora, the way function application is
lifted to work on aggregate data depends on the types of the function
and argument terms. Consulting type information avoids a “hole” in the
semantics of untyped array-oriented code, where a frame whose shape
includes a 0 dimension evaluates to an array with indeterminate shape—
there are no concrete cells whose shape can be used to determine the
overall shape of the resulting array. Instead, the function’s type tells us
the shape of the resulting cells, even when there are zero such cells.
The small-step operational semantics is the compatible closure of
the reduction rules given in Figure 4.11, using the evaluation contexts
V defined in Figure 4.2. It assumes every atom and expression has

4.3 DYNAMIC SEMANTICS 55

Split, [(ay,...,a,)]

=((ay,..,a,),(@ni1,.-a00)s e (i1 Am))
Rep, [(ay,...,an)]

= (a1,1,-- 810 Am1se -+ Amy) Where a; j = a;
Concat [[((al,lf---;al,n)/---;(am,l;---)am,n))]]

=(a11, @ e s By 1re s A)
Transpose((ay,1,...,a1,4)s-» (Ap,1se-orAmn))

= (a1, am1)s- (@ my))

Figure 4.10: List-processing metafunctions

been tagged with its type. For example, f-reduction requires that each
atom in the function-position array have input types 7 ... and that the
argument arrays’ types also match 7 This matching is still subject to
the type-equivalence rules described in §4.2, e.g., a function tagged as
having input type (A Int (++ (shape 3) (shape 4))) can be applied
to an argument tagged with type (A Int (shape 3 4)). Because every
term now has type annotations attached, we drop the “empty” array and
frame syntactic forms. Their replacements use the standard array and
frame syntax with an empty list of atoms or cells, and the atom or cell
type is implied by the expression’s type annotation.

Several list-processing metafunctions are used in defining the reduc-
tion rules. These metafunctions are defined in Figure 4.10. Split, turns
a list into a list of lists, made up of the consecutive length-n pieces of
the original list. For example, Split;[(1 2 3 4 5 6)]is ((1 2 3) (4 5
6)). Concat flattens a list of lists into a single list, effectively undoing
a Sp